mirror of
https://github.com/NationalSecurityAgency/ghidra.git
synced 2024-11-22 12:11:55 +00:00
GP-1 script cleanup
This commit is contained in:
parent
2a2b044940
commit
43675121b0
@ -1,58 +0,0 @@
|
||||
/* ###
|
||||
* IP: GHIDRA
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
//Writes a list of the addresses of all call sites to a file.
|
||||
//@category machineLearning
|
||||
|
||||
import java.io.*;
|
||||
|
||||
import ghidra.app.script.GhidraScript;
|
||||
import ghidra.program.model.listing.*;
|
||||
import ghidra.program.model.pcode.PcodeOp;
|
||||
|
||||
public class DumpCalls extends GhidraScript {
|
||||
|
||||
private static final String DATA_DIR = "/local/calls";
|
||||
|
||||
@Override
|
||||
protected void run() throws Exception {
|
||||
File outFile = new File(DATA_DIR + File.separator + currentProgram.getName() + "_calls");
|
||||
FileWriter fWriter = new FileWriter(outFile);
|
||||
BufferedWriter bWriter = new BufferedWriter(fWriter);
|
||||
InstructionIterator fIter = currentProgram.getListing().getInstructions(true);
|
||||
int numCalls = 0;
|
||||
int numInstructions = 0;
|
||||
while (fIter.hasNext()) {
|
||||
Instruction inst = fIter.next();
|
||||
if (inst.getPcode() == null || inst.getPcode().length == 0) {
|
||||
continue;
|
||||
}
|
||||
numInstructions++;
|
||||
for (int i = 0; i < inst.getPcode().length; i++) {
|
||||
PcodeOp pCode = inst.getPcode()[i];
|
||||
int opCode = pCode.getOpcode();
|
||||
if (opCode == PcodeOp.CALL || opCode == PcodeOp.CALLIND) {
|
||||
//printf("Inst: %s at %s\n", inst.toString(), inst.getAddress());
|
||||
numCalls++;
|
||||
bWriter.write(inst.getAddress().toString() + "\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("total num calls: %d\n", numCalls);
|
||||
printf("total num instructions: %d\n", numInstructions);
|
||||
bWriter.close();
|
||||
}
|
||||
|
||||
}
|
@ -1,47 +0,0 @@
|
||||
/* ###
|
||||
* IP: GHIDRA
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
//Writes a list of the addresses of all function starts and their sizes to a file
|
||||
//@category machineLearning
|
||||
|
||||
import java.io.*;
|
||||
|
||||
import ghidra.app.script.GhidraScript;
|
||||
import ghidra.program.model.listing.Function;
|
||||
import ghidra.program.model.listing.FunctionIterator;
|
||||
|
||||
public class DumpFunctionStarts extends GhidraScript {
|
||||
|
||||
private static final String DATA_DIR = "/local/funcstarts/stripped";
|
||||
|
||||
@Override
|
||||
protected void run() throws Exception {
|
||||
File outFile =
|
||||
new File(DATA_DIR + File.separator + currentProgram.getName() + "_stripped_funcs");
|
||||
FileWriter fWriter = new FileWriter(outFile);
|
||||
BufferedWriter bWriter = new BufferedWriter(fWriter);
|
||||
FunctionIterator fIter = currentProgram.getFunctionManager().getFunctions(true);
|
||||
while (fIter.hasNext()) {
|
||||
Function func = fIter.next();
|
||||
if (func.isExternal()) {
|
||||
continue;
|
||||
}
|
||||
long size = func.getBody().getNumAddresses();
|
||||
bWriter.write(func.getEntryPoint().toString() + "," + size + "\n");
|
||||
}
|
||||
bWriter.close();
|
||||
}
|
||||
|
||||
}
|
@ -1,74 +0,0 @@
|
||||
/* ###
|
||||
* IP: GHIDRA
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
import java.io.IOException;
|
||||
import java.nio.file.Paths;
|
||||
|
||||
import org.tribuo.*;
|
||||
import org.tribuo.classification.Label;
|
||||
import org.tribuo.classification.LabelFactory;
|
||||
import org.tribuo.classification.dtree.CARTClassificationTrainer;
|
||||
import org.tribuo.classification.ensemble.VotingCombiner;
|
||||
import org.tribuo.classification.evaluation.LabelEvaluation;
|
||||
import org.tribuo.classification.evaluation.LabelEvaluator;
|
||||
import org.tribuo.common.tree.RandomForestTrainer;
|
||||
import org.tribuo.data.csv.CSVLoader;
|
||||
import org.tribuo.ensemble.EnsembleModel;
|
||||
import org.tribuo.evaluation.TrainTestSplitter;
|
||||
|
||||
public class ExampleTribuoRunner {
|
||||
|
||||
public static void main(String args[]) throws IOException {
|
||||
|
||||
var irisHeaders =
|
||||
new String[] { "sepalLength", "sepalWidth", "petalLength", "petalWidth", "species" };
|
||||
DataSource<Label> irisData = new CSVLoader<>(new LabelFactory()).loadDataSource(
|
||||
Paths.get("/home/jmworth/ml/bezdekIris.data"), /* Output column */ irisHeaders[4],
|
||||
/* Column headers */ irisHeaders);
|
||||
|
||||
// Split iris data into training set (70%) and test set (30%)
|
||||
var splitIrisData =
|
||||
new TrainTestSplitter<>(irisData, /* Train fraction */ 0.7, /* RNG seed */ 1L);
|
||||
var trainData = new MutableDataset<>(splitIrisData.getTrain());
|
||||
var testData = new MutableDataset<>(splitIrisData.getTest());
|
||||
|
||||
// We can train a decision tree
|
||||
var cartTrainer = new CARTClassificationTrainer(100, (float) 0.2, 0);
|
||||
|
||||
var decisionTree = cartTrainer.train(trainData);
|
||||
|
||||
//Model<Label> tree = cartTrainer.train(trainData);
|
||||
|
||||
var trainer = new RandomForestTrainer<>(cartTrainer, // trainer - the tree trainer
|
||||
new VotingCombiner(), // combiner - the combining function for the ensemble
|
||||
10 // numMembers - the number of ensemble members to train
|
||||
);
|
||||
|
||||
EnsembleModel<Label> tree = trainer.train(trainData);
|
||||
|
||||
// Finally we make predictions on unseen data
|
||||
// Each prediction is a map from the output names (i.e. the labels) to the scores/probabilities
|
||||
Prediction<Label> prediction = tree.predict(testData.getExample(0));
|
||||
|
||||
// Or we can evaluate the full test dataset, calculating the accuracy, F1 etc.
|
||||
LabelEvaluation evaluation = new LabelEvaluator().evaluate(tree, testData);
|
||||
// we can inspect the evaluation manually
|
||||
double acc = evaluation.accuracy();
|
||||
// which returns 0.978
|
||||
// or print a formatted evaluation string
|
||||
System.out.println(evaluation.toString());
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue
Block a user