Merge pull request #61151 from akien-mga/rvo2-document-changes

This commit is contained in:
Rémi Verschelde 2022-05-18 16:16:55 +02:00 committed by GitHub
commit 4155d555e3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 834 additions and 608 deletions

View File

@ -28,8 +28,8 @@
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef RVO_SPACE_H
#define RVO_SPACE_H
#ifndef NAV_MAP_H
#define NAV_MAP_H
#include "nav_rid.h"
@ -141,4 +141,4 @@ private:
void clip_path(const std::vector<gd::NavigationPoly> &p_navigation_polys, Vector<Vector3> &path, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly) const;
};
#endif // RVO_SPACE_H
#endif // NAV_MAP_H

View File

@ -566,17 +566,17 @@ Files extracted from upstream source:
## rvo2
- Upstream: https://github.com/snape/RVO2-3D
- Version: 1.0.1 (e3883f288a9e55ecfed3633a01af3e12778c6acf, 2016)
- Version: git (bfc048670a4e85066e86a1f923d8ea92e3add3b2, 2021)
- License: Apache 2.0
Files extracted from upstream source:
- All .cpp and .h files in the `src/` folder except for RVO.h, RVOSimulator.cpp and RVOSimulator.h
- All .cpp and .h files in the `src/` folder except for Export.h, RVO.h, RVOSimulator.cpp and RVOSimulator.h
- LICENSE
Important: Some files have Godot-made changes; so to enrich the features
originally proposed by this library and better integrate this library with
Godot. Please check the file to know what's new.
Godot. See the patch in the `patches` folder for details.
## spirv-reflect

45
thirdparty/rvo2/API.h vendored
View File

@ -1,45 +0,0 @@
/*
* API.h
* RVO2-3D Library
*
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <http://gamma.cs.unc.edu/RVO2/>
*/
/**
* \file API.h
* \brief Contains definitions related to Microsoft Windows.
*/
#ifndef RVO_API_H_
#define RVO_API_H_
// -- GODOT start --
#define RVO_API
// -- GODOT end --
#endif /* RVO_API_H_ */

View File

@ -8,7 +8,7 @@
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
@ -27,40 +27,40 @@
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <http://gamma.cs.unc.edu/RVO2/>
* <https://gamma.cs.unc.edu/RVO2/>
*/
#include "Agent.h"
#include <algorithm>
#include <cmath>
#include <algorithm>
#include "Definitions.h"
#include "KdTree.h"
namespace RVO {
/**
/**
* \brief A sufficiently small positive number.
*/
const float RVO_EPSILON = 0.00001f;
const float RVO3D_EPSILON = 0.00001f;
/**
/**
* \brief Defines a directed line.
*/
class Line {
public:
/**
class Line {
public:
/**
* \brief The direction of the directed line.
*/
Vector3 direction;
Vector3 direction;
/**
/**
* \brief A point on the directed line.
*/
Vector3 point;
};
Vector3 point;
};
/**
/**
* \brief Solves a one-dimensional linear program on a specified line subject to linear constraints defined by planes and a spherical constraint.
* \param planes Planes defining the linear constraints.
* \param planeNo The plane on which the line lies.
@ -71,9 +71,9 @@ public:
* \param result A reference to the result of the linear program.
* \return True if successful.
*/
bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line &line, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result);
bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line &line, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result);
/**
/**
* \brief Solves a two-dimensional linear program on a specified plane subject to linear constraints defined by planes and a spherical constraint.
* \param planes Planes defining the linear constraints.
* \param planeNo The plane on which the 2-d linear program is solved
@ -83,9 +83,9 @@ bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line
* \param result A reference to the result of the linear program.
* \return True if successful.
*/
bool linearProgram2(const std::vector<Plane> &planes, size_t planeNo, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result);
bool linearProgram2(const std::vector<Plane> &planes, size_t planeNo, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result);
/**
/**
* \brief Solves a three-dimensional linear program subject to linear constraints defined by planes and a spherical constraint.
* \param planes Planes defining the linear constraints.
* \param radius The radius of the spherical constraint.
@ -94,332 +94,352 @@ bool linearProgram2(const std::vector<Plane> &planes, size_t planeNo, float radi
* \param result A reference to the result of the linear program.
* \return The number of the plane it fails on, and the number of planes if successful.
*/
size_t linearProgram3(const std::vector<Plane> &planes, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result);
size_t linearProgram3(const std::vector<Plane> &planes, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result);
/**
/**
* \brief Solves a four-dimensional linear program subject to linear constraints defined by planes and a spherical constraint.
* \param planes Planes defining the linear constraints.
* \param beginPlane The plane on which the 3-d linear program failed.
* \param radius The radius of the spherical constraint.
* \param result A reference to the result of the linear program.
*/
void linearProgram4(const std::vector<Plane> &planes, size_t beginPlane, float radius, Vector3 &result);
void linearProgram4(const std::vector<Plane> &planes, size_t beginPlane, float radius, Vector3 &result);
Agent::Agent() :
id_(0), maxNeighbors_(0), maxSpeed_(0.0f), neighborDist_(0.0f), radius_(0.0f), timeHorizon_(0.0f), ignore_y_(false) {}
Agent::Agent() : id_(0), maxNeighbors_(0), maxSpeed_(0.0f), neighborDist_(0.0f), radius_(0.0f), timeHorizon_(0.0f), ignore_y_(false) { }
void Agent::computeNeighbors(KdTree *kdTree_) {
agentNeighbors_.clear();
if (maxNeighbors_ > 0) {
kdTree_->computeAgentNeighbors(this, neighborDist_ * neighborDist_);
}
}
void Agent::computeNeighbors(KdTree *kdTree_)
{
agentNeighbors_.clear();
if (maxNeighbors_ > 0) {
kdTree_->computeAgentNeighbors(this, neighborDist_ * neighborDist_);
}
}
void Agent::computeNewVelocity(float timeStep)
{
orcaPlanes_.clear();
const float invTimeHorizon = 1.0f / timeHorizon_;
/* Create agent ORCA planes. */
for (size_t i = 0; i < agentNeighbors_.size(); ++i) {
const Agent *const other = agentNeighbors_[i].second;
Vector3 relativePosition = other->position_ - position_;
Vector3 relativeVelocity = velocity_ - other->velocity_;
const float combinedRadius = radius_ + other->radius_;
// This is a Godot feature that allow the agents to avoid the collision
// by moving only on the horizontal plane relative to the player velocity.
if (ignore_y_) {
// Skip if these are in two different heights
#define ABS(m_v) (((m_v) < 0) ? (-(m_v)) : (m_v))
void Agent::computeNewVelocity(float timeStep) {
orcaPlanes_.clear();
const float invTimeHorizon = 1.0f / timeHorizon_;
if (ABS(relativePosition[1]) > combinedRadius * 2) {
continue;
}
relativePosition[1] = 0;
relativeVelocity[1] = 0;
}
/* Create agent ORCA planes. */
for (size_t i = 0; i < agentNeighbors_.size(); ++i) {
const Agent *const other = agentNeighbors_[i].second;
const float distSq = absSq(relativePosition);
const float combinedRadiusSq = sqr(combinedRadius);
Vector3 relativePosition = other->position_ - position_;
Vector3 relativeVelocity = velocity_ - other->velocity_;
const float combinedRadius = radius_ + other->radius_;
Plane plane;
Vector3 u;
// This is a Godot feature that allow the agents to avoid the collision
// by moving only on the horizontal plane relative to the player velocity.
if (ignore_y_) {
// Skip if these are in two different heights
if (ABS(relativePosition[1]) > combinedRadius * 2) {
continue;
}
relativePosition[1] = 0;
relativeVelocity[1] = 0;
}
if (distSq > combinedRadiusSq) {
/* No collision. */
const Vector3 w = relativeVelocity - invTimeHorizon * relativePosition;
/* Vector from cutoff center to relative velocity. */
const float wLengthSq = absSq(w);
const float distSq = absSq(relativePosition);
const float combinedRadiusSq = sqr(combinedRadius);
const float dotProduct = w * relativePosition;
Plane plane;
Vector3 u;
if (dotProduct < 0.0f && sqr(dotProduct) > combinedRadiusSq * wLengthSq) {
/* Project on cut-off circle. */
const float wLength = std::sqrt(wLengthSq);
const Vector3 unitW = w / wLength;
if (distSq > combinedRadiusSq) {
/* No collision. */
const Vector3 w = relativeVelocity - invTimeHorizon * relativePosition;
/* Vector from cutoff center to relative velocity. */
const float wLengthSq = absSq(w);
plane.normal = unitW;
u = (combinedRadius * invTimeHorizon - wLength) * unitW;
}
else {
/* Project on cone. */
const float a = distSq;
const float b = relativePosition * relativeVelocity;
const float c = absSq(relativeVelocity) - absSq(cross(relativePosition, relativeVelocity)) / (distSq - combinedRadiusSq);
const float t = (b + std::sqrt(sqr(b) - a * c)) / a;
const Vector3 ww = relativeVelocity - t * relativePosition;
const float wwLength = abs(ww);
const Vector3 unitWW = ww / wwLength;
const float dotProduct = w * relativePosition;
if (dotProduct < 0.0f && sqr(dotProduct) > combinedRadiusSq * wLengthSq) {
/* Project on cut-off circle. */
const float wLength = std::sqrt(wLengthSq);
const Vector3 unitW = w / wLength;
plane.normal = unitW;
u = (combinedRadius * invTimeHorizon - wLength) * unitW;
} else {
/* Project on cone. */
const float a = distSq;
const float b = relativePosition * relativeVelocity;
const float c = absSq(relativeVelocity) - absSq(cross(relativePosition, relativeVelocity)) / (distSq - combinedRadiusSq);
const float t = (b + std::sqrt(sqr(b) - a * c)) / a;
const Vector3 w = relativeVelocity - t * relativePosition;
plane.normal = unitWW;
u = (combinedRadius * t - wwLength) * unitWW;
}
}
else {
/* Collision. */
const float invTimeStep = 1.0f / timeStep;
const Vector3 w = relativeVelocity - invTimeStep * relativePosition;
const float wLength = abs(w);
const Vector3 unitW = w / wLength;
plane.normal = unitW;
u = (combinedRadius * t - wLength) * unitW;
u = (combinedRadius * invTimeStep - wLength) * unitW;
}
} else {
/* Collision. */
const float invTimeStep = 1.0f / timeStep;
const Vector3 w = relativeVelocity - invTimeStep * relativePosition;
const float wLength = abs(w);
const Vector3 unitW = w / wLength;
plane.normal = unitW;
u = (combinedRadius * invTimeStep - wLength) * unitW;
plane.point = velocity_ + 0.5f * u;
orcaPlanes_.push_back(plane);
}
plane.point = velocity_ + 0.5f * u;
orcaPlanes_.push_back(plane);
}
const size_t planeFail = linearProgram3(orcaPlanes_, maxSpeed_, prefVelocity_, false, newVelocity_);
const size_t planeFail = linearProgram3(orcaPlanes_, maxSpeed_, prefVelocity_, false, newVelocity_);
if (planeFail < orcaPlanes_.size()) {
linearProgram4(orcaPlanes_, planeFail, maxSpeed_, newVelocity_);
}
if (ignore_y_) {
// Not 100% necessary, but better to have.
newVelocity_[1] = prefVelocity_[1];
}
}
void Agent::insertAgentNeighbor(const Agent *agent, float &rangeSq) {
if (this != agent) {
const float distSq = absSq(position_ - agent->position_);
if (distSq < rangeSq) {
if (agentNeighbors_.size() < maxNeighbors_) {
agentNeighbors_.push_back(std::make_pair(distSq, agent));
}
size_t i = agentNeighbors_.size() - 1;
while (i != 0 && distSq < agentNeighbors_[i - 1].first) {
agentNeighbors_[i] = agentNeighbors_[i - 1];
--i;
}
agentNeighbors_[i] = std::make_pair(distSq, agent);
if (agentNeighbors_.size() == maxNeighbors_) {
rangeSq = agentNeighbors_.back().first;
}
}
}
}
bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line &line, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result) {
const float dotProduct = line.point * line.direction;
const float discriminant = sqr(dotProduct) + sqr(radius) - absSq(line.point);
if (discriminant < 0.0f) {
/* Max speed sphere fully invalidates line. */
return false;
}
const float sqrtDiscriminant = std::sqrt(discriminant);
float tLeft = -dotProduct - sqrtDiscriminant;
float tRight = -dotProduct + sqrtDiscriminant;
for (size_t i = 0; i < planeNo; ++i) {
const float numerator = (planes[i].point - line.point) * planes[i].normal;
const float denominator = line.direction * planes[i].normal;
if (sqr(denominator) <= RVO_EPSILON) {
/* Lines line is (almost) parallel to plane i. */
if (numerator > 0.0f) {
return false;
} else {
continue;
}
}
const float t = numerator / denominator;
if (denominator >= 0.0f) {
/* Plane i bounds line on the left. */
tLeft = std::max(tLeft, t);
} else {
/* Plane i bounds line on the right. */
tRight = std::min(tRight, t);
if (planeFail < orcaPlanes_.size()) {
linearProgram4(orcaPlanes_, planeFail, maxSpeed_, newVelocity_);
}
if (tLeft > tRight) {
return false;
}
}
if (directionOpt) {
/* Optimize direction. */
if (optVelocity * line.direction > 0.0f) {
/* Take right extreme. */
result = line.point + tRight * line.direction;
} else {
/* Take left extreme. */
result = line.point + tLeft * line.direction;
}
} else {
/* Optimize closest point. */
const float t = line.direction * (optVelocity - line.point);
if (t < tLeft) {
result = line.point + tLeft * line.direction;
} else if (t > tRight) {
result = line.point + tRight * line.direction;
} else {
result = line.point + t * line.direction;
}
}
return true;
}
bool linearProgram2(const std::vector<Plane> &planes, size_t planeNo, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result) {
const float planeDist = planes[planeNo].point * planes[planeNo].normal;
const float planeDistSq = sqr(planeDist);
const float radiusSq = sqr(radius);
if (planeDistSq > radiusSq) {
/* Max speed sphere fully invalidates plane planeNo. */
return false;
}
const float planeRadiusSq = radiusSq - planeDistSq;
const Vector3 planeCenter = planeDist * planes[planeNo].normal;
if (directionOpt) {
/* Project direction optVelocity on plane planeNo. */
const Vector3 planeOptVelocity = optVelocity - (optVelocity * planes[planeNo].normal) * planes[planeNo].normal;
const float planeOptVelocityLengthSq = absSq(planeOptVelocity);
if (planeOptVelocityLengthSq <= RVO_EPSILON) {
result = planeCenter;
} else {
result = planeCenter + std::sqrt(planeRadiusSq / planeOptVelocityLengthSq) * planeOptVelocity;
}
} else {
/* Project point optVelocity on plane planeNo. */
result = optVelocity + ((planes[planeNo].point - optVelocity) * planes[planeNo].normal) * planes[planeNo].normal;
/* If outside planeCircle, project on planeCircle. */
if (absSq(result) > radiusSq) {
const Vector3 planeResult = result - planeCenter;
const float planeResultLengthSq = absSq(planeResult);
result = planeCenter + std::sqrt(planeRadiusSq / planeResultLengthSq) * planeResult;
}
}
for (size_t i = 0; i < planeNo; ++i) {
if (planes[i].normal * (planes[i].point - result) > 0.0f) {
/* Result does not satisfy constraint i. Compute new optimal result. */
/* Compute intersection line of plane i and plane planeNo. */
Vector3 crossProduct = cross(planes[i].normal, planes[planeNo].normal);
if (absSq(crossProduct) <= RVO_EPSILON) {
/* Planes planeNo and i are (almost) parallel, and plane i fully invalidates plane planeNo. */
return false;
}
Line line;
line.direction = normalize(crossProduct);
const Vector3 lineNormal = cross(line.direction, planes[planeNo].normal);
line.point = planes[planeNo].point + (((planes[i].point - planes[planeNo].point) * planes[i].normal) / (lineNormal * planes[i].normal)) * lineNormal;
if (!linearProgram1(planes, i, line, radius, optVelocity, directionOpt, result)) {
return false;
}
if (ignore_y_) {
// Not 100% necessary, but better to have.
newVelocity_[1] = prefVelocity_[1];
}
}
return true;
}
void Agent::insertAgentNeighbor(const Agent *agent, float &rangeSq)
{
if (this != agent) {
const float distSq = absSq(position_ - agent->position_);
size_t linearProgram3(const std::vector<Plane> &planes, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result) {
if (directionOpt) {
/* Optimize direction. Note that the optimization velocity is of unit length in this case. */
result = optVelocity * radius;
} else if (absSq(optVelocity) > sqr(radius)) {
/* Optimize closest point and outside circle. */
result = normalize(optVelocity) * radius;
} else {
/* Optimize closest point and inside circle. */
result = optVelocity;
}
for (size_t i = 0; i < planes.size(); ++i) {
if (planes[i].normal * (planes[i].point - result) > 0.0f) {
/* Result does not satisfy constraint i. Compute new optimal result. */
const Vector3 tempResult = result;
if (!linearProgram2(planes, i, radius, optVelocity, directionOpt, result)) {
result = tempResult;
return i;
}
}
}
return planes.size();
}
void linearProgram4(const std::vector<Plane> &planes, size_t beginPlane, float radius, Vector3 &result) {
float distance = 0.0f;
for (size_t i = beginPlane; i < planes.size(); ++i) {
if (planes[i].normal * (planes[i].point - result) > distance) {
/* Result does not satisfy constraint of plane i. */
std::vector<Plane> projPlanes;
for (size_t j = 0; j < i; ++j) {
Plane plane;
const Vector3 crossProduct = cross(planes[j].normal, planes[i].normal);
if (absSq(crossProduct) <= RVO_EPSILON) {
/* Plane i and plane j are (almost) parallel. */
if (planes[i].normal * planes[j].normal > 0.0f) {
/* Plane i and plane j point in the same direction. */
continue;
} else {
/* Plane i and plane j point in opposite direction. */
plane.point = 0.5f * (planes[i].point + planes[j].point);
}
} else {
/* Plane.point is point on line of intersection between plane i and plane j. */
const Vector3 lineNormal = cross(crossProduct, planes[i].normal);
plane.point = planes[i].point + (((planes[j].point - planes[i].point) * planes[j].normal) / (lineNormal * planes[j].normal)) * lineNormal;
if (distSq < rangeSq) {
if (agentNeighbors_.size() < maxNeighbors_) {
agentNeighbors_.push_back(std::make_pair(distSq, agent));
}
plane.normal = normalize(planes[j].normal - planes[i].normal);
projPlanes.push_back(plane);
}
size_t i = agentNeighbors_.size() - 1;
const Vector3 tempResult = result;
while (i != 0 && distSq < agentNeighbors_[i - 1].first) {
agentNeighbors_[i] = agentNeighbors_[i - 1];
--i;
}
if (linearProgram3(projPlanes, radius, planes[i].normal, true, result) < projPlanes.size()) {
/* This should in principle not happen. The result is by definition already in the feasible region of this linear program. If it fails, it is due to small floating point error, and the current result is kept. */
result = tempResult;
agentNeighbors_[i] = std::make_pair(distSq, agent);
if (agentNeighbors_.size() == maxNeighbors_) {
rangeSq = agentNeighbors_.back().first;
}
}
}
}
bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line &line, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result)
{
const float dotProduct = line.point * line.direction;
const float discriminant = sqr(dotProduct) + sqr(radius) - absSq(line.point);
if (discriminant < 0.0f) {
/* Max speed sphere fully invalidates line. */
return false;
}
const float sqrtDiscriminant = std::sqrt(discriminant);
float tLeft = -dotProduct - sqrtDiscriminant;
float tRight = -dotProduct + sqrtDiscriminant;
for (size_t i = 0; i < planeNo; ++i) {
const float numerator = (planes[i].point - line.point) * planes[i].normal;
const float denominator = line.direction * planes[i].normal;
if (sqr(denominator) <= RVO3D_EPSILON) {
/* Lines line is (almost) parallel to plane i. */
if (numerator > 0.0f) {
return false;
}
else {
continue;
}
}
distance = planes[i].normal * (planes[i].point - result);
}
const float t = numerator / denominator;
if (denominator >= 0.0f) {
/* Plane i bounds line on the left. */
tLeft = std::max(tLeft, t);
}
else {
/* Plane i bounds line on the right. */
tRight = std::min(tRight, t);
}
if (tLeft > tRight) {
return false;
}
}
if (directionOpt) {
/* Optimize direction. */
if (optVelocity * line.direction > 0.0f) {
/* Take right extreme. */
result = line.point + tRight * line.direction;
}
else {
/* Take left extreme. */
result = line.point + tLeft * line.direction;
}
}
else {
/* Optimize closest point. */
const float t = line.direction * (optVelocity - line.point);
if (t < tLeft) {
result = line.point + tLeft * line.direction;
}
else if (t > tRight) {
result = line.point + tRight * line.direction;
}
else {
result = line.point + t * line.direction;
}
}
return true;
}
bool linearProgram2(const std::vector<Plane> &planes, size_t planeNo, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result)
{
const float planeDist = planes[planeNo].point * planes[planeNo].normal;
const float planeDistSq = sqr(planeDist);
const float radiusSq = sqr(radius);
if (planeDistSq > radiusSq) {
/* Max speed sphere fully invalidates plane planeNo. */
return false;
}
const float planeRadiusSq = radiusSq - planeDistSq;
const Vector3 planeCenter = planeDist * planes[planeNo].normal;
if (directionOpt) {
/* Project direction optVelocity on plane planeNo. */
const Vector3 planeOptVelocity = optVelocity - (optVelocity * planes[planeNo].normal) * planes[planeNo].normal;
const float planeOptVelocityLengthSq = absSq(planeOptVelocity);
if (planeOptVelocityLengthSq <= RVO3D_EPSILON) {
result = planeCenter;
}
else {
result = planeCenter + std::sqrt(planeRadiusSq / planeOptVelocityLengthSq) * planeOptVelocity;
}
}
else {
/* Project point optVelocity on plane planeNo. */
result = optVelocity + ((planes[planeNo].point - optVelocity) * planes[planeNo].normal) * planes[planeNo].normal;
/* If outside planeCircle, project on planeCircle. */
if (absSq(result) > radiusSq) {
const Vector3 planeResult = result - planeCenter;
const float planeResultLengthSq = absSq(planeResult);
result = planeCenter + std::sqrt(planeRadiusSq / planeResultLengthSq) * planeResult;
}
}
for (size_t i = 0; i < planeNo; ++i) {
if (planes[i].normal * (planes[i].point - result) > 0.0f) {
/* Result does not satisfy constraint i. Compute new optimal result. */
/* Compute intersection line of plane i and plane planeNo. */
Vector3 crossProduct = cross(planes[i].normal, planes[planeNo].normal);
if (absSq(crossProduct) <= RVO3D_EPSILON) {
/* Planes planeNo and i are (almost) parallel, and plane i fully invalidates plane planeNo. */
return false;
}
Line line;
line.direction = normalize(crossProduct);
const Vector3 lineNormal = cross(line.direction, planes[planeNo].normal);
line.point = planes[planeNo].point + (((planes[i].point - planes[planeNo].point) * planes[i].normal) / (lineNormal * planes[i].normal)) * lineNormal;
if (!linearProgram1(planes, i, line, radius, optVelocity, directionOpt, result)) {
return false;
}
}
}
return true;
}
size_t linearProgram3(const std::vector<Plane> &planes, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result)
{
if (directionOpt) {
/* Optimize direction. Note that the optimization velocity is of unit length in this case. */
result = optVelocity * radius;
}
else if (absSq(optVelocity) > sqr(radius)) {
/* Optimize closest point and outside circle. */
result = normalize(optVelocity) * radius;
}
else {
/* Optimize closest point and inside circle. */
result = optVelocity;
}
for (size_t i = 0; i < planes.size(); ++i) {
if (planes[i].normal * (planes[i].point - result) > 0.0f) {
/* Result does not satisfy constraint i. Compute new optimal result. */
const Vector3 tempResult = result;
if (!linearProgram2(planes, i, radius, optVelocity, directionOpt, result)) {
result = tempResult;
return i;
}
}
}
return planes.size();
}
void linearProgram4(const std::vector<Plane> &planes, size_t beginPlane, float radius, Vector3 &result)
{
float distance = 0.0f;
for (size_t i = beginPlane; i < planes.size(); ++i) {
if (planes[i].normal * (planes[i].point - result) > distance) {
/* Result does not satisfy constraint of plane i. */
std::vector<Plane> projPlanes;
for (size_t j = 0; j < i; ++j) {
Plane plane;
const Vector3 crossProduct = cross(planes[j].normal, planes[i].normal);
if (absSq(crossProduct) <= RVO3D_EPSILON) {
/* Plane i and plane j are (almost) parallel. */
if (planes[i].normal * planes[j].normal > 0.0f) {
/* Plane i and plane j point in the same direction. */
continue;
}
else {
/* Plane i and plane j point in opposite direction. */
plane.point = 0.5f * (planes[i].point + planes[j].point);
}
}
else {
/* Plane.point is point on line of intersection between plane i and plane j. */
const Vector3 lineNormal = cross(crossProduct, planes[i].normal);
plane.point = planes[i].point + (((planes[j].point - planes[i].point) * planes[j].normal) / (lineNormal * planes[j].normal)) * lineNormal;
}
plane.normal = normalize(planes[j].normal - planes[i].normal);
projPlanes.push_back(plane);
}
const Vector3 tempResult = result;
if (linearProgram3(projPlanes, radius, planes[i].normal, true, result) < projPlanes.size()) {
/* This should in principle not happen. The result is by definition already in the feasible region of this linear program. If it fails, it is due to small floating point error, and the current result is kept. */
result = tempResult;
}
distance = planes[i].normal * (planes[i].point - result);
}
}
}
}
} // namespace RVO

View File

@ -8,7 +8,7 @@
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
@ -27,17 +27,15 @@
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <http://gamma.cs.unc.edu/RVO2/>
* <https://gamma.cs.unc.edu/RVO2/>
*/
/**
* \file Agent.h
* \brief Contains the Agent class.
*/
#ifndef RVO_AGENT_H_
#define RVO_AGENT_H_
#include "API.h"
#ifndef RVO3D_AGENT_H_
#define RVO3D_AGENT_H_
#include <cstddef>
#include <utility>
@ -53,69 +51,68 @@
// - Moved the `Plane` class here.
// - Added a new parameter `ignore_y_` in the `Agent`. This parameter is used to control a godot feature that allows to avoid collisions by moving on the horizontal plane.
namespace RVO {
/**
* \brief Defines a plane.
*/
class Plane {
public:
/**
* \brief A point on the plane.
*/
Vector3 point;
/**
* \brief Defines a plane.
*/
class Plane {
public:
/**
* \brief A point on the plane.
*/
Vector3 point;
/**
* \brief The normal to the plane.
*/
Vector3 normal;
};
/**
* \brief The normal to the plane.
*/
Vector3 normal;
};
/**
* \brief Defines an agent in the simulation.
*/
class Agent {
public:
/**
/**
* \brief Defines an agent in the simulation.
*/
class Agent {
public:
/**
* \brief Constructs an agent instance.
* \param sim The simulator instance.
*/
explicit Agent();
explicit Agent();
/**
/**
* \brief Computes the neighbors of this agent.
*/
void computeNeighbors(class KdTree *kdTree_);
void computeNeighbors(class KdTree *kdTree_);
/**
/**
* \brief Computes the new velocity of this agent.
*/
void computeNewVelocity(float timeStep);
void computeNewVelocity(float timeStep);
/**
/**
* \brief Inserts an agent neighbor into the set of neighbors of this agent.
* \param agent A pointer to the agent to be inserted.
* \param rangeSq The squared range around this agent.
*/
void insertAgentNeighbor(const Agent *agent, float &rangeSq);
void insertAgentNeighbor(const Agent *agent, float &rangeSq);
Vector3 newVelocity_;
Vector3 position_;
Vector3 prefVelocity_;
Vector3 velocity_;
size_t id_;
size_t maxNeighbors_;
float maxSpeed_;
float neighborDist_;
float radius_;
float timeHorizon_;
std::vector<std::pair<float, const Agent *> > agentNeighbors_;
std::vector<Plane> orcaPlanes_;
/// This is a godot feature that allows the Agent to avoid collision by mooving
/// on the horizontal plane.
bool ignore_y_;
Vector3 newVelocity_;
Vector3 position_;
Vector3 prefVelocity_;
Vector3 velocity_;
size_t id_;
size_t maxNeighbors_;
float maxSpeed_;
float neighborDist_;
float radius_;
float timeHorizon_;
std::vector<std::pair<float, const Agent *> > agentNeighbors_;
std::vector<Plane> orcaPlanes_;
/// This is a godot feature that allows the Agent to avoid collision by mooving
/// on the horizontal plane.
bool ignore_y_;
friend class KdTree;
};
} // namespace RVO
friend class KdTree;
};
}
#endif /* RVO_AGENT_H_ */
#endif /* RVO3D_AGENT_H_ */

View File

@ -8,7 +8,7 @@
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
@ -27,7 +27,7 @@
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <http://gamma.cs.unc.edu/RVO2/>
* <https://gamma.cs.unc.edu/RVO2/>
*/
/**
@ -35,10 +35,8 @@
* \brief Contains functions and constants used in multiple classes.
*/
#ifndef RVO_DEFINITIONS_H_
#define RVO_DEFINITIONS_H_
#include "API.h"
#ifndef RVO3D_DEFINITIONS_H_
#define RVO3D_DEFINITIONS_H_
namespace RVO {
/**
@ -52,4 +50,4 @@ namespace RVO {
}
}
#endif /* RVO_DEFINITIONS_H_ */
#endif /* RVO3D_DEFINITIONS_H_ */

View File

@ -8,7 +8,7 @@
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
@ -27,7 +27,7 @@
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <http://gamma.cs.unc.edu/RVO2/>
* <https://gamma.cs.unc.edu/RVO2/>
*/
#include "KdTree.h"
@ -38,115 +38,123 @@
#include "Definitions.h"
namespace RVO {
const size_t RVO_MAX_LEAF_SIZE = 10;
const size_t RVO3D_MAX_LEAF_SIZE = 10;
KdTree::KdTree() {}
KdTree::KdTree() { }
void KdTree::buildAgentTree(std::vector<Agent *> agents) {
agents_.swap(agents);
void KdTree::buildAgentTree(std::vector<Agent *> agents)
{
agents_.swap(agents);
if (!agents_.empty()) {
agentTree_.resize(2 * agents_.size() - 1);
buildAgentTreeRecursive(0, agents_.size(), 0);
if (!agents_.empty()) {
agentTree_.resize(2 * agents_.size() - 1);
buildAgentTreeRecursive(0, agents_.size(), 0);
}
}
}
void KdTree::buildAgentTreeRecursive(size_t begin, size_t end, size_t node) {
agentTree_[node].begin = begin;
agentTree_[node].end = end;
agentTree_[node].minCoord = agents_[begin]->position_;
agentTree_[node].maxCoord = agents_[begin]->position_;
void KdTree::buildAgentTreeRecursive(size_t begin, size_t end, size_t node)
{
agentTree_[node].begin = begin;
agentTree_[node].end = end;
agentTree_[node].minCoord = agents_[begin]->position_;
agentTree_[node].maxCoord = agents_[begin]->position_;
for (size_t i = begin + 1; i < end; ++i) {
agentTree_[node].maxCoord[0] = std::max(agentTree_[node].maxCoord[0], agents_[i]->position_.x());
agentTree_[node].minCoord[0] = std::min(agentTree_[node].minCoord[0], agents_[i]->position_.x());
agentTree_[node].maxCoord[1] = std::max(agentTree_[node].maxCoord[1], agents_[i]->position_.y());
agentTree_[node].minCoord[1] = std::min(agentTree_[node].minCoord[1], agents_[i]->position_.y());
agentTree_[node].maxCoord[2] = std::max(agentTree_[node].maxCoord[2], agents_[i]->position_.z());
agentTree_[node].minCoord[2] = std::min(agentTree_[node].minCoord[2], agents_[i]->position_.z());
}
for (size_t i = begin + 1; i < end; ++i) {
agentTree_[node].maxCoord[0] = std::max(agentTree_[node].maxCoord[0], agents_[i]->position_.x());
agentTree_[node].minCoord[0] = std::min(agentTree_[node].minCoord[0], agents_[i]->position_.x());
agentTree_[node].maxCoord[1] = std::max(agentTree_[node].maxCoord[1], agents_[i]->position_.y());
agentTree_[node].minCoord[1] = std::min(agentTree_[node].minCoord[1], agents_[i]->position_.y());
agentTree_[node].maxCoord[2] = std::max(agentTree_[node].maxCoord[2], agents_[i]->position_.z());
agentTree_[node].minCoord[2] = std::min(agentTree_[node].minCoord[2], agents_[i]->position_.z());
}
if (end - begin > RVO_MAX_LEAF_SIZE) {
/* No leaf node. */
size_t coord;
if (end - begin > RVO3D_MAX_LEAF_SIZE) {
/* No leaf node. */
size_t coord;
if (agentTree_[node].maxCoord[0] - agentTree_[node].minCoord[0] > agentTree_[node].maxCoord[1] - agentTree_[node].minCoord[1] && agentTree_[node].maxCoord[0] - agentTree_[node].minCoord[0] > agentTree_[node].maxCoord[2] - agentTree_[node].minCoord[2]) {
coord = 0;
} else if (agentTree_[node].maxCoord[1] - agentTree_[node].minCoord[1] > agentTree_[node].maxCoord[2] - agentTree_[node].minCoord[2]) {
coord = 1;
} else {
coord = 2;
}
const float splitValue = 0.5f * (agentTree_[node].maxCoord[coord] + agentTree_[node].minCoord[coord]);
size_t left = begin;
size_t right = end;
while (left < right) {
while (left < right && agents_[left]->position_[coord] < splitValue) {
++left;
}
while (right > left && agents_[right - 1]->position_[coord] >= splitValue) {
--right;
if (agentTree_[node].maxCoord[0] - agentTree_[node].minCoord[0] > agentTree_[node].maxCoord[1] - agentTree_[node].minCoord[1] && agentTree_[node].maxCoord[0] - agentTree_[node].minCoord[0] > agentTree_[node].maxCoord[2] - agentTree_[node].minCoord[2]) {
coord = 0;
}
else if (agentTree_[node].maxCoord[1] - agentTree_[node].minCoord[1] > agentTree_[node].maxCoord[2] - agentTree_[node].minCoord[2]) {
coord = 1;
}
else {
coord = 2;
}
if (left < right) {
std::swap(agents_[left], agents_[right - 1]);
const float splitValue = 0.5f * (agentTree_[node].maxCoord[coord] + agentTree_[node].minCoord[coord]);
size_t left = begin;
size_t right = end;
while (left < right) {
while (left < right && agents_[left]->position_[coord] < splitValue) {
++left;
}
while (right > left && agents_[right - 1]->position_[coord] >= splitValue) {
--right;
}
if (left < right) {
std::swap(agents_[left], agents_[right - 1]);
++left;
--right;
}
}
size_t leftSize = left - begin;
if (leftSize == 0) {
++leftSize;
++left;
--right;
++right;
}
}
size_t leftSize = left - begin;
agentTree_[node].left = node + 1;
agentTree_[node].right = node + 2 * leftSize;
if (leftSize == 0) {
++leftSize;
++left;
++right;
buildAgentTreeRecursive(begin, left, agentTree_[node].left);
buildAgentTreeRecursive(left, end, agentTree_[node].right);
}
agentTree_[node].left = node + 1;
agentTree_[node].right = node + 2 * leftSize;
buildAgentTreeRecursive(begin, left, agentTree_[node].left);
buildAgentTreeRecursive(left, end, agentTree_[node].right);
}
}
void KdTree::computeAgentNeighbors(Agent *agent, float rangeSq) const {
queryAgentTreeRecursive(agent, rangeSq, 0);
}
void KdTree::computeAgentNeighbors(Agent *agent, float rangeSq) const
{
queryAgentTreeRecursive(agent, rangeSq, 0);
}
void KdTree::queryAgentTreeRecursive(Agent *agent, float &rangeSq, size_t node) const {
if (agentTree_[node].end - agentTree_[node].begin <= RVO_MAX_LEAF_SIZE) {
for (size_t i = agentTree_[node].begin; i < agentTree_[node].end; ++i) {
agent->insertAgentNeighbor(agents_[i], rangeSq);
void KdTree::queryAgentTreeRecursive(Agent *agent, float &rangeSq, size_t node) const
{
if (agentTree_[node].end - agentTree_[node].begin <= RVO3D_MAX_LEAF_SIZE) {
for (size_t i = agentTree_[node].begin; i < agentTree_[node].end; ++i) {
agent->insertAgentNeighbor(agents_[i], rangeSq);
}
}
} else {
const float distSqLeft = sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[0] - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].left].maxCoord[0])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[1] - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].left].maxCoord[1])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[2] - agent->position_.z())) + sqr(std::max(0.0f, agent->position_.z() - agentTree_[agentTree_[node].left].maxCoord[2]));
else {
const float distSqLeft = sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[0] - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].left].maxCoord[0])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[1] - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].left].maxCoord[1])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[2] - agent->position_.z())) + sqr(std::max(0.0f, agent->position_.z() - agentTree_[agentTree_[node].left].maxCoord[2]));
const float distSqRight = sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[0] - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].right].maxCoord[0])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[1] - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].right].maxCoord[1])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[2] - agent->position_.z())) + sqr(std::max(0.0f, agent->position_.z() - agentTree_[agentTree_[node].right].maxCoord[2]));
const float distSqRight = sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[0] - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].right].maxCoord[0])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[1] - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].right].maxCoord[1])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[2] - agent->position_.z())) + sqr(std::max(0.0f, agent->position_.z() - agentTree_[agentTree_[node].right].maxCoord[2]));
if (distSqLeft < distSqRight) {
if (distSqLeft < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
if (distSqLeft < distSqRight) {
if (distSqLeft < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
if (distSqRight < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
}
}
}
else {
if (distSqRight < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
}
}
} else {
if (distSqRight < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
if (distSqLeft < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
if (distSqLeft < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
}
}
}
}
}
}
} // namespace RVO

View File

@ -8,7 +8,7 @@
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
@ -27,16 +27,14 @@
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <http://gamma.cs.unc.edu/RVO2/>
* <https://gamma.cs.unc.edu/RVO2/>
*/
/**
* \file KdTree.h
* \brief Contains the KdTree class.
*/
#ifndef RVO_KD_TREE_H_
#define RVO_KD_TREE_H_
#include "API.h"
#ifndef RVO3D_KD_TREE_H_
#define RVO3D_KD_TREE_H_
#include <cstddef>
#include <vector>
@ -47,78 +45,78 @@
// - Removed `sim_`.
// - KdTree things are public
namespace RVO {
class Agent;
class RVOSimulator;
class Agent;
class RVOSimulator;
/**
/**
* \brief Defines <i>k</i>d-trees for agents in the simulation.
*/
class KdTree {
public:
/**
class KdTree {
public:
/**
* \brief Defines an agent <i>k</i>d-tree node.
*/
class AgentTreeNode {
public:
/**
class AgentTreeNode {
public:
/**
* \brief The beginning node number.
*/
size_t begin;
size_t begin;
/**
/**
* \brief The ending node number.
*/
size_t end;
size_t end;
/**
/**
* \brief The left node number.
*/
size_t left;
size_t left;
/**
/**
* \brief The right node number.
*/
size_t right;
size_t right;
/**
/**
* \brief The maximum coordinates.
*/
Vector3 maxCoord;
Vector3 maxCoord;
/**
/**
* \brief The minimum coordinates.
*/
Vector3 minCoord;
};
Vector3 minCoord;
};
/**
/**
* \brief Constructs a <i>k</i>d-tree instance.
* \param sim The simulator instance.
*/
explicit KdTree();
explicit KdTree();
/**
/**
* \brief Builds an agent <i>k</i>d-tree.
*/
void buildAgentTree(std::vector<Agent *> agents);
void buildAgentTree(std::vector<Agent *> agents);
void buildAgentTreeRecursive(size_t begin, size_t end, size_t node);
void buildAgentTreeRecursive(size_t begin, size_t end, size_t node);
/**
/**
* \brief Computes the agent neighbors of the specified agent.
* \param agent A pointer to the agent for which agent neighbors are to be computed.
* \param rangeSq The squared range around the agent.
*/
void computeAgentNeighbors(Agent *agent, float rangeSq) const;
void computeAgentNeighbors(Agent *agent, float rangeSq) const;
void queryAgentTreeRecursive(Agent *agent, float &rangeSq, size_t node) const;
void queryAgentTreeRecursive(Agent *agent, float &rangeSq, size_t node) const;
std::vector<Agent *> agents_;
std::vector<AgentTreeNode> agentTree_;
std::vector<Agent *> agents_;
std::vector<AgentTreeNode> agentTree_;
friend class Agent;
friend class RVOSimulator;
};
} // namespace RVO
friend class Agent;
friend class RVOSimulator;
};
}
#endif /* RVO_KD_TREE_H_ */
#endif /* RVO3D_KD_TREE_H_ */

View File

@ -1,32 +0,0 @@
Optimal Reciprocal Collision Avoidance in Three Dimensions
==========================================================
<http://gamma.cs.unc.edu/RVO2/>
[![Build Status](https://travis-ci.org/snape/RVO2-3D.png?branch=master)](https://travis-ci.org/snape/RVO2-3D)
[![Build status](https://ci.appveyor.com/api/projects/status/ov8ec3igv588wpx7/branch/master?svg=true)](https://ci.appveyor.com/project/snape/rvo2-3d)
Copyright 2008 University of North Carolina at Chapel Hill
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
<http://www.apache.org/licenses/LICENSE-2.0>
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Please send all bug reports to [geom@cs.unc.edu](mailto:geom@cs.unc.edu).
The authors may be contacted via:
Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, and Dinesh Manocha
Dept. of Computer Science
201 S. Columbia St.
Frederick P. Brooks, Jr. Computer Science Bldg.
Chapel Hill, N.C. 27599-3175
United States of America

View File

@ -8,7 +8,7 @@
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
@ -27,32 +27,32 @@
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <http://gamma.cs.unc.edu/RVO2/>
* <https://gamma.cs.unc.edu/RVO2/>
*/
/**
* \file Vector3.h
* \brief Contains the Vector3 class.
*/
#ifndef RVO_VECTOR3_H_
#define RVO_VECTOR3_H_
#include "API.h"
#ifndef RVO3D_VECTOR3_H_
#define RVO3D_VECTOR3_H_
#include <cmath>
#include <cstddef>
#include <ostream>
#define RVO3D_EXPORT
namespace RVO {
/**
* \brief Defines a three-dimensional vector.
*/
class Vector3 {
class RVO3D_EXPORT Vector3 {
public:
/**
* \brief Constructs and initializes a three-dimensional vector instance to zero.
*/
RVO_API inline Vector3()
inline Vector3()
{
val_[0] = 0.0f;
val_[1] = 0.0f;
@ -63,7 +63,7 @@ namespace RVO {
* \brief Constructs and initializes a three-dimensional vector from the specified three-element array.
* \param val The three-element array containing the xyz-coordinates.
*/
RVO_API inline explicit Vector3(const float val[3])
inline explicit Vector3(const float val[3])
{
val_[0] = val[0];
val_[1] = val[1];
@ -76,7 +76,7 @@ namespace RVO {
* \param y The y-coordinate of the three-dimensional vector.
* \param z The z-coordinate of the three-dimensional vector.
*/
RVO_API inline Vector3(float x, float y, float z)
inline Vector3(float x, float y, float z)
{
val_[0] = x;
val_[1] = y;
@ -87,39 +87,39 @@ namespace RVO {
* \brief Returns the x-coordinate of this three-dimensional vector.
* \return The x-coordinate of the three-dimensional vector.
*/
RVO_API inline float x() const { return val_[0]; }
inline float x() const { return val_[0]; }
/**
* \brief Returns the y-coordinate of this three-dimensional vector.
* \return The y-coordinate of the three-dimensional vector.
*/
RVO_API inline float y() const { return val_[1]; }
inline float y() const { return val_[1]; }
/**
* \brief Returns the z-coordinate of this three-dimensional vector.
* \return The z-coordinate of the three-dimensional vector.
*/
RVO_API inline float z() const { return val_[2]; }
inline float z() const { return val_[2]; }
/**
* \brief Returns the specified coordinate of this three-dimensional vector.
* \param i The coordinate that should be returned (0 <= i < 3).
* \return The specified coordinate of the three-dimensional vector.
*/
RVO_API inline float operator[](size_t i) const { return val_[i]; }
inline float operator[](size_t i) const { return val_[i]; }
/**
* \brief Returns a reference to the specified coordinate of this three-dimensional vector.
* \param i The coordinate to which a reference should be returned (0 <= i < 3).
* \return A reference to the specified coordinate of the three-dimensional vector.
*/
RVO_API inline float &operator[](size_t i) { return val_[i]; }
inline float &operator[](size_t i) { return val_[i]; }
/**
* \brief Computes the negation of this three-dimensional vector.
* \return The negation of this three-dimensional vector.
*/
RVO_API inline Vector3 operator-() const
inline Vector3 operator-() const
{
return Vector3(-val_[0], -val_[1], -val_[2]);
}
@ -129,7 +129,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which the dot product should be computed.
* \return The dot product of this three-dimensional vector with a specified three-dimensional vector.
*/
RVO_API inline float operator*(const Vector3 &vector) const
inline float operator*(const Vector3 &vector) const
{
return val_[0] * vector[0] + val_[1] * vector[1] + val_[2] * vector[2];
}
@ -139,7 +139,7 @@ namespace RVO {
* \param scalar The scalar value with which the scalar multiplication should be computed.
* \return The scalar multiplication of this three-dimensional vector with a specified scalar value.
*/
RVO_API inline Vector3 operator*(float scalar) const
inline Vector3 operator*(float scalar) const
{
return Vector3(val_[0] * scalar, val_[1] * scalar, val_[2] * scalar);
}
@ -149,7 +149,7 @@ namespace RVO {
* \param scalar The scalar value with which the scalar division should be computed.
* \return The scalar division of this three-dimensional vector with a specified scalar value.
*/
RVO_API inline Vector3 operator/(float scalar) const
inline Vector3 operator/(float scalar) const
{
const float invScalar = 1.0f / scalar;
@ -161,7 +161,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which the vector sum should be computed.
* \return The vector sum of this three-dimensional vector with a specified three-dimensional vector.
*/
RVO_API inline Vector3 operator+(const Vector3 &vector) const
inline Vector3 operator+(const Vector3 &vector) const
{
return Vector3(val_[0] + vector[0], val_[1] + vector[1], val_[2] + vector[2]);
}
@ -171,7 +171,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which the vector difference should be computed.
* \return The vector difference of this three-dimensional vector with a specified three-dimensional vector.
*/
RVO_API inline Vector3 operator-(const Vector3 &vector) const
inline Vector3 operator-(const Vector3 &vector) const
{
return Vector3(val_[0] - vector[0], val_[1] - vector[1], val_[2] - vector[2]);
}
@ -181,7 +181,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which to test for equality.
* \return True if the three-dimensional vectors are equal.
*/
RVO_API inline bool operator==(const Vector3 &vector) const
inline bool operator==(const Vector3 &vector) const
{
return val_[0] == vector[0] && val_[1] == vector[1] && val_[2] == vector[2];
}
@ -191,7 +191,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which to test for inequality.
* \return True if the three-dimensional vectors are not equal.
*/
RVO_API inline bool operator!=(const Vector3 &vector) const
inline bool operator!=(const Vector3 &vector) const
{
return val_[0] != vector[0] || val_[1] != vector[1] || val_[2] != vector[2];
}
@ -201,7 +201,7 @@ namespace RVO {
* \param scalar The scalar value with which the scalar multiplication should be computed.
* \return A reference to this three-dimensional vector.
*/
RVO_API inline Vector3 &operator*=(float scalar)
inline Vector3 &operator*=(float scalar)
{
val_[0] *= scalar;
val_[1] *= scalar;
@ -215,7 +215,7 @@ namespace RVO {
* \param scalar The scalar value with which the scalar division should be computed.
* \return A reference to this three-dimensional vector.
*/
RVO_API inline Vector3 &operator/=(float scalar)
inline Vector3 &operator/=(float scalar)
{
const float invScalar = 1.0f / scalar;
@ -232,7 +232,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which the vector sum should be computed.
* \return A reference to this three-dimensional vector.
*/
RVO_API inline Vector3 &operator+=(const Vector3 &vector)
inline Vector3 &operator+=(const Vector3 &vector)
{
val_[0] += vector[0];
val_[1] += vector[1];
@ -246,7 +246,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which the vector difference should be computed.
* \return A reference to this three-dimensional vector.
*/
RVO_API inline Vector3 &operator-=(const Vector3 &vector)
inline Vector3 &operator-=(const Vector3 &vector)
{
val_[0] -= vector[0];
val_[1] -= vector[1];
@ -267,7 +267,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which the scalar multiplication should be computed.
* \return The scalar multiplication of the three-dimensional vector with the scalar value.
*/
inline Vector3 operator*(float scalar, const Vector3 &vector)
RVO3D_EXPORT inline Vector3 operator*(float scalar, const Vector3 &vector)
{
return Vector3(scalar * vector[0], scalar * vector[1], scalar * vector[2]);
}
@ -279,7 +279,7 @@ namespace RVO {
* \param vector2 The second vector with which the cross product should be computed.
* \return The cross product of the two specified vectors.
*/
inline Vector3 cross(const Vector3 &vector1, const Vector3 &vector2)
RVO3D_EXPORT inline Vector3 cross(const Vector3 &vector1, const Vector3 &vector2)
{
return Vector3(vector1[1] * vector2[2] - vector1[2] * vector2[1], vector1[2] * vector2[0] - vector1[0] * vector2[2], vector1[0] * vector2[1] - vector1[1] * vector2[0]);
}
@ -291,7 +291,7 @@ namespace RVO {
* \param vector The three-dimensional vector which to insert into the output stream.
* \return A reference to the output stream.
*/
inline std::ostream &operator<<(std::ostream &os, const Vector3 &vector)
RVO3D_EXPORT inline std::ostream &operator<<(std::ostream &os, const Vector3 &vector)
{
os << "(" << vector[0] << "," << vector[1] << "," << vector[2] << ")";
@ -304,7 +304,7 @@ namespace RVO {
* \param vector The three-dimensional vector whose length is to be computed.
* \return The length of the three-dimensional vector.
*/
inline float abs(const Vector3 &vector)
RVO3D_EXPORT inline float abs(const Vector3 &vector)
{
return std::sqrt(vector * vector);
}
@ -315,7 +315,7 @@ namespace RVO {
* \param vector The three-dimensional vector whose squared length is to be computed.
* \return The squared length of the three-dimensional vector.
*/
inline float absSq(const Vector3 &vector)
RVO3D_EXPORT inline float absSq(const Vector3 &vector)
{
return vector * vector;
}
@ -326,7 +326,7 @@ namespace RVO {
* \param vector The three-dimensional vector whose normalization is to be computed.
* \return The normalization of the three-dimensional vector.
*/
inline Vector3 normalize(const Vector3 &vector)
RVO3D_EXPORT inline Vector3 normalize(const Vector3 &vector)
{
return vector / abs(vector);
}

View File

@ -0,0 +1,282 @@
diff --git a/thirdparty/rvo2/Agent.cpp b/thirdparty/rvo2/Agent.cpp
index 5e49a3554c..b35eee9c12 100644
--- a/thirdparty/rvo2/Agent.cpp
+++ b/thirdparty/rvo2/Agent.cpp
@@ -105,18 +105,17 @@ namespace RVO {
*/
void linearProgram4(const std::vector<Plane> &planes, size_t beginPlane, float radius, Vector3 &result);
- Agent::Agent(RVOSimulator *sim) : sim_(sim), id_(0), maxNeighbors_(0), maxSpeed_(0.0f), neighborDist_(0.0f), radius_(0.0f), timeHorizon_(0.0f) { }
+ Agent::Agent() : id_(0), maxNeighbors_(0), maxSpeed_(0.0f), neighborDist_(0.0f), radius_(0.0f), timeHorizon_(0.0f), ignore_y_(false) { }
- void Agent::computeNeighbors()
+ void Agent::computeNeighbors(KdTree *kdTree_)
{
agentNeighbors_.clear();
-
if (maxNeighbors_ > 0) {
- sim_->kdTree_->computeAgentNeighbors(this, neighborDist_ * neighborDist_);
+ kdTree_->computeAgentNeighbors(this, neighborDist_ * neighborDist_);
}
}
- void Agent::computeNewVelocity()
+ void Agent::computeNewVelocity(float timeStep)
{
orcaPlanes_.clear();
const float invTimeHorizon = 1.0f / timeHorizon_;
@@ -124,10 +123,24 @@ namespace RVO {
/* Create agent ORCA planes. */
for (size_t i = 0; i < agentNeighbors_.size(); ++i) {
const Agent *const other = agentNeighbors_[i].second;
- const Vector3 relativePosition = other->position_ - position_;
- const Vector3 relativeVelocity = velocity_ - other->velocity_;
- const float distSq = absSq(relativePosition);
+
+ Vector3 relativePosition = other->position_ - position_;
+ Vector3 relativeVelocity = velocity_ - other->velocity_;
const float combinedRadius = radius_ + other->radius_;
+
+ // This is a Godot feature that allow the agents to avoid the collision
+ // by moving only on the horizontal plane relative to the player velocity.
+ if (ignore_y_) {
+ // Skip if these are in two different heights
+#define ABS(m_v) (((m_v) < 0) ? (-(m_v)) : (m_v))
+ if (ABS(relativePosition[1]) > combinedRadius * 2) {
+ continue;
+ }
+ relativePosition[1] = 0;
+ relativeVelocity[1] = 0;
+ }
+
+ const float distSq = absSq(relativePosition);
const float combinedRadiusSq = sqr(combinedRadius);
Plane plane;
@@ -165,7 +178,7 @@ namespace RVO {
}
else {
/* Collision. */
- const float invTimeStep = 1.0f / sim_->timeStep_;
+ const float invTimeStep = 1.0f / timeStep;
const Vector3 w = relativeVelocity - invTimeStep * relativePosition;
const float wLength = abs(w);
const Vector3 unitW = w / wLength;
@@ -183,6 +196,11 @@ namespace RVO {
if (planeFail < orcaPlanes_.size()) {
linearProgram4(orcaPlanes_, planeFail, maxSpeed_, newVelocity_);
}
+
+ if (ignore_y_) {
+ // Not 100% necessary, but better to have.
+ newVelocity_[1] = prefVelocity_[1];
+ }
}
void Agent::insertAgentNeighbor(const Agent *agent, float &rangeSq)
@@ -211,12 +229,6 @@ namespace RVO {
}
}
- void Agent::update()
- {
- velocity_ = newVelocity_;
- position_ += velocity_ * sim_->timeStep_;
- }
-
bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line &line, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result)
{
const float dotProduct = line.point * line.direction;
diff --git a/thirdparty/rvo2/Agent.h b/thirdparty/rvo2/Agent.h
index d3922ec645..45fbead2f5 100644
--- a/thirdparty/rvo2/Agent.h
+++ b/thirdparty/rvo2/Agent.h
@@ -41,30 +41,52 @@
#include <utility>
#include <vector>
-#include "RVOSimulator.h"
#include "Vector3.h"
+// Note: Slightly modified to work better in Godot.
+// - The agent can be created by anyone.
+// - The simulator pointer is removed.
+// - The update function is removed.
+// - The compute velocity function now need the timeStep.
+// - Moved the `Plane` class here.
+// - Added a new parameter `ignore_y_` in the `Agent`. This parameter is used to control a godot feature that allows to avoid collisions by moving on the horizontal plane.
namespace RVO {
+ /**
+ * \brief Defines a plane.
+ */
+ class Plane {
+ public:
+ /**
+ * \brief A point on the plane.
+ */
+ Vector3 point;
+
+ /**
+ * \brief The normal to the plane.
+ */
+ Vector3 normal;
+ };
+
/**
* \brief Defines an agent in the simulation.
*/
class Agent {
- private:
+ public:
/**
* \brief Constructs an agent instance.
* \param sim The simulator instance.
*/
- explicit Agent(RVOSimulator *sim);
+ explicit Agent();
/**
* \brief Computes the neighbors of this agent.
*/
- void computeNeighbors();
+ void computeNeighbors(class KdTree *kdTree_);
/**
* \brief Computes the new velocity of this agent.
*/
- void computeNewVelocity();
+ void computeNewVelocity(float timeStep);
/**
* \brief Inserts an agent neighbor into the set of neighbors of this agent.
@@ -73,16 +95,10 @@ namespace RVO {
*/
void insertAgentNeighbor(const Agent *agent, float &rangeSq);
- /**
- * \brief Updates the three-dimensional position and three-dimensional velocity of this agent.
- */
- void update();
-
Vector3 newVelocity_;
Vector3 position_;
Vector3 prefVelocity_;
Vector3 velocity_;
- RVOSimulator *sim_;
size_t id_;
size_t maxNeighbors_;
float maxSpeed_;
@@ -91,9 +107,11 @@ namespace RVO {
float timeHorizon_;
std::vector<std::pair<float, const Agent *> > agentNeighbors_;
std::vector<Plane> orcaPlanes_;
+ /// This is a godot feature that allows the Agent to avoid collision by mooving
+ /// on the horizontal plane.
+ bool ignore_y_;
friend class KdTree;
- friend class RVOSimulator;
};
}
diff --git a/thirdparty/rvo2/KdTree.cpp b/thirdparty/rvo2/KdTree.cpp
index 5e9e9777a6..c857f299df 100644
--- a/thirdparty/rvo2/KdTree.cpp
+++ b/thirdparty/rvo2/KdTree.cpp
@@ -36,16 +36,15 @@
#include "Agent.h"
#include "Definitions.h"
-#include "RVOSimulator.h"
namespace RVO {
const size_t RVO3D_MAX_LEAF_SIZE = 10;
- KdTree::KdTree(RVOSimulator *sim) : sim_(sim) { }
+ KdTree::KdTree() { }
- void KdTree::buildAgentTree()
+ void KdTree::buildAgentTree(std::vector<Agent *> agents)
{
- agents_ = sim_->agents_;
+ agents_.swap(agents);
if (!agents_.empty()) {
agentTree_.resize(2 * agents_.size() - 1);
diff --git a/thirdparty/rvo2/KdTree.h b/thirdparty/rvo2/KdTree.h
index a09384c20f..69d8920ce0 100644
--- a/thirdparty/rvo2/KdTree.h
+++ b/thirdparty/rvo2/KdTree.h
@@ -41,6 +41,9 @@
#include "Vector3.h"
+// Note: Slightly modified to work better with Godot.
+// - Removed `sim_`.
+// - KdTree things are public
namespace RVO {
class Agent;
class RVOSimulator;
@@ -49,7 +52,7 @@ namespace RVO {
* \brief Defines <i>k</i>d-trees for agents in the simulation.
*/
class KdTree {
- private:
+ public:
/**
* \brief Defines an agent <i>k</i>d-tree node.
*/
@@ -90,12 +93,12 @@ namespace RVO {
* \brief Constructs a <i>k</i>d-tree instance.
* \param sim The simulator instance.
*/
- explicit KdTree(RVOSimulator *sim);
+ explicit KdTree();
/**
* \brief Builds an agent <i>k</i>d-tree.
*/
- void buildAgentTree();
+ void buildAgentTree(std::vector<Agent *> agents);
void buildAgentTreeRecursive(size_t begin, size_t end, size_t node);
@@ -110,7 +113,6 @@ namespace RVO {
std::vector<Agent *> agents_;
std::vector<AgentTreeNode> agentTree_;
- RVOSimulator *sim_;
friend class Agent;
friend class RVOSimulator;
diff --git a/thirdparty/rvo2/Vector3.h b/thirdparty/rvo2/Vector3.h
index 6c3223bb87..f44e311f29 100644
--- a/thirdparty/rvo2/Vector3.h
+++ b/thirdparty/rvo2/Vector3.h
@@ -41,7 +41,7 @@
#include <cstddef>
#include <ostream>
-#include "Export.h"
+#define RVO3D_EXPORT
namespace RVO {
/**
@@ -59,17 +59,6 @@ namespace RVO {
val_[2] = 0.0f;
}
- /**
- * \brief Constructs and initializes a three-dimensional vector from the specified three-dimensional vector.
- * \param vector The three-dimensional vector containing the xyz-coordinates.
- */
- inline Vector3(const Vector3 &vector)
- {
- val_[0] = vector[0];
- val_[1] = vector[1];
- val_[2] = vector[2];
- }
-
/**
* \brief Constructs and initializes a three-dimensional vector from the specified three-element array.
* \param val The three-element array containing the xyz-coordinates.