godot/thirdparty/meshoptimizer/simplifier.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2333 lines
79 KiB
C++
Raw Normal View History

// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
#include "meshoptimizer.h"
#include <assert.h>
#include <float.h>
#include <math.h>
#include <string.h>
#ifndef TRACE
#define TRACE 0
#endif
#if TRACE
#include <stdio.h>
#endif
2020-12-28 00:54:21 +00:00
#if TRACE
#define TRACESTATS(i) stats[i]++;
#else
#define TRACESTATS(i) (void)0
#endif
// This work is based on:
// Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. 1997
// Michael Garland. Quadric-based polygonal surface simplification. 1999
// Peter Lindstrom. Out-of-Core Simplification of Large Polygonal Models. 2000
// Matthias Teschner, Bruno Heidelberger, Matthias Mueller, Danat Pomeranets, Markus Gross. Optimized Spatial Hashing for Collision Detection of Deformable Objects. 2003
// Peter Van Sandt, Yannis Chronis, Jignesh M. Patel. Efficiently Searching In-Memory Sorted Arrays: Revenge of the Interpolation Search? 2019
// Hugues Hoppe. New Quadric Metric for Simplifying Meshes with Appearance Attributes. 1999
namespace meshopt
{
struct EdgeAdjacency
{
2020-12-28 00:54:21 +00:00
struct Edge
{
unsigned int next;
unsigned int prev;
};
unsigned int* offsets;
2020-12-28 00:54:21 +00:00
Edge* data;
};
2020-12-28 00:54:21 +00:00
static void prepareEdgeAdjacency(EdgeAdjacency& adjacency, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
{
adjacency.offsets = allocator.allocate<unsigned int>(vertex_count + 1);
2020-12-28 00:54:21 +00:00
adjacency.data = allocator.allocate<EdgeAdjacency::Edge>(index_count);
}
static void updateEdgeAdjacency(EdgeAdjacency& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, const unsigned int* remap)
{
size_t face_count = index_count / 3;
unsigned int* offsets = adjacency.offsets + 1;
EdgeAdjacency::Edge* data = adjacency.data;
// fill edge counts
memset(offsets, 0, vertex_count * sizeof(unsigned int));
for (size_t i = 0; i < index_count; ++i)
{
2020-12-28 00:54:21 +00:00
unsigned int v = remap ? remap[indices[i]] : indices[i];
assert(v < vertex_count);
offsets[v]++;
}
// fill offset table
unsigned int offset = 0;
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int count = offsets[i];
offsets[i] = offset;
offset += count;
}
assert(offset == index_count);
// fill edge data
for (size_t i = 0; i < face_count; ++i)
{
unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
2020-12-28 00:54:21 +00:00
if (remap)
{
a = remap[a];
b = remap[b];
c = remap[c];
}
data[offsets[a]].next = b;
data[offsets[a]].prev = c;
offsets[a]++;
2020-12-28 00:54:21 +00:00
data[offsets[b]].next = c;
data[offsets[b]].prev = a;
offsets[b]++;
2020-12-28 00:54:21 +00:00
data[offsets[c]].next = a;
data[offsets[c]].prev = b;
offsets[c]++;
}
// finalize offsets
adjacency.offsets[0] = 0;
assert(adjacency.offsets[vertex_count] == index_count);
}
struct PositionHasher
{
const float* vertex_positions;
size_t vertex_stride_float;
const unsigned int* sparse_remap;
size_t hash(unsigned int index) const
{
unsigned int ri = sparse_remap ? sparse_remap[index] : index;
const unsigned int* key = reinterpret_cast<const unsigned int*>(vertex_positions + ri * vertex_stride_float);
// scramble bits to make sure that integer coordinates have entropy in lower bits
unsigned int x = key[0] ^ (key[0] >> 17);
unsigned int y = key[1] ^ (key[1] >> 17);
unsigned int z = key[2] ^ (key[2] >> 17);
// Optimized Spatial Hashing for Collision Detection of Deformable Objects
return (x * 73856093) ^ (y * 19349663) ^ (z * 83492791);
}
bool equal(unsigned int lhs, unsigned int rhs) const
{
unsigned int li = sparse_remap ? sparse_remap[lhs] : lhs;
unsigned int ri = sparse_remap ? sparse_remap[rhs] : rhs;
return memcmp(vertex_positions + li * vertex_stride_float, vertex_positions + ri * vertex_stride_float, sizeof(float) * 3) == 0;
}
};
struct RemapHasher
{
unsigned int* remap;
size_t hash(unsigned int id) const
{
return id * 0x5bd1e995;
}
bool equal(unsigned int lhs, unsigned int rhs) const
{
return remap[lhs] == rhs;
}
};
static size_t hashBuckets2(size_t count)
{
size_t buckets = 1;
2021-04-18 14:15:43 +00:00
while (buckets < count + count / 4)
buckets *= 2;
return buckets;
}
template <typename T, typename Hash>
static T* hashLookup2(T* table, size_t buckets, const Hash& hash, const T& key, const T& empty)
{
assert(buckets > 0);
assert((buckets & (buckets - 1)) == 0);
size_t hashmod = buckets - 1;
size_t bucket = hash.hash(key) & hashmod;
for (size_t probe = 0; probe <= hashmod; ++probe)
{
T& item = table[bucket];
if (item == empty)
return &item;
if (hash.equal(item, key))
return &item;
// hash collision, quadratic probing
bucket = (bucket + probe + 1) & hashmod;
}
assert(false && "Hash table is full"); // unreachable
return NULL;
}
static void buildPositionRemap(unsigned int* remap, unsigned int* wedge, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const unsigned int* sparse_remap, meshopt_Allocator& allocator)
{
PositionHasher hasher = {vertex_positions_data, vertex_positions_stride / sizeof(float), sparse_remap};
size_t table_size = hashBuckets2(vertex_count);
unsigned int* table = allocator.allocate<unsigned int>(table_size);
memset(table, -1, table_size * sizeof(unsigned int));
// build forward remap: for each vertex, which other (canonical) vertex does it map to?
// we use position equivalence for this, and remap vertices to other existing vertices
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int index = unsigned(i);
unsigned int* entry = hashLookup2(table, table_size, hasher, index, ~0u);
if (*entry == ~0u)
*entry = index;
remap[index] = *entry;
}
// build wedge table: for each vertex, which other vertex is the next wedge that also maps to the same vertex?
// entries in table form a (cyclic) wedge loop per vertex; for manifold vertices, wedge[i] == remap[i] == i
for (size_t i = 0; i < vertex_count; ++i)
wedge[i] = unsigned(i);
for (size_t i = 0; i < vertex_count; ++i)
if (remap[i] != i)
{
unsigned int r = remap[i];
wedge[i] = wedge[r];
wedge[r] = unsigned(i);
}
allocator.deallocate(table);
}
static unsigned int* buildSparseRemap(unsigned int* indices, size_t index_count, size_t vertex_count, size_t* out_vertex_count, meshopt_Allocator& allocator)
{
// use a bit set to compute the precise number of unique vertices
unsigned char* filter = allocator.allocate<unsigned char>((vertex_count + 7) / 8);
memset(filter, 0, (vertex_count + 7) / 8);
size_t unique = 0;
for (size_t i = 0; i < index_count; ++i)
{
unsigned int index = indices[i];
assert(index < vertex_count);
unique += (filter[index / 8] & (1 << (index % 8))) == 0;
filter[index / 8] |= 1 << (index % 8);
}
unsigned int* remap = allocator.allocate<unsigned int>(unique);
size_t offset = 0;
// temporary map dense => sparse; we allocate it last so that we can deallocate it
size_t revremap_size = hashBuckets2(unique);
unsigned int* revremap = allocator.allocate<unsigned int>(revremap_size);
memset(revremap, -1, revremap_size * sizeof(unsigned int));
// fill remap, using revremap as a helper, and rewrite indices in the same pass
RemapHasher hasher = {remap};
for (size_t i = 0; i < index_count; ++i)
{
unsigned int index = indices[i];
unsigned int* entry = hashLookup2(revremap, revremap_size, hasher, index, ~0u);
if (*entry == ~0u)
{
remap[offset] = index;
*entry = unsigned(offset);
offset++;
}
indices[i] = *entry;
}
allocator.deallocate(revremap);
assert(offset == unique);
*out_vertex_count = unique;
return remap;
}
enum VertexKind
{
Kind_Manifold, // not on an attribute seam, not on any boundary
Kind_Border, // not on an attribute seam, has exactly two open edges
Kind_Seam, // on an attribute seam with exactly two attribute seam edges
Kind_Complex, // none of the above; these vertices can move as long as all wedges move to the target vertex
Kind_Locked, // none of the above; these vertices can't move
Kind_Count
};
// manifold vertices can collapse onto anything
// border/seam vertices can collapse onto border/seam respectively, or locked
// complex vertices can collapse onto complex/locked
// a rule of thumb is that collapsing kind A into kind B preserves the kind B in the target vertex
// for example, while we could collapse Complex into Manifold, this would mean the target vertex isn't Manifold anymore
const unsigned char kCanCollapse[Kind_Count][Kind_Count] = {
{1, 1, 1, 1, 1},
{0, 1, 0, 0, 1},
{0, 0, 1, 0, 1},
{0, 0, 0, 1, 1},
{0, 0, 0, 0, 0},
};
// if a vertex is manifold or seam, adjoining edges are guaranteed to have an opposite edge
// note that for seam edges, the opposite edge isn't present in the attribute-based topology
// but is present if you consider a position-only mesh variant
const unsigned char kHasOpposite[Kind_Count][Kind_Count] = {
{1, 1, 1, 0, 1},
{1, 0, 1, 0, 0},
{1, 1, 1, 0, 1},
{0, 0, 0, 0, 0},
{1, 0, 1, 0, 0},
};
static bool hasEdge(const EdgeAdjacency& adjacency, unsigned int a, unsigned int b)
{
unsigned int count = adjacency.offsets[a + 1] - adjacency.offsets[a];
2020-12-28 00:54:21 +00:00
const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[a];
for (size_t i = 0; i < count; ++i)
2020-12-28 00:54:21 +00:00
if (edges[i].next == b)
return true;
return false;
}
static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned int* loopback, size_t vertex_count, const EdgeAdjacency& adjacency, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_lock, const unsigned int* sparse_remap, unsigned int options)
{
memset(loop, -1, vertex_count * sizeof(unsigned int));
memset(loopback, -1, vertex_count * sizeof(unsigned int));
// incoming & outgoing open edges: ~0u if no open edges, i if there are more than 1
// note that this is the same data as required in loop[] arrays; loop[] data is only valid for border/seam
// but here it's okay to fill the data out for other types of vertices as well
unsigned int* openinc = loopback;
unsigned int* openout = loop;
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int vertex = unsigned(i);
unsigned int count = adjacency.offsets[vertex + 1] - adjacency.offsets[vertex];
2020-12-28 00:54:21 +00:00
const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[vertex];
for (size_t j = 0; j < count; ++j)
{
2020-12-28 00:54:21 +00:00
unsigned int target = edges[j].next;
if (target == vertex)
{
// degenerate triangles have two distinct edges instead of three, and the self edge
// is bi-directional by definition; this can break border/seam classification by "closing"
// the open edge from another triangle and falsely marking the vertex as manifold
// instead we mark the vertex as having >1 open edges which turns it into locked/complex
openinc[vertex] = openout[vertex] = vertex;
}
else if (!hasEdge(adjacency, target, vertex))
{
openinc[target] = (openinc[target] == ~0u) ? vertex : target;
openout[vertex] = (openout[vertex] == ~0u) ? target : vertex;
}
}
}
#if TRACE
2020-12-28 00:54:21 +00:00
size_t stats[4] = {};
#endif
for (size_t i = 0; i < vertex_count; ++i)
{
if (remap[i] == i)
{
if (wedge[i] == i)
{
// no attribute seam, need to check if it's manifold
unsigned int openi = openinc[i], openo = openout[i];
// note: we classify any vertices with no open edges as manifold
// this is technically incorrect - if 4 triangles share an edge, we'll classify vertices as manifold
// it's unclear if this is a problem in practice
if (openi == ~0u && openo == ~0u)
{
result[i] = Kind_Manifold;
}
else if (openi != i && openo != i)
{
result[i] = Kind_Border;
}
else
{
result[i] = Kind_Locked;
2020-12-28 00:54:21 +00:00
TRACESTATS(0);
}
}
else if (wedge[wedge[i]] == i)
{
// attribute seam; need to distinguish between Seam and Locked
unsigned int w = wedge[i];
unsigned int openiv = openinc[i], openov = openout[i];
unsigned int openiw = openinc[w], openow = openout[w];
// seam should have one open half-edge for each vertex, and the edges need to "connect" - point to the same vertex post-remap
if (openiv != ~0u && openiv != i && openov != ~0u && openov != i &&
openiw != ~0u && openiw != w && openow != ~0u && openow != w)
{
if (remap[openiv] == remap[openow] && remap[openov] == remap[openiw] && remap[openiv] != remap[openov])
{
result[i] = Kind_Seam;
}
else
{
result[i] = Kind_Locked;
2020-12-28 00:54:21 +00:00
TRACESTATS(1);
}
}
else
{
result[i] = Kind_Locked;
2020-12-28 00:54:21 +00:00
TRACESTATS(2);
}
}
else
{
// more than one vertex maps to this one; we don't have classification available
result[i] = Kind_Locked;
2020-12-28 00:54:21 +00:00
TRACESTATS(3);
}
}
else
{
assert(remap[i] < i);
result[i] = result[remap[i]];
}
}
if (vertex_lock)
{
// vertex_lock may lock any wedge, not just the primary vertex, so we need to lock the primary vertex and relock any wedges
for (size_t i = 0; i < vertex_count; ++i)
if (vertex_lock[sparse_remap ? sparse_remap[i] : i])
result[remap[i]] = Kind_Locked;
for (size_t i = 0; i < vertex_count; ++i)
if (result[remap[i]] == Kind_Locked)
result[i] = Kind_Locked;
}
if (options & meshopt_SimplifyLockBorder)
for (size_t i = 0; i < vertex_count; ++i)
if (result[i] == Kind_Border)
result[i] = Kind_Locked;
#if TRACE
printf("locked: many open edges %d, disconnected seam %d, many seam edges %d, many wedges %d\n",
int(stats[0]), int(stats[1]), int(stats[2]), int(stats[3]));
#endif
}
struct Vector3
{
float x, y, z;
};
static float rescalePositions(Vector3* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const unsigned int* sparse_remap = NULL)
{
size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX};
float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int ri = sparse_remap ? sparse_remap[i] : unsigned(i);
const float* v = vertex_positions_data + ri * vertex_stride_float;
2020-12-28 00:54:21 +00:00
if (result)
{
result[i].x = v[0];
result[i].y = v[1];
result[i].z = v[2];
}
for (int j = 0; j < 3; ++j)
{
float vj = v[j];
minv[j] = minv[j] > vj ? vj : minv[j];
maxv[j] = maxv[j] < vj ? vj : maxv[j];
}
}
float extent = 0.f;
extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]);
extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]);
extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]);
2020-12-28 00:54:21 +00:00
if (result)
{
2020-12-28 00:54:21 +00:00
float scale = extent == 0 ? 0.f : 1.f / extent;
for (size_t i = 0; i < vertex_count; ++i)
{
result[i].x = (result[i].x - minv[0]) * scale;
result[i].y = (result[i].y - minv[1]) * scale;
result[i].z = (result[i].z - minv[2]) * scale;
}
}
2020-12-28 00:54:21 +00:00
return extent;
}
static void rescaleAttributes(float* result, const float* vertex_attributes_data, size_t vertex_count, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned int* attribute_remap, const unsigned int* sparse_remap)
{
size_t vertex_attributes_stride_float = vertex_attributes_stride / sizeof(float);
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int ri = sparse_remap ? sparse_remap[i] : unsigned(i);
for (size_t k = 0; k < attribute_count; ++k)
{
unsigned int rk = attribute_remap[k];
float a = vertex_attributes_data[ri * vertex_attributes_stride_float + rk];
result[i * attribute_count + k] = a * attribute_weights[rk];
}
}
}
static const size_t kMaxAttributes = 32;
struct Quadric
{
// a00*x^2 + a11*y^2 + a22*z^2 + 2*(a10*xy + a20*xz + a21*yz) + b0*x + b1*y + b2*z + c
float a00, a11, a22;
float a10, a20, a21;
float b0, b1, b2, c;
float w;
};
struct QuadricGrad
{
// gx*x + gy*y + gz*z + gw
float gx, gy, gz, gw;
};
struct Reservoir
{
float x, y, z;
float r, g, b;
float w;
};
struct Collapse
{
unsigned int v0;
unsigned int v1;
union
{
unsigned int bidi;
float error;
unsigned int errorui;
};
};
static float normalize(Vector3& v)
{
float length = sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
if (length > 0)
{
v.x /= length;
v.y /= length;
v.z /= length;
}
return length;
}
static void quadricAdd(Quadric& Q, const Quadric& R)
{
Q.a00 += R.a00;
Q.a11 += R.a11;
Q.a22 += R.a22;
Q.a10 += R.a10;
Q.a20 += R.a20;
Q.a21 += R.a21;
Q.b0 += R.b0;
Q.b1 += R.b1;
Q.b2 += R.b2;
Q.c += R.c;
Q.w += R.w;
}
static void quadricAdd(QuadricGrad* G, const QuadricGrad* R, size_t attribute_count)
{
for (size_t k = 0; k < attribute_count; ++k)
{
G[k].gx += R[k].gx;
G[k].gy += R[k].gy;
G[k].gz += R[k].gz;
G[k].gw += R[k].gw;
}
}
static float quadricEval(const Quadric& Q, const Vector3& v)
{
float rx = Q.b0;
float ry = Q.b1;
float rz = Q.b2;
rx += Q.a10 * v.y;
ry += Q.a21 * v.z;
rz += Q.a20 * v.x;
rx *= 2;
ry *= 2;
rz *= 2;
rx += Q.a00 * v.x;
ry += Q.a11 * v.y;
rz += Q.a22 * v.z;
float r = Q.c;
r += rx * v.x;
r += ry * v.y;
r += rz * v.z;
return r;
}
static float quadricError(const Quadric& Q, const Vector3& v)
{
float r = quadricEval(Q, v);
float s = Q.w == 0.f ? 0.f : 1.f / Q.w;
return fabsf(r) * s;
}
static float quadricError(const Quadric& Q, const QuadricGrad* G, size_t attribute_count, const Vector3& v, const float* va)
{
float r = quadricEval(Q, v);
// see quadricFromAttributes for general derivation; here we need to add the parts of (eval(pos) - attr)^2 that depend on attr
for (size_t k = 0; k < attribute_count; ++k)
{
float a = va[k];
float g = v.x * G[k].gx + v.y * G[k].gy + v.z * G[k].gz + G[k].gw;
r += a * (a * Q.w - 2 * g);
}
// note: unlike position error, we do not normalize by Q.w to retain edge scaling as described in quadricFromAttributes
return fabsf(r);
}
static void quadricFromPlane(Quadric& Q, float a, float b, float c, float d, float w)
{
float aw = a * w;
float bw = b * w;
float cw = c * w;
float dw = d * w;
Q.a00 = a * aw;
Q.a11 = b * bw;
Q.a22 = c * cw;
Q.a10 = a * bw;
Q.a20 = a * cw;
Q.a21 = b * cw;
Q.b0 = a * dw;
Q.b1 = b * dw;
Q.b2 = c * dw;
Q.c = d * dw;
Q.w = w;
}
static void quadricFromTriangle(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight)
{
Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z};
Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z};
// normal = cross(p1 - p0, p2 - p0)
Vector3 normal = {p10.y * p20.z - p10.z * p20.y, p10.z * p20.x - p10.x * p20.z, p10.x * p20.y - p10.y * p20.x};
float area = normalize(normal);
float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z;
// we use sqrtf(area) so that the error is scaled linearly; this tends to improve silhouettes
quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance, sqrtf(area) * weight);
}
static void quadricFromTriangleEdge(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight)
{
Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z};
// edge length; keep squared length around for projection correction
float lengthsq = p10.x * p10.x + p10.y * p10.y + p10.z * p10.z;
float length = sqrtf(lengthsq);
// p20p = length of projection of p2-p0 onto p1-p0; note that p10 is unnormalized so we need to correct it later
Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z};
float p20p = p20.x * p10.x + p20.y * p10.y + p20.z * p10.z;
// perp = perpendicular vector from p2 to line segment p1-p0
// note: since p10 is unnormalized we need to correct the projection; we scale p20 instead to take advantage of normalize below
Vector3 perp = {p20.x * lengthsq - p10.x * p20p, p20.y * lengthsq - p10.y * p20p, p20.z * lengthsq - p10.z * p20p};
normalize(perp);
float distance = perp.x * p0.x + perp.y * p0.y + perp.z * p0.z;
// note: the weight is scaled linearly with edge length; this has to match the triangle weight
quadricFromPlane(Q, perp.x, perp.y, perp.z, -distance, length * weight);
}
static void quadricFromAttributes(Quadric& Q, QuadricGrad* G, const Vector3& p0, const Vector3& p1, const Vector3& p2, const float* va0, const float* va1, const float* va2, size_t attribute_count)
{
// for each attribute we want to encode the following function into the quadric:
// (eval(pos) - attr)^2
// where eval(pos) interpolates attribute across the triangle like so:
// eval(pos) = pos.x * gx + pos.y * gy + pos.z * gz + gw
// where gx/gy/gz/gw are gradients
Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z};
Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z};
// normal = cross(p1 - p0, p2 - p0)
Vector3 normal = {p10.y * p20.z - p10.z * p20.y, p10.z * p20.x - p10.x * p20.z, p10.x * p20.y - p10.y * p20.x};
float area = sqrtf(normal.x * normal.x + normal.y * normal.y + normal.z * normal.z) * 0.5f;
// quadric is weighted with the square of edge length (= area)
// this equalizes the units with the positional error (which, after normalization, is a square of distance)
// as a result, a change in weighted attribute of 1 along distance d is approximately equivalent to a change in position of d
float w = area;
// we compute gradients using barycentric coordinates; barycentric coordinates can be computed as follows:
// v = (d11 * d20 - d01 * d21) / denom
// w = (d00 * d21 - d01 * d20) / denom
// u = 1 - v - w
// here v0, v1 are triangle edge vectors, v2 is a vector from point to triangle corner, and dij = dot(vi, vj)
// note: v2 and d20/d21 can not be evaluated here as v2 is effectively an unknown variable; we need these only as variables for derivation of gradients
const Vector3& v0 = p10;
const Vector3& v1 = p20;
float d00 = v0.x * v0.x + v0.y * v0.y + v0.z * v0.z;
float d01 = v0.x * v1.x + v0.y * v1.y + v0.z * v1.z;
float d11 = v1.x * v1.x + v1.y * v1.y + v1.z * v1.z;
float denom = d00 * d11 - d01 * d01;
float denomr = denom == 0 ? 0.f : 1.f / denom;
// precompute gradient factors
// these are derived by directly computing derivative of eval(pos) = a0 * u + a1 * v + a2 * w and factoring out expressions that are shared between attributes
float gx1 = (d11 * v0.x - d01 * v1.x) * denomr;
float gx2 = (d00 * v1.x - d01 * v0.x) * denomr;
float gy1 = (d11 * v0.y - d01 * v1.y) * denomr;
float gy2 = (d00 * v1.y - d01 * v0.y) * denomr;
float gz1 = (d11 * v0.z - d01 * v1.z) * denomr;
float gz2 = (d00 * v1.z - d01 * v0.z) * denomr;
memset(&Q, 0, sizeof(Quadric));
Q.w = w;
for (size_t k = 0; k < attribute_count; ++k)
{
float a0 = va0[k], a1 = va1[k], a2 = va2[k];
// compute gradient of eval(pos) for x/y/z/w
// the formulas below are obtained by directly computing derivative of eval(pos) = a0 * u + a1 * v + a2 * w
float gx = gx1 * (a1 - a0) + gx2 * (a2 - a0);
float gy = gy1 * (a1 - a0) + gy2 * (a2 - a0);
float gz = gz1 * (a1 - a0) + gz2 * (a2 - a0);
float gw = a0 - p0.x * gx - p0.y * gy - p0.z * gz;
// quadric encodes (eval(pos)-attr)^2; this means that the resulting expansion needs to compute, for example, pos.x * pos.y * K
// since quadrics already encode factors for pos.x * pos.y, we can accumulate almost everything in basic quadric fields
// note: for simplicity we scale all factors by weight here instead of outside the loop
Q.a00 += w * (gx * gx);
Q.a11 += w * (gy * gy);
Q.a22 += w * (gz * gz);
Q.a10 += w * (gy * gx);
Q.a20 += w * (gz * gx);
Q.a21 += w * (gz * gy);
Q.b0 += w * (gx * gw);
Q.b1 += w * (gy * gw);
Q.b2 += w * (gz * gw);
Q.c += w * (gw * gw);
// the only remaining sum components are ones that depend on attr; these will be addded during error evaluation, see quadricError
G[k].gx = w * gx;
G[k].gy = w * gy;
G[k].gz = w * gz;
G[k].gw = w * gw;
}
}
static void fillFaceQuadrics(Quadric* vertex_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap)
{
for (size_t i = 0; i < index_count; i += 3)
{
unsigned int i0 = indices[i + 0];
unsigned int i1 = indices[i + 1];
unsigned int i2 = indices[i + 2];
Quadric Q;
quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], 1.f);
quadricAdd(vertex_quadrics[remap[i0]], Q);
quadricAdd(vertex_quadrics[remap[i1]], Q);
quadricAdd(vertex_quadrics[remap[i2]], Q);
}
}
static void fillEdgeQuadrics(Quadric* vertex_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop, const unsigned int* loopback)
{
for (size_t i = 0; i < index_count; i += 3)
{
static const int next[4] = {1, 2, 0, 1};
for (int e = 0; e < 3; ++e)
{
unsigned int i0 = indices[i + e];
unsigned int i1 = indices[i + next[e]];
unsigned char k0 = vertex_kind[i0];
unsigned char k1 = vertex_kind[i1];
// check that either i0 or i1 are border/seam and are on the same edge loop
// note that we need to add the error even for edged that connect e.g. border & locked
// if we don't do that, the adjacent border->border edge won't have correct errors for corners
if (k0 != Kind_Border && k0 != Kind_Seam && k1 != Kind_Border && k1 != Kind_Seam)
continue;
if ((k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1)
continue;
if ((k1 == Kind_Border || k1 == Kind_Seam) && loopback[i1] != i0)
continue;
// seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges
if (kHasOpposite[k0][k1] && remap[i1] > remap[i0])
continue;
unsigned int i2 = indices[i + next[e + 1]];
// we try hard to maintain border edge geometry; seam edges can move more freely
// due to topological restrictions on collapses, seam quadrics slightly improves collapse structure but aren't critical
const float kEdgeWeightSeam = 1.f;
const float kEdgeWeightBorder = 10.f;
float edgeWeight = (k0 == Kind_Border || k1 == Kind_Border) ? kEdgeWeightBorder : kEdgeWeightSeam;
Quadric Q;
quadricFromTriangleEdge(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], edgeWeight);
quadricAdd(vertex_quadrics[remap[i0]], Q);
quadricAdd(vertex_quadrics[remap[i1]], Q);
}
}
}
static void fillAttributeQuadrics(Quadric* attribute_quadrics, QuadricGrad* attribute_gradients, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const float* vertex_attributes, size_t attribute_count)
{
for (size_t i = 0; i < index_count; i += 3)
{
unsigned int i0 = indices[i + 0];
unsigned int i1 = indices[i + 1];
unsigned int i2 = indices[i + 2];
Quadric QA;
QuadricGrad G[kMaxAttributes];
quadricFromAttributes(QA, G, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], &vertex_attributes[i0 * attribute_count], &vertex_attributes[i1 * attribute_count], &vertex_attributes[i2 * attribute_count], attribute_count);
quadricAdd(attribute_quadrics[i0], QA);
quadricAdd(attribute_quadrics[i1], QA);
quadricAdd(attribute_quadrics[i2], QA);
quadricAdd(&attribute_gradients[i0 * attribute_count], G, attribute_count);
quadricAdd(&attribute_gradients[i1 * attribute_count], G, attribute_count);
quadricAdd(&attribute_gradients[i2 * attribute_count], G, attribute_count);
}
}
2020-12-28 00:54:21 +00:00
// does triangle ABC flip when C is replaced with D?
static bool hasTriangleFlip(const Vector3& a, const Vector3& b, const Vector3& c, const Vector3& d)
{
Vector3 eb = {b.x - a.x, b.y - a.y, b.z - a.z};
Vector3 ec = {c.x - a.x, c.y - a.y, c.z - a.z};
Vector3 ed = {d.x - a.x, d.y - a.y, d.z - a.z};
Vector3 nbc = {eb.y * ec.z - eb.z * ec.y, eb.z * ec.x - eb.x * ec.z, eb.x * ec.y - eb.y * ec.x};
Vector3 nbd = {eb.y * ed.z - eb.z * ed.y, eb.z * ed.x - eb.x * ed.z, eb.x * ed.y - eb.y * ed.x};
float ndp = nbc.x * nbd.x + nbc.y * nbd.y + nbc.z * nbd.z;
float abc = nbc.x * nbc.x + nbc.y * nbc.y + nbc.z * nbc.z;
float abd = nbd.x * nbd.x + nbd.y * nbd.y + nbd.z * nbd.z;
// scale is cos(angle); somewhat arbitrarily set to ~75 degrees
// note that the "pure" check is ndp <= 0 (90 degree cutoff) but that allows flipping through a series of close-to-90 collapses
return ndp <= 0.25f * sqrtf(abc * abd);
2020-12-28 00:54:21 +00:00
}
static bool hasTriangleFlips(const EdgeAdjacency& adjacency, const Vector3* vertex_positions, const unsigned int* collapse_remap, unsigned int i0, unsigned int i1)
{
assert(collapse_remap[i0] == i0);
assert(collapse_remap[i1] == i1);
const Vector3& v0 = vertex_positions[i0];
const Vector3& v1 = vertex_positions[i1];
const EdgeAdjacency::Edge* edges = &adjacency.data[adjacency.offsets[i0]];
size_t count = adjacency.offsets[i0 + 1] - adjacency.offsets[i0];
2020-12-28 00:54:21 +00:00
for (size_t i = 0; i < count; ++i)
{
unsigned int a = collapse_remap[edges[i].next];
unsigned int b = collapse_remap[edges[i].prev];
// skip triangles that will get collapsed by i0->i1 collapse or already got collapsed previously
if (a == i1 || b == i1 || a == b)
2020-12-28 00:54:21 +00:00
continue;
// early-out when at least one triangle flips due to a collapse
if (hasTriangleFlip(vertex_positions[a], vertex_positions[b], v0, v1))
{
#if TRACE >= 2
printf("edge block %d -> %d: flip welded %d %d %d\n", i0, i1, a, i0, b);
#endif
2020-12-28 00:54:21 +00:00
return true;
}
2020-12-28 00:54:21 +00:00
}
return false;
}
static size_t boundEdgeCollapses(const EdgeAdjacency& adjacency, size_t vertex_count, size_t index_count, unsigned char* vertex_kind)
{
size_t dual_count = 0;
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned char k = vertex_kind[i];
unsigned int e = adjacency.offsets[i + 1] - adjacency.offsets[i];
dual_count += (k == Kind_Manifold || k == Kind_Seam) ? e : 0;
}
assert(dual_count <= index_count);
// pad capacity by 3 so that we can check for overflow once per triangle instead of once per edge
return (index_count - dual_count / 2) + 3;
}
static size_t pickEdgeCollapses(Collapse* collapses, size_t collapse_capacity, const unsigned int* indices, size_t index_count, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop, const unsigned int* loopback)
{
size_t collapse_count = 0;
for (size_t i = 0; i < index_count; i += 3)
{
static const int next[3] = {1, 2, 0};
// this should never happen as boundEdgeCollapses should give an upper bound for the collapse count, but in an unlikely event it does we can just drop extra collapses
if (collapse_count + 3 > collapse_capacity)
break;
for (int e = 0; e < 3; ++e)
{
unsigned int i0 = indices[i + e];
unsigned int i1 = indices[i + next[e]];
// this can happen either when input has a zero-length edge, or when we perform collapses for complex
// topology w/seams and collapse a manifold vertex that connects to both wedges onto one of them
// we leave edges like this alone since they may be important for preserving mesh integrity
if (remap[i0] == remap[i1])
continue;
unsigned char k0 = vertex_kind[i0];
unsigned char k1 = vertex_kind[i1];
// the edge has to be collapsible in at least one direction
if (!(kCanCollapse[k0][k1] | kCanCollapse[k1][k0]))
continue;
// manifold and seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges
if (kHasOpposite[k0][k1] && remap[i1] > remap[i0])
continue;
// two vertices are on a border or a seam, but there's no direct edge between them
// this indicates that they belong to two different edge loops and we should not collapse this edge
// loop[] tracks half edges so we only need to check i0->i1
if (k0 == k1 && (k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1)
continue;
if (k0 == Kind_Locked || k1 == Kind_Locked)
{
// the same check as above, but for border/seam -> locked collapses
// loop[] and loopback[] track half edges so we only need to check one of them
if ((k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1)
continue;
if ((k1 == Kind_Border || k1 == Kind_Seam) && loopback[i1] != i0)
continue;
}
// edge can be collapsed in either direction - we will pick the one with minimum error
// note: we evaluate error later during collapse ranking, here we just tag the edge as bidirectional
if (kCanCollapse[k0][k1] & kCanCollapse[k1][k0])
{
Collapse c = {i0, i1, {/* bidi= */ 1}};
collapses[collapse_count++] = c;
}
else
{
// edge can only be collapsed in one direction
unsigned int e0 = kCanCollapse[k0][k1] ? i0 : i1;
unsigned int e1 = kCanCollapse[k0][k1] ? i1 : i0;
Collapse c = {e0, e1, {/* bidi= */ 0}};
collapses[collapse_count++] = c;
}
}
}
return collapse_count;
}
static void rankEdgeCollapses(Collapse* collapses, size_t collapse_count, const Vector3* vertex_positions, const float* vertex_attributes, const Quadric* vertex_quadrics, const Quadric* attribute_quadrics, const QuadricGrad* attribute_gradients, size_t attribute_count, const unsigned int* remap)
{
for (size_t i = 0; i < collapse_count; ++i)
{
Collapse& c = collapses[i];
unsigned int i0 = c.v0;
unsigned int i1 = c.v1;
// most edges are bidirectional which means we need to evaluate errors for two collapses
// to keep this code branchless we just use the same edge for unidirectional edges
unsigned int j0 = c.bidi ? i1 : i0;
unsigned int j1 = c.bidi ? i0 : i1;
float ei = quadricError(vertex_quadrics[remap[i0]], vertex_positions[i1]);
float ej = quadricError(vertex_quadrics[remap[j0]], vertex_positions[j1]);
#if TRACE >= 3
float di = ei, dj = ej;
#endif
if (attribute_count)
{
// note: ideally we would evaluate max/avg of attribute errors for seam edges, but it's not clear if it's worth the extra cost
ei += quadricError(attribute_quadrics[i0], &attribute_gradients[i0 * attribute_count], attribute_count, vertex_positions[i1], &vertex_attributes[i1 * attribute_count]);
ej += quadricError(attribute_quadrics[j0], &attribute_gradients[j0 * attribute_count], attribute_count, vertex_positions[j1], &vertex_attributes[j1 * attribute_count]);
}
// pick edge direction with minimal error
c.v0 = ei <= ej ? i0 : j0;
c.v1 = ei <= ej ? i1 : j1;
c.error = ei <= ej ? ei : ej;
#if TRACE >= 3
if (i0 == j0) // c.bidi has been overwritten
printf("edge eval %d -> %d: error %f (pos %f, attr %f)\n", c.v0, c.v1,
sqrtf(c.error), sqrtf(ei <= ej ? di : dj), sqrtf(ei <= ej ? ei - di : ej - dj));
else
printf("edge eval %d -> %d: error %f (pos %f, attr %f); reverse %f (pos %f, attr %f)\n", c.v0, c.v1,
sqrtf(ei <= ej ? ei : ej), sqrtf(ei <= ej ? di : dj), sqrtf(ei <= ej ? ei - di : ej - dj),
sqrtf(ei <= ej ? ej : ei), sqrtf(ei <= ej ? dj : di), sqrtf(ei <= ej ? ej - dj : ei - di));
#endif
}
}
static void sortEdgeCollapses(unsigned int* sort_order, const Collapse* collapses, size_t collapse_count)
{
// we use counting sort to order collapses by error; since the exact sort order is not as critical,
// only top 12 bits of exponent+mantissa (8 bits of exponent and 4 bits of mantissa) are used.
// to avoid excessive stack usage, we clamp the exponent range as collapses with errors much higher than 1 are not useful.
const unsigned int sort_bits = 12;
const unsigned int sort_bins = 2048 + 512; // exponent range [-127, 32)
// fill histogram for counting sort
unsigned int histogram[sort_bins];
memset(histogram, 0, sizeof(histogram));
for (size_t i = 0; i < collapse_count; ++i)
{
// skip sign bit since error is non-negative
unsigned int error = collapses[i].errorui;
unsigned int key = (error << 1) >> (32 - sort_bits);
key = key < sort_bins ? key : sort_bins - 1;
histogram[key]++;
}
// compute offsets based on histogram data
size_t histogram_sum = 0;
for (size_t i = 0; i < sort_bins; ++i)
{
size_t count = histogram[i];
histogram[i] = unsigned(histogram_sum);
histogram_sum += count;
}
assert(histogram_sum == collapse_count);
// compute sort order based on offsets
for (size_t i = 0; i < collapse_count; ++i)
{
// skip sign bit since error is non-negative
unsigned int error = collapses[i].errorui;
unsigned int key = (error << 1) >> (32 - sort_bits);
key = key < sort_bins ? key : sort_bins - 1;
sort_order[histogram[key]++] = unsigned(i);
}
}
static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char* collapse_locked, const Collapse* collapses, size_t collapse_count, const unsigned int* collapse_order, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_kind, const unsigned int* loop, const unsigned int* loopback, const Vector3* vertex_positions, const EdgeAdjacency& adjacency, size_t triangle_collapse_goal, float error_limit, float& result_error)
{
size_t edge_collapses = 0;
size_t triangle_collapses = 0;
2020-12-28 00:54:21 +00:00
// most collapses remove 2 triangles; use this to establish a bound on the pass in terms of error limit
// note that edge_collapse_goal is an estimate; triangle_collapse_goal will be used to actually limit collapses
size_t edge_collapse_goal = triangle_collapse_goal / 2;
#if TRACE
size_t stats[7] = {};
2020-12-28 00:54:21 +00:00
#endif
for (size_t i = 0; i < collapse_count; ++i)
{
const Collapse& c = collapses[collapse_order[i]];
2020-12-28 00:54:21 +00:00
TRACESTATS(0);
if (c.error > error_limit)
{
TRACESTATS(4);
break;
}
2020-12-28 00:54:21 +00:00
if (triangle_collapses >= triangle_collapse_goal)
{
TRACESTATS(5);
break;
}
2020-12-28 00:54:21 +00:00
// we limit the error in each pass based on the error of optimal last collapse; since many collapses will be locked
// as they will share vertices with other successfull collapses, we need to increase the acceptable error by some factor
float error_goal = edge_collapse_goal < collapse_count ? 1.5f * collapses[collapse_order[edge_collapse_goal]].error : FLT_MAX;
// on average, each collapse is expected to lock 6 other collapses; to avoid degenerate passes on meshes with odd
// topology, we only abort if we got over 1/6 collapses accordingly.
if (c.error > error_goal && c.error > result_error && triangle_collapses > triangle_collapse_goal / 6)
{
TRACESTATS(6);
break;
}
unsigned int i0 = c.v0;
unsigned int i1 = c.v1;
unsigned int r0 = remap[i0];
unsigned int r1 = remap[i1];
unsigned char kind = vertex_kind[i0];
// we don't collapse vertices that had source or target vertex involved in a collapse
// it's important to not move the vertices twice since it complicates the tracking/remapping logic
// it's important to not move other vertices towards a moved vertex to preserve error since we don't re-rank collapses mid-pass
if (collapse_locked[r0] | collapse_locked[r1])
2020-12-28 00:54:21 +00:00
{
TRACESTATS(1);
continue;
}
if (hasTriangleFlips(adjacency, vertex_positions, collapse_remap, r0, r1))
{
// adjust collapse goal since this collapse is invalid and shouldn't factor into error goal
edge_collapse_goal++;
TRACESTATS(2);
continue;
2020-12-28 00:54:21 +00:00
}
#if TRACE >= 2
printf("edge commit %d -> %d: kind %d->%d, error %f\n", i0, i1, vertex_kind[i0], vertex_kind[i1], sqrtf(c.error));
#endif
assert(collapse_remap[r0] == r0);
assert(collapse_remap[r1] == r1);
if (kind == Kind_Complex)
{
// remap all vertices in the complex to the target vertex
unsigned int v = i0;
do
{
collapse_remap[v] = i1;
v = wedge[v];
} while (v != i0);
}
else if (kind == Kind_Seam)
{
// for seam collapses we need to move the seam pair together; this is a bit tricky to compute since we need to rely on edge loops as target vertex may be locked (and thus have more than two wedges)
unsigned int s0 = wedge[i0];
unsigned int s1 = loop[i0] == i1 ? loopback[s0] : loop[s0];
assert(s0 != i0 && wedge[s0] == i0);
assert(s1 != ~0u && remap[s1] == r1);
// additional asserts to verify that the seam pair is consistent
assert(kind != vertex_kind[i1] || s1 == wedge[i1]);
assert(loop[i0] == i1 || loopback[i0] == i1);
assert(loop[s0] == s1 || loopback[s0] == s1);
// note: this should never happen due to the assertion above, but when disabled if we ever hit this case we'll get a memory safety issue; for now play it safe
s1 = (s1 != ~0u) ? s1 : wedge[i1];
collapse_remap[i0] = i1;
collapse_remap[s0] = s1;
}
else
{
assert(wedge[i0] == i0);
collapse_remap[i0] = i1;
}
// note: we technically don't need to lock r1 if it's a locked vertex, as it can't move and its quadric won't be used
// however, this results in slightly worse error on some meshes because the locked collapses get an unfair advantage wrt scheduling
collapse_locked[r0] = 1;
collapse_locked[r1] = 1;
// border edges collapse 1 triangle, other edges collapse 2 or more
triangle_collapses += (kind == Kind_Border) ? 1 : 2;
edge_collapses++;
2020-12-28 00:54:21 +00:00
result_error = result_error < c.error ? c.error : result_error;
}
2020-12-28 00:54:21 +00:00
#if TRACE
float error_goal_last = edge_collapse_goal < collapse_count ? 1.5f * collapses[collapse_order[edge_collapse_goal]].error : FLT_MAX;
float error_goal_limit = error_goal_last < error_limit ? error_goal_last : error_limit;
2020-12-28 00:54:21 +00:00
printf("removed %d triangles, error %e (goal %e); evaluated %d/%d collapses (done %d, skipped %d, invalid %d); %s\n",
int(triangle_collapses), sqrtf(result_error), sqrtf(error_goal_limit),
int(stats[0]), int(collapse_count), int(edge_collapses), int(stats[1]), int(stats[2]),
stats[4] ? "error limit" : (stats[5] ? "count limit" : (stats[6] ? "error goal" : "out of collapses")));
2020-12-28 00:54:21 +00:00
#endif
return edge_collapses;
}
static void updateQuadrics(const unsigned int* collapse_remap, size_t vertex_count, Quadric* vertex_quadrics, Quadric* attribute_quadrics, QuadricGrad* attribute_gradients, size_t attribute_count, const Vector3* vertex_positions, const unsigned int* remap, float& vertex_error)
{
for (size_t i = 0; i < vertex_count; ++i)
{
if (collapse_remap[i] == i)
continue;
unsigned int i0 = unsigned(i);
unsigned int i1 = collapse_remap[i];
unsigned int r0 = remap[i0];
unsigned int r1 = remap[i1];
// ensure we only update vertex_quadrics once: primary vertex must be moved if any wedge is moved
if (i0 == r0)
quadricAdd(vertex_quadrics[r1], vertex_quadrics[r0]);
if (attribute_count)
{
quadricAdd(attribute_quadrics[i1], attribute_quadrics[i0]);
quadricAdd(&attribute_gradients[i1 * attribute_count], &attribute_gradients[i0 * attribute_count], attribute_count);
if (i0 == r0)
{
// when attributes are used, distance error needs to be recomputed as collapses don't track it; it is safe to do this after the quadric adjustment
float derr = quadricError(vertex_quadrics[r0], vertex_positions[r1]);
vertex_error = vertex_error < derr ? derr : vertex_error;
}
}
}
}
static size_t remapIndexBuffer(unsigned int* indices, size_t index_count, const unsigned int* collapse_remap)
{
size_t write = 0;
for (size_t i = 0; i < index_count; i += 3)
{
unsigned int v0 = collapse_remap[indices[i + 0]];
unsigned int v1 = collapse_remap[indices[i + 1]];
unsigned int v2 = collapse_remap[indices[i + 2]];
// we never move the vertex twice during a single pass
assert(collapse_remap[v0] == v0);
assert(collapse_remap[v1] == v1);
assert(collapse_remap[v2] == v2);
if (v0 != v1 && v0 != v2 && v1 != v2)
{
indices[write + 0] = v0;
indices[write + 1] = v1;
indices[write + 2] = v2;
write += 3;
}
}
return write;
}
static void remapEdgeLoops(unsigned int* loop, size_t vertex_count, const unsigned int* collapse_remap)
{
for (size_t i = 0; i < vertex_count; ++i)
{
// note: this is a no-op for vertices that were remapped
// ideally we would clear the loop entries for those for consistency, even though they aren't going to be used
// however, the remapping process needs loop information for remapped vertices, so this would require a separate pass
if (loop[i] != ~0u)
{
unsigned int l = loop[i];
unsigned int r = collapse_remap[l];
// i == r is a special case when the seam edge is collapsed in a direction opposite to where loop goes
if (i == r)
loop[i] = (loop[l] != ~0u) ? collapse_remap[loop[l]] : ~0u;
else
loop[i] = r;
}
}
}
static unsigned int follow(unsigned int* parents, unsigned int index)
{
while (index != parents[index])
{
unsigned int parent = parents[index];
parents[index] = parents[parent];
index = parent;
}
return index;
}
static size_t buildComponents(unsigned int* components, size_t vertex_count, const unsigned int* indices, size_t index_count, const unsigned int* remap)
{
for (size_t i = 0; i < vertex_count; ++i)
components[i] = unsigned(i);
// compute a unique (but not sequential!) index for each component via union-find
for (size_t i = 0; i < index_count; i += 3)
{
static const int next[4] = {1, 2, 0, 1};
for (int e = 0; e < 3; ++e)
{
unsigned int i0 = indices[i + e];
unsigned int i1 = indices[i + next[e]];
unsigned int r0 = remap[i0];
unsigned int r1 = remap[i1];
r0 = follow(components, r0);
r1 = follow(components, r1);
// merge components with larger indices into components with smaller indices
// this guarantees that the root of the component is always the one with the smallest index
if (r0 != r1)
components[r0 < r1 ? r1 : r0] = r0 < r1 ? r0 : r1;
}
}
// make sure each element points to the component root *before* we renumber the components
for (size_t i = 0; i < vertex_count; ++i)
if (remap[i] == i)
components[i] = follow(components, unsigned(i));
unsigned int next_component = 0;
// renumber components using sequential indices
// a sequential pass is sufficient because component root always has the smallest index
// note: it is unsafe to use follow() in this pass because we're replacing component links with sequential indices inplace
for (size_t i = 0; i < vertex_count; ++i)
{
if (remap[i] == i)
{
unsigned int root = components[i];
assert(root <= i); // make sure we already computed the component for non-roots
components[i] = (root == i) ? next_component++ : components[root];
}
else
{
assert(remap[i] < i); // make sure we already computed the component
components[i] = components[remap[i]];
}
}
return next_component;
}
static void measureComponents(float* component_errors, size_t component_count, const unsigned int* components, const Vector3* vertex_positions, size_t vertex_count)
{
memset(component_errors, 0, component_count * 4 * sizeof(float));
// compute approximate sphere center for each component as an average
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int c = components[i];
assert(components[i] < component_count);
Vector3 v = vertex_positions[i]; // copy avoids aliasing issues
component_errors[c * 4 + 0] += v.x;
component_errors[c * 4 + 1] += v.y;
component_errors[c * 4 + 2] += v.z;
component_errors[c * 4 + 3] += 1; // weight
}
// complete the center computation, and reinitialize [3] as a radius
for (size_t i = 0; i < component_count; ++i)
{
float w = component_errors[i * 4 + 3];
float iw = w == 0.f ? 0.f : 1.f / w;
component_errors[i * 4 + 0] *= iw;
component_errors[i * 4 + 1] *= iw;
component_errors[i * 4 + 2] *= iw;
component_errors[i * 4 + 3] = 0; // radius
}
// compute squared radius for each component
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int c = components[i];
float dx = vertex_positions[i].x - component_errors[c * 4 + 0];
float dy = vertex_positions[i].y - component_errors[c * 4 + 1];
float dz = vertex_positions[i].z - component_errors[c * 4 + 2];
float r = dx * dx + dy * dy + dz * dz;
component_errors[c * 4 + 3] = component_errors[c * 4 + 3] < r ? r : component_errors[c * 4 + 3];
}
// we've used the output buffer as scratch space, so we need to move the results to proper indices
for (size_t i = 0; i < component_count; ++i)
{
#if TRACE >= 2
printf("component %d: center %f %f %f, error %e\n", int(i),
component_errors[i * 4 + 0], component_errors[i * 4 + 1], component_errors[i * 4 + 2], sqrtf(component_errors[i * 4 + 3]));
#endif
// note: we keep the squared error to make it match quadric error metric
component_errors[i] = component_errors[i * 4 + 3];
}
}
static size_t pruneComponents(unsigned int* indices, size_t index_count, const unsigned int* components, const float* component_errors, size_t component_count, float error_cutoff, float& nexterror)
{
size_t write = 0;
for (size_t i = 0; i < index_count; i += 3)
{
unsigned int c = components[indices[i]];
assert(c == components[indices[i + 1]] && c == components[indices[i + 2]]);
if (component_errors[c] > error_cutoff)
{
indices[write + 0] = indices[i + 0];
indices[write + 1] = indices[i + 1];
indices[write + 2] = indices[i + 2];
write += 3;
}
}
#if TRACE
size_t pruned_components = 0;
for (size_t i = 0; i < component_count; ++i)
pruned_components += (component_errors[i] >= nexterror && component_errors[i] <= error_cutoff);
printf("pruned %d triangles in %d components (goal %e)\n", int((index_count - write) / 3), int(pruned_components), sqrtf(error_cutoff));
#endif
// update next error with the smallest error of the remaining components for future pruning
nexterror = FLT_MAX;
for (size_t i = 0; i < component_count; ++i)
if (component_errors[i] > error_cutoff)
nexterror = nexterror > component_errors[i] ? component_errors[i] : nexterror;
return write;
}
struct CellHasher
{
const unsigned int* vertex_ids;
size_t hash(unsigned int i) const
{
unsigned int h = vertex_ids[i];
// MurmurHash2 finalizer
h ^= h >> 13;
h *= 0x5bd1e995;
h ^= h >> 15;
return h;
}
bool equal(unsigned int lhs, unsigned int rhs) const
{
return vertex_ids[lhs] == vertex_ids[rhs];
}
};
struct IdHasher
{
size_t hash(unsigned int id) const
{
unsigned int h = id;
// MurmurHash2 finalizer
h ^= h >> 13;
h *= 0x5bd1e995;
h ^= h >> 15;
return h;
}
bool equal(unsigned int lhs, unsigned int rhs) const
{
return lhs == rhs;
}
};
struct TriangleHasher
{
const unsigned int* indices;
size_t hash(unsigned int i) const
{
const unsigned int* tri = indices + i * 3;
// Optimized Spatial Hashing for Collision Detection of Deformable Objects
return (tri[0] * 73856093) ^ (tri[1] * 19349663) ^ (tri[2] * 83492791);
}
bool equal(unsigned int lhs, unsigned int rhs) const
{
const unsigned int* lt = indices + lhs * 3;
const unsigned int* rt = indices + rhs * 3;
return lt[0] == rt[0] && lt[1] == rt[1] && lt[2] == rt[2];
}
};
static void computeVertexIds(unsigned int* vertex_ids, const Vector3* vertex_positions, size_t vertex_count, int grid_size)
{
assert(grid_size >= 1 && grid_size <= 1024);
float cell_scale = float(grid_size - 1);
for (size_t i = 0; i < vertex_count; ++i)
{
const Vector3& v = vertex_positions[i];
int xi = int(v.x * cell_scale + 0.5f);
int yi = int(v.y * cell_scale + 0.5f);
int zi = int(v.z * cell_scale + 0.5f);
vertex_ids[i] = (xi << 20) | (yi << 10) | zi;
}
}
static size_t countTriangles(const unsigned int* vertex_ids, const unsigned int* indices, size_t index_count)
{
size_t result = 0;
for (size_t i = 0; i < index_count; i += 3)
{
unsigned int id0 = vertex_ids[indices[i + 0]];
unsigned int id1 = vertex_ids[indices[i + 1]];
unsigned int id2 = vertex_ids[indices[i + 2]];
result += (id0 != id1) & (id0 != id2) & (id1 != id2);
}
return result;
}
static size_t fillVertexCells(unsigned int* table, size_t table_size, unsigned int* vertex_cells, const unsigned int* vertex_ids, size_t vertex_count)
{
CellHasher hasher = {vertex_ids};
memset(table, -1, table_size * sizeof(unsigned int));
size_t result = 0;
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int* entry = hashLookup2(table, table_size, hasher, unsigned(i), ~0u);
if (*entry == ~0u)
{
*entry = unsigned(i);
vertex_cells[i] = unsigned(result++);
}
else
{
vertex_cells[i] = vertex_cells[*entry];
}
}
return result;
}
static size_t countVertexCells(unsigned int* table, size_t table_size, const unsigned int* vertex_ids, size_t vertex_count)
{
IdHasher hasher;
memset(table, -1, table_size * sizeof(unsigned int));
size_t result = 0;
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int id = vertex_ids[i];
unsigned int* entry = hashLookup2(table, table_size, hasher, id, ~0u);
result += (*entry == ~0u);
*entry = id;
}
return result;
}
static void fillCellQuadrics(Quadric* cell_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* vertex_cells)
{
for (size_t i = 0; i < index_count; i += 3)
{
unsigned int i0 = indices[i + 0];
unsigned int i1 = indices[i + 1];
unsigned int i2 = indices[i + 2];
unsigned int c0 = vertex_cells[i0];
unsigned int c1 = vertex_cells[i1];
unsigned int c2 = vertex_cells[i2];
int single_cell = (c0 == c1) & (c0 == c2);
Quadric Q;
quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], single_cell ? 3.f : 1.f);
if (single_cell)
{
quadricAdd(cell_quadrics[c0], Q);
}
else
{
quadricAdd(cell_quadrics[c0], Q);
quadricAdd(cell_quadrics[c1], Q);
quadricAdd(cell_quadrics[c2], Q);
}
}
}
static void fillCellReservoirs(Reservoir* cell_reservoirs, size_t cell_count, const Vector3* vertex_positions, const float* vertex_colors, size_t vertex_colors_stride, size_t vertex_count, const unsigned int* vertex_cells)
{
static const float dummy_color[] = {0.f, 0.f, 0.f};
size_t vertex_colors_stride_float = vertex_colors_stride / sizeof(float);
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int cell = vertex_cells[i];
const Vector3& v = vertex_positions[i];
Reservoir& r = cell_reservoirs[cell];
const float* color = vertex_colors ? &vertex_colors[i * vertex_colors_stride_float] : dummy_color;
r.x += v.x;
r.y += v.y;
r.z += v.z;
r.r += color[0];
r.g += color[1];
r.b += color[2];
r.w += 1.f;
}
for (size_t i = 0; i < cell_count; ++i)
{
Reservoir& r = cell_reservoirs[i];
float iw = r.w == 0.f ? 0.f : 1.f / r.w;
r.x *= iw;
r.y *= iw;
r.z *= iw;
r.r *= iw;
r.g *= iw;
r.b *= iw;
}
}
static void fillCellRemap(unsigned int* cell_remap, float* cell_errors, size_t cell_count, const unsigned int* vertex_cells, const Quadric* cell_quadrics, const Vector3* vertex_positions, size_t vertex_count)
{
memset(cell_remap, -1, cell_count * sizeof(unsigned int));
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int cell = vertex_cells[i];
float error = quadricError(cell_quadrics[cell], vertex_positions[i]);
if (cell_remap[cell] == ~0u || cell_errors[cell] > error)
{
cell_remap[cell] = unsigned(i);
cell_errors[cell] = error;
}
}
}
static void fillCellRemap(unsigned int* cell_remap, float* cell_errors, size_t cell_count, const unsigned int* vertex_cells, const Reservoir* cell_reservoirs, const Vector3* vertex_positions, const float* vertex_colors, size_t vertex_colors_stride, float color_weight, size_t vertex_count)
{
static const float dummy_color[] = {0.f, 0.f, 0.f};
size_t vertex_colors_stride_float = vertex_colors_stride / sizeof(float);
memset(cell_remap, -1, cell_count * sizeof(unsigned int));
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int cell = vertex_cells[i];
const Vector3& v = vertex_positions[i];
const Reservoir& r = cell_reservoirs[cell];
const float* color = vertex_colors ? &vertex_colors[i * vertex_colors_stride_float] : dummy_color;
float pos_error = (v.x - r.x) * (v.x - r.x) + (v.y - r.y) * (v.y - r.y) + (v.z - r.z) * (v.z - r.z);
float col_error = (color[0] - r.r) * (color[0] - r.r) + (color[1] - r.g) * (color[1] - r.g) + (color[2] - r.b) * (color[2] - r.b);
float error = pos_error + color_weight * col_error;
if (cell_remap[cell] == ~0u || cell_errors[cell] > error)
{
cell_remap[cell] = unsigned(i);
cell_errors[cell] = error;
}
}
}
static size_t filterTriangles(unsigned int* destination, unsigned int* tritable, size_t tritable_size, const unsigned int* indices, size_t index_count, const unsigned int* vertex_cells, const unsigned int* cell_remap)
{
TriangleHasher hasher = {destination};
memset(tritable, -1, tritable_size * sizeof(unsigned int));
size_t result = 0;
for (size_t i = 0; i < index_count; i += 3)
{
unsigned int c0 = vertex_cells[indices[i + 0]];
unsigned int c1 = vertex_cells[indices[i + 1]];
unsigned int c2 = vertex_cells[indices[i + 2]];
if (c0 != c1 && c0 != c2 && c1 != c2)
{
unsigned int a = cell_remap[c0];
unsigned int b = cell_remap[c1];
unsigned int c = cell_remap[c2];
if (b < a && b < c)
{
unsigned int t = a;
a = b, b = c, c = t;
}
else if (c < a && c < b)
{
unsigned int t = c;
c = b, b = a, a = t;
}
destination[result * 3 + 0] = a;
destination[result * 3 + 1] = b;
destination[result * 3 + 2] = c;
unsigned int* entry = hashLookup2(tritable, tritable_size, hasher, unsigned(result), ~0u);
if (*entry == ~0u)
*entry = unsigned(result++);
}
}
return result * 3;
}
static float interpolate(float y, float x0, float y0, float x1, float y1, float x2, float y2)
{
// three point interpolation from "revenge of interpolation search" paper
float num = (y1 - y) * (x1 - x2) * (x1 - x0) * (y2 - y0);
float den = (y2 - y) * (x1 - x2) * (y0 - y1) + (y0 - y) * (x1 - x0) * (y1 - y2);
return x1 + num / den;
}
} // namespace meshopt
// Note: this is only exposed for debug visualization purposes; do *not* use
enum
{
meshopt_SimplifyInternalDebug = 1 << 30
};
size_t meshopt_simplifyEdge(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes_data, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options, float* out_result_error)
{
using namespace meshopt;
assert(index_count % 3 == 0);
assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
assert(vertex_positions_stride % sizeof(float) == 0);
assert(target_index_count <= index_count);
assert(target_error >= 0);
assert((options & ~(meshopt_SimplifyLockBorder | meshopt_SimplifySparse | meshopt_SimplifyErrorAbsolute | meshopt_SimplifyPrune | meshopt_SimplifyInternalDebug)) == 0);
assert(vertex_attributes_stride >= attribute_count * sizeof(float) && vertex_attributes_stride <= 256);
assert(vertex_attributes_stride % sizeof(float) == 0);
assert(attribute_count <= kMaxAttributes);
for (size_t i = 0; i < attribute_count; ++i)
assert(attribute_weights[i] >= 0);
meshopt_Allocator allocator;
unsigned int* result = destination;
if (result != indices)
memcpy(result, indices, index_count * sizeof(unsigned int));
// build an index remap and update indices/vertex_count to minimize the subsequent work
// note: as a consequence, errors will be computed relative to the subset extent
unsigned int* sparse_remap = NULL;
if (options & meshopt_SimplifySparse)
sparse_remap = buildSparseRemap(result, index_count, vertex_count, &vertex_count, allocator);
// build adjacency information
EdgeAdjacency adjacency = {};
2020-12-28 00:54:21 +00:00
prepareEdgeAdjacency(adjacency, index_count, vertex_count, allocator);
updateEdgeAdjacency(adjacency, result, index_count, vertex_count, NULL);
// build position remap that maps each vertex to the one with identical position
unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
unsigned int* wedge = allocator.allocate<unsigned int>(vertex_count);
buildPositionRemap(remap, wedge, vertex_positions_data, vertex_count, vertex_positions_stride, sparse_remap, allocator);
// classify vertices; vertex kind determines collapse rules, see kCanCollapse
unsigned char* vertex_kind = allocator.allocate<unsigned char>(vertex_count);
unsigned int* loop = allocator.allocate<unsigned int>(vertex_count);
unsigned int* loopback = allocator.allocate<unsigned int>(vertex_count);
classifyVertices(vertex_kind, loop, loopback, vertex_count, adjacency, remap, wedge, vertex_lock, sparse_remap, options);
#if TRACE
size_t unique_positions = 0;
for (size_t i = 0; i < vertex_count; ++i)
unique_positions += remap[i] == i;
printf("position remap: %d vertices => %d positions\n", int(vertex_count), int(unique_positions));
size_t kinds[Kind_Count] = {};
for (size_t i = 0; i < vertex_count; ++i)
kinds[vertex_kind[i]] += remap[i] == i;
printf("kinds: manifold %d, border %d, seam %d, complex %d, locked %d\n",
int(kinds[Kind_Manifold]), int(kinds[Kind_Border]), int(kinds[Kind_Seam]), int(kinds[Kind_Complex]), int(kinds[Kind_Locked]));
#endif
Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
float vertex_scale = rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride, sparse_remap);
float* vertex_attributes = NULL;
if (attribute_count)
{
unsigned int attribute_remap[kMaxAttributes];
// remap attributes to only include ones with weight > 0 to minimize memory/compute overhead for quadrics
size_t attributes_used = 0;
for (size_t i = 0; i < attribute_count; ++i)
if (attribute_weights[i] > 0)
attribute_remap[attributes_used++] = unsigned(i);
attribute_count = attributes_used;
vertex_attributes = allocator.allocate<float>(vertex_count * attribute_count);
rescaleAttributes(vertex_attributes, vertex_attributes_data, vertex_count, vertex_attributes_stride, attribute_weights, attribute_count, attribute_remap, sparse_remap);
}
Quadric* vertex_quadrics = allocator.allocate<Quadric>(vertex_count);
memset(vertex_quadrics, 0, vertex_count * sizeof(Quadric));
Quadric* attribute_quadrics = NULL;
QuadricGrad* attribute_gradients = NULL;
if (attribute_count)
{
attribute_quadrics = allocator.allocate<Quadric>(vertex_count);
memset(attribute_quadrics, 0, vertex_count * sizeof(Quadric));
attribute_gradients = allocator.allocate<QuadricGrad>(vertex_count * attribute_count);
memset(attribute_gradients, 0, vertex_count * attribute_count * sizeof(QuadricGrad));
}
fillFaceQuadrics(vertex_quadrics, result, index_count, vertex_positions, remap);
fillEdgeQuadrics(vertex_quadrics, result, index_count, vertex_positions, remap, vertex_kind, loop, loopback);
if (attribute_count)
fillAttributeQuadrics(attribute_quadrics, attribute_gradients, result, index_count, vertex_positions, vertex_attributes, attribute_count);
unsigned int* components = NULL;
float* component_errors = NULL;
size_t component_count = 0;
float component_nexterror = 0;
if (options & meshopt_SimplifyPrune)
{
components = allocator.allocate<unsigned int>(vertex_count);
component_count = buildComponents(components, vertex_count, result, index_count, remap);
component_errors = allocator.allocate<float>(component_count * 4); // overallocate for temporary use inside measureComponents
measureComponents(component_errors, component_count, components, vertex_positions, vertex_count);
component_nexterror = FLT_MAX;
for (size_t i = 0; i < component_count; ++i)
component_nexterror = component_nexterror > component_errors[i] ? component_errors[i] : component_nexterror;
#if TRACE
printf("components: %d (min error %e)\n", int(component_count), sqrtf(component_nexterror));
#endif
}
#if TRACE
size_t pass_count = 0;
#endif
size_t collapse_capacity = boundEdgeCollapses(adjacency, vertex_count, index_count, vertex_kind);
Collapse* edge_collapses = allocator.allocate<Collapse>(collapse_capacity);
unsigned int* collapse_order = allocator.allocate<unsigned int>(collapse_capacity);
unsigned int* collapse_remap = allocator.allocate<unsigned int>(vertex_count);
unsigned char* collapse_locked = allocator.allocate<unsigned char>(vertex_count);
size_t result_count = index_count;
2020-12-28 00:54:21 +00:00
float result_error = 0;
float vertex_error = 0;
// target_error input is linear; we need to adjust it to match quadricError units
float error_scale = (options & meshopt_SimplifyErrorAbsolute) ? vertex_scale : 1.f;
float error_limit = (target_error * target_error) / (error_scale * error_scale);
while (result_count > target_index_count)
{
2020-12-28 00:54:21 +00:00
// note: throughout the simplification process adjacency structure reflects welded topology for result-in-progress
updateEdgeAdjacency(adjacency, result, result_count, vertex_count, remap);
size_t edge_collapse_count = pickEdgeCollapses(edge_collapses, collapse_capacity, result, result_count, remap, vertex_kind, loop, loopback);
assert(edge_collapse_count <= collapse_capacity);
// no edges can be collapsed any more due to topology restrictions
if (edge_collapse_count == 0)
break;
#if TRACE
printf("pass %d:%c", int(pass_count++), TRACE >= 2 ? '\n' : ' ');
#endif
rankEdgeCollapses(edge_collapses, edge_collapse_count, vertex_positions, vertex_attributes, vertex_quadrics, attribute_quadrics, attribute_gradients, attribute_count, remap);
sortEdgeCollapses(collapse_order, edge_collapses, edge_collapse_count);
size_t triangle_collapse_goal = (result_count - target_index_count) / 3;
for (size_t i = 0; i < vertex_count; ++i)
collapse_remap[i] = unsigned(i);
memset(collapse_locked, 0, vertex_count);
size_t collapses = performEdgeCollapses(collapse_remap, collapse_locked, edge_collapses, edge_collapse_count, collapse_order, remap, wedge, vertex_kind, loop, loopback, vertex_positions, adjacency, triangle_collapse_goal, error_limit, result_error);
// no edges can be collapsed any more due to hitting the error limit or triangle collapse limit
if (collapses == 0)
break;
updateQuadrics(collapse_remap, vertex_count, vertex_quadrics, attribute_quadrics, attribute_gradients, attribute_count, vertex_positions, remap, vertex_error);
// updateQuadrics will update vertex error if we use attributes, but if we don't then result_error and vertex_error are equivalent
vertex_error = attribute_count == 0 ? result_error : vertex_error;
remapEdgeLoops(loop, vertex_count, collapse_remap);
remapEdgeLoops(loopback, vertex_count, collapse_remap);
size_t new_count = remapIndexBuffer(result, result_count, collapse_remap);
assert(new_count < result_count);
result_count = new_count;
if ((options & meshopt_SimplifyPrune) && result_count > target_index_count && component_nexterror <= vertex_error)
result_count = pruneComponents(result, result_count, components, component_errors, component_count, vertex_error, component_nexterror);
}
// we're done with the regular simplification but we're still short of the target; try pruning more aggressively towards error_limit
while ((options & meshopt_SimplifyPrune) && result_count > target_index_count && component_nexterror <= error_limit)
{
#if TRACE
printf("pass %d: cleanup; ", int(pass_count++));
#endif
float component_cutoff = component_nexterror * 1.5f < error_limit ? component_nexterror * 1.5f : error_limit;
// track maximum error in eligible components as we are increasing resulting error
float component_maxerror = 0;
for (size_t i = 0; i < component_count; ++i)
if (component_errors[i] > component_maxerror && component_errors[i] <= component_cutoff)
component_maxerror = component_errors[i];
size_t new_count = pruneComponents(result, result_count, components, component_errors, component_count, component_cutoff, component_nexterror);
if (new_count == result_count)
break;
result_count = new_count;
result_error = result_error < component_maxerror ? component_maxerror : result_error;
vertex_error = vertex_error < component_maxerror ? component_maxerror : vertex_error;
}
#if TRACE
printf("result: %d triangles, error: %e; total %d passes\n", int(result_count / 3), sqrtf(result_error), int(pass_count));
#endif
// if debug visualization data is requested, fill it instead of index data; for simplicity, this doesn't work with sparsity
if ((options & meshopt_SimplifyInternalDebug) && !sparse_remap)
{
assert(Kind_Count <= 8 && vertex_count < (1 << 28)); // 3 bit kind, 1 bit loop
for (size_t i = 0; i < result_count; i += 3)
{
unsigned int a = result[i + 0], b = result[i + 1], c = result[i + 2];
result[i + 0] |= (vertex_kind[a] << 28) | (unsigned(loop[a] == b || loopback[b] == a) << 31);
result[i + 1] |= (vertex_kind[b] << 28) | (unsigned(loop[b] == c || loopback[c] == b) << 31);
result[i + 2] |= (vertex_kind[c] << 28) | (unsigned(loop[c] == a || loopback[a] == c) << 31);
}
}
// convert resulting indices back into the dense space of the larger mesh
if (sparse_remap)
for (size_t i = 0; i < result_count; ++i)
result[i] = sparse_remap[result[i]];
2020-12-28 00:54:21 +00:00
// result_error is quadratic; we need to remap it back to linear
if (out_result_error)
*out_result_error = sqrtf(vertex_error) * error_scale;
2020-12-28 00:54:21 +00:00
return result_count;
}
size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* out_result_error)
{
return meshopt_simplifyEdge(destination, indices, index_count, vertex_positions_data, vertex_count, vertex_positions_stride, NULL, 0, NULL, 0, NULL, target_index_count, target_error, options, out_result_error);
}
size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes_data, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options, float* out_result_error)
{
return meshopt_simplifyEdge(destination, indices, index_count, vertex_positions_data, vertex_count, vertex_positions_stride, vertex_attributes_data, vertex_attributes_stride, attribute_weights, attribute_count, vertex_lock, target_index_count, target_error, options, out_result_error);
}
size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* out_result_error)
{
using namespace meshopt;
assert(index_count % 3 == 0);
assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
assert(vertex_positions_stride % sizeof(float) == 0);
assert(target_index_count <= index_count);
// we expect to get ~2 triangles/vertex in the output
size_t target_cell_count = target_index_count / 6;
meshopt_Allocator allocator;
Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride);
// find the optimal grid size using guided binary search
#if TRACE
printf("source: %d vertices, %d triangles\n", int(vertex_count), int(index_count / 3));
printf("target: %d cells, %d triangles\n", int(target_cell_count), int(target_index_count / 3));
#endif
unsigned int* vertex_ids = allocator.allocate<unsigned int>(vertex_count);
const int kInterpolationPasses = 5;
// invariant: # of triangles in min_grid <= target_count
int min_grid = int(1.f / (target_error < 1e-3f ? 1e-3f : target_error));
int max_grid = 1025;
size_t min_triangles = 0;
size_t max_triangles = index_count / 3;
// when we're error-limited, we compute the triangle count for the min. size; this accelerates convergence and provides the correct answer when we can't use a larger grid
if (min_grid > 1)
{
computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid);
min_triangles = countTriangles(vertex_ids, indices, index_count);
}
// instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size...
int next_grid_size = int(sqrtf(float(target_cell_count)) + 0.5f);
for (int pass = 0; pass < 10 + kInterpolationPasses; ++pass)
{
if (min_triangles >= target_index_count / 3 || max_grid - min_grid <= 1)
break;
// we clamp the prediction of the grid size to make sure that the search converges
int grid_size = next_grid_size;
grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid ? max_grid - 1 : grid_size);
computeVertexIds(vertex_ids, vertex_positions, vertex_count, grid_size);
size_t triangles = countTriangles(vertex_ids, indices, index_count);
#if TRACE
printf("pass %d (%s): grid size %d, triangles %d, %s\n",
pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses ? "lerp" : "binary"),
grid_size, int(triangles),
(triangles <= target_index_count / 3) ? "under" : "over");
#endif
float tip = interpolate(float(size_t(target_index_count / 3)), float(min_grid), float(min_triangles), float(grid_size), float(triangles), float(max_grid), float(max_triangles));
if (triangles <= target_index_count / 3)
{
min_grid = grid_size;
min_triangles = triangles;
}
else
{
max_grid = grid_size;
max_triangles = triangles;
}
// we start by using interpolation search - it usually converges faster
// however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN)
next_grid_size = (pass < kInterpolationPasses) ? int(tip + 0.5f) : (min_grid + max_grid) / 2;
}
if (min_triangles == 0)
{
if (out_result_error)
*out_result_error = 1.f;
return 0;
}
// build vertex->cell association by mapping all vertices with the same quantized position to the same cell
size_t table_size = hashBuckets2(vertex_count);
unsigned int* table = allocator.allocate<unsigned int>(table_size);
unsigned int* vertex_cells = allocator.allocate<unsigned int>(vertex_count);
computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid);
size_t cell_count = fillVertexCells(table, table_size, vertex_cells, vertex_ids, vertex_count);
// build a quadric for each target cell
Quadric* cell_quadrics = allocator.allocate<Quadric>(cell_count);
memset(cell_quadrics, 0, cell_count * sizeof(Quadric));
fillCellQuadrics(cell_quadrics, indices, index_count, vertex_positions, vertex_cells);
// for each target cell, find the vertex with the minimal error
unsigned int* cell_remap = allocator.allocate<unsigned int>(cell_count);
float* cell_errors = allocator.allocate<float>(cell_count);
fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_quadrics, vertex_positions, vertex_count);
// compute error
float result_error = 0.f;
for (size_t i = 0; i < cell_count; ++i)
result_error = result_error < cell_errors[i] ? cell_errors[i] : result_error;
// collapse triangles!
// note that we need to filter out triangles that we've already output because we very frequently generate redundant triangles between cells :(
size_t tritable_size = hashBuckets2(min_triangles);
unsigned int* tritable = allocator.allocate<unsigned int>(tritable_size);
size_t write = filterTriangles(destination, tritable, tritable_size, indices, index_count, vertex_cells, cell_remap);
#if TRACE
printf("result: %d cells, %d triangles (%d unfiltered), error %e\n", int(cell_count), int(write / 3), int(min_triangles), sqrtf(result_error));
#endif
if (out_result_error)
*out_result_error = sqrtf(result_error);
return write;
}
size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_colors, size_t vertex_colors_stride, float color_weight, size_t target_vertex_count)
{
using namespace meshopt;
assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
assert(vertex_positions_stride % sizeof(float) == 0);
assert(vertex_colors_stride == 0 || (vertex_colors_stride >= 12 && vertex_colors_stride <= 256));
assert(vertex_colors_stride % sizeof(float) == 0);
assert(vertex_colors == NULL || vertex_colors_stride != 0);
assert(target_vertex_count <= vertex_count);
size_t target_cell_count = target_vertex_count;
if (target_cell_count == 0)
return 0;
meshopt_Allocator allocator;
Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride);
// find the optimal grid size using guided binary search
#if TRACE
printf("source: %d vertices\n", int(vertex_count));
printf("target: %d cells\n", int(target_cell_count));
#endif
unsigned int* vertex_ids = allocator.allocate<unsigned int>(vertex_count);
size_t table_size = hashBuckets2(vertex_count);
unsigned int* table = allocator.allocate<unsigned int>(table_size);
const int kInterpolationPasses = 5;
// invariant: # of vertices in min_grid <= target_count
int min_grid = 0;
int max_grid = 1025;
size_t min_vertices = 0;
size_t max_vertices = vertex_count;
// instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size...
int next_grid_size = int(sqrtf(float(target_cell_count)) + 0.5f);
for (int pass = 0; pass < 10 + kInterpolationPasses; ++pass)
{
assert(min_vertices < target_vertex_count);
assert(max_grid - min_grid > 1);
// we clamp the prediction of the grid size to make sure that the search converges
int grid_size = next_grid_size;
grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid ? max_grid - 1 : grid_size);
computeVertexIds(vertex_ids, vertex_positions, vertex_count, grid_size);
size_t vertices = countVertexCells(table, table_size, vertex_ids, vertex_count);
#if TRACE
printf("pass %d (%s): grid size %d, vertices %d, %s\n",
pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses ? "lerp" : "binary"),
grid_size, int(vertices),
(vertices <= target_vertex_count) ? "under" : "over");
#endif
float tip = interpolate(float(target_vertex_count), float(min_grid), float(min_vertices), float(grid_size), float(vertices), float(max_grid), float(max_vertices));
if (vertices <= target_vertex_count)
{
min_grid = grid_size;
min_vertices = vertices;
}
else
{
max_grid = grid_size;
max_vertices = vertices;
}
if (vertices == target_vertex_count || max_grid - min_grid <= 1)
break;
// we start by using interpolation search - it usually converges faster
// however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN)
next_grid_size = (pass < kInterpolationPasses) ? int(tip + 0.5f) : (min_grid + max_grid) / 2;
}
if (min_vertices == 0)
return 0;
// build vertex->cell association by mapping all vertices with the same quantized position to the same cell
unsigned int* vertex_cells = allocator.allocate<unsigned int>(vertex_count);
computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid);
size_t cell_count = fillVertexCells(table, table_size, vertex_cells, vertex_ids, vertex_count);
// accumulate points into a reservoir for each target cell
Reservoir* cell_reservoirs = allocator.allocate<Reservoir>(cell_count);
memset(cell_reservoirs, 0, cell_count * sizeof(Reservoir));
fillCellReservoirs(cell_reservoirs, cell_count, vertex_positions, vertex_colors, vertex_colors_stride, vertex_count, vertex_cells);
// for each target cell, find the vertex with the minimal error
unsigned int* cell_remap = allocator.allocate<unsigned int>(cell_count);
float* cell_errors = allocator.allocate<float>(cell_count);
// we scale the color weight to bring it to the same scale as position so that error addition makes sense
float color_weight_scaled = color_weight * (min_grid == 1 ? 1.f : 1.f / (min_grid - 1));
fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_reservoirs, vertex_positions, vertex_colors, vertex_colors_stride, color_weight_scaled * color_weight_scaled, vertex_count);
// copy results to the output
assert(cell_count <= target_vertex_count);
memcpy(destination, cell_remap, sizeof(unsigned int) * cell_count);
#if TRACE
// compute error
float result_error = 0.f;
for (size_t i = 0; i < cell_count; ++i)
result_error = result_error < cell_errors[i] ? cell_errors[i] : result_error;
printf("result: %d cells, %e error\n", int(cell_count), sqrtf(result_error));
#endif
return cell_count;
}
2020-12-28 00:54:21 +00:00
float meshopt_simplifyScale(const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
using namespace meshopt;
assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
2020-12-28 00:54:21 +00:00
assert(vertex_positions_stride % sizeof(float) == 0);
float extent = rescalePositions(NULL, vertex_positions, vertex_count, vertex_positions_stride);
return extent;
}