The [PhysicalSkyMaterial] uses the Preetham analytic daylight model to draw a sky based on physical properties. This results in a substantially more realistic sky than the [ProceduralSkyMaterial], but it is slightly slower and less flexible.
The [PhysicalSkyMaterial] only supports one sun. The color, energy, and direction of the sun are taken from the first [DirectionalLight3D] in the scene tree.
Controls the strength of [url=https://en.wikipedia.org/wiki/Mie_scattering]Mie scattering[/url] for the sky. Mie scattering results from light colliding with larger particles (like water). On earth, Mie scattering results in a whitish color around the sun and horizon.
Controls the [Color] of the [url=https://en.wikipedia.org/wiki/Mie_scattering]Mie scattering[/url] effect. While not physically accurate, this allows for the creation of alien-looking planets.
Controls the direction of the [url=https://en.wikipedia.org/wiki/Mie_scattering]Mie scattering[/url]. A value of [code]1[/code] means that when light hits a particle it's passing through straight forward. A value of [code]-1[/code] means that all light is scatter backwards.
Controls the strength of the [url=https://en.wikipedia.org/wiki/Rayleigh_scattering]Rayleigh scattering[/url]. Rayleigh scattering results from light colliding with small particles. It is responsible for the blue color of the sky.
Controls the [Color] of the [url=https://en.wikipedia.org/wiki/Rayleigh_scattering]Rayleigh scattering[/url]. While not physically accurate, this allows for the creation of alien-looking planets. For example, setting this to a red [Color] results in a Mars-looking atmosphere with a corresponding blue sunset.
If [code]true[/code], enables debanding. Debanding adds a small amount of noise which helps reduce banding that appears from the smooth changes in color in the sky.