mirror of
https://github.com/godotengine/godot.git
synced 2025-01-07 10:41:52 +00:00
Fix anisotropic GGX D function, and introduce and use anistropic GGX G function.
Also fixed isotropic GGX G function with Schlick approximation, and added a commented out version without the approximation. Added references.
This commit is contained in:
parent
b204683640
commit
12596cb5bc
@ -865,11 +865,57 @@ float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) {
|
||||
|
||||
#endif
|
||||
|
||||
// GGX Specular
|
||||
// Source: http://www.filmicworlds.com/images/ggx-opt/optimized-ggx.hlsl
|
||||
float G1V(float dotNV, float k)
|
||||
{
|
||||
return 1.0 / (dotNV * (1.0 - k) + k);
|
||||
|
||||
// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
|
||||
// We're dividing this factor off because the overall term we'll end up looks like
|
||||
// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
|
||||
//
|
||||
// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
|
||||
//
|
||||
// We're basically regouping this as
|
||||
//
|
||||
// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
|
||||
//
|
||||
// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
|
||||
//
|
||||
// The contents of the D and G (G1) functions (GGX) are taken from
|
||||
// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
|
||||
// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
|
||||
|
||||
float G_GGX_2cos(float cos_theta_m, float alpha) {
|
||||
// Schlick's approximation
|
||||
// C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
|
||||
// Eq. (19), although see Heitz (2014) the about the problems with his derivation.
|
||||
// It nevertheless approximates GGX well with k = alpha/2.
|
||||
float k = 0.5*alpha;
|
||||
return 0.5 / (cos_theta_m * (1.0 - k) + k);
|
||||
|
||||
// float cos2 = cos_theta_m*cos_theta_m;
|
||||
// float sin2 = (1.0-cos2);
|
||||
// return 1.0 /( cos_theta_m + sqrt(cos2 + alpha*alpha*sin2) );
|
||||
}
|
||||
|
||||
float D_GXX(float cos_theta_m, float alpha) {
|
||||
float alpha2 = alpha*alpha;
|
||||
float d = 1.0 + (alpha2-1.0)*cos_theta_m*cos_theta_m;
|
||||
return alpha2/(M_PI * d * d);
|
||||
}
|
||||
|
||||
float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
|
||||
float cos2 = cos_theta_m * cos_theta_m;
|
||||
float sin2 = (1.0-cos2);
|
||||
float s_x = alpha_x * cos_phi;
|
||||
float s_y = alpha_y * sin_phi;
|
||||
return 1.0 / (cos_theta_m + sqrt(cos2 + (s_x*s_x + s_y*s_y)*sin2 ));
|
||||
}
|
||||
|
||||
float D_GXX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
|
||||
float cos2 = cos_theta_m * cos_theta_m;
|
||||
float sin2 = (1.0-cos2);
|
||||
float r_x = cos_phi/alpha_x;
|
||||
float r_y = sin_phi/alpha_y;
|
||||
float d = cos2 + sin2*(r_x * r_x + r_y * r_y);
|
||||
return 1.0 / (M_PI * alpha_x * alpha_y * d * d );
|
||||
}
|
||||
|
||||
|
||||
@ -1019,7 +1065,6 @@ LIGHT_SHADER_CODE
|
||||
|
||||
#elif defined(SPECULAR_SCHLICK_GGX)
|
||||
// shlick+ggx as default
|
||||
float alpha = roughness * roughness;
|
||||
|
||||
vec3 H = normalize(V + L);
|
||||
|
||||
@ -1035,26 +1080,22 @@ LIGHT_SHADER_CODE
|
||||
float ay = ry*ry;
|
||||
float XdotH = dot( T, H );
|
||||
float YdotH = dot( B, H );
|
||||
float denom = XdotH*XdotH / (ax*ax) + YdotH*YdotH / (ay*ay) + cNdotH*cNdotH;
|
||||
float D = 1.0 / ( M_PI * ax*ay * denom*denom );
|
||||
float D = D_GXX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
|
||||
float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
|
||||
|
||||
#else
|
||||
float alphaSqr = alpha * alpha;
|
||||
float denom = cNdotH * cNdotH * (alphaSqr - 1.0) + 1.0;
|
||||
float D = alphaSqr / (M_PI * denom * denom);
|
||||
float alpha = roughness * roughness;
|
||||
float D = D_GGX(cNdotH, alpha);
|
||||
float G = G_GGX_2cos(cNdotL, alpha) * G_GGX_2cos(cNdotV, alpha);
|
||||
#endif
|
||||
// F
|
||||
float F0 = 1.0; // FIXME
|
||||
float cLdotH5 = SchlickFresnel(cLdotH);
|
||||
float F = mix(cLdotH5, 1.0, F0);
|
||||
|
||||
// V
|
||||
float k = alpha / 2.0f;
|
||||
float vis = G1V(cNdotL, k) * G1V(cNdotV, k);
|
||||
float specular_brdf_NL = cNdotL * D * F * G;
|
||||
|
||||
float speci = cNdotL * D * F * vis;
|
||||
|
||||
specular_light += speci * light_color * specular_blob_intensity * attenuation;
|
||||
specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
|
||||
#endif
|
||||
|
||||
#if defined(LIGHT_USE_CLEARCOAT)
|
||||
@ -1069,7 +1110,7 @@ LIGHT_SHADER_CODE
|
||||
#endif
|
||||
float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
|
||||
float Fr = mix(.04, 1.0, cLdotH5);
|
||||
float Gr = G1V(cNdotL, .25) * G1V(cNdotV, .25);
|
||||
float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
|
||||
|
||||
|
||||
specular_light += .25*clearcoat*Gr*Fr*Dr;
|
||||
|
Loading…
Reference in New Issue
Block a user