linux/kernel/dma/swiotlb.c
Petr Tesarik 2d5780bbef swiotlb: fix the check whether a device has used software IO TLB
When CONFIG_SWIOTLB_DYNAMIC=y, devices which do not use the software IO TLB
can avoid swiotlb lookup. A flag is added by commit 1395706a14 ("swiotlb:
search the software IO TLB only if the device makes use of it"), the flag
is correctly set, but it is then never checked. Add the actual check here.

Note that this code is an alternative to the default pool check, not an
additional check, because:

1. swiotlb_find_pool() also searches the default pool;
2. if dma_uses_io_tlb is false, the default swiotlb pool is not used.

Tested in a KVM guest against a QEMU RAM-backed SATA disk over virtio and
*not* using software IO TLB, this patch increases IOPS by approx 2% for
4-way parallel I/O.

The write memory barrier in swiotlb_dyn_alloc() is not needed, because a
newly allocated pool must always be observed by swiotlb_find_slots() before
an address from that pool is passed to is_swiotlb_buffer().

Correctness was verified using the following litmus test:

C swiotlb-new-pool

(*
 * Result: Never
 *
 * Check that a newly allocated pool is always visible when the
 *  corresponding swiotlb buffer is visible.
 *)

{
	mem_pools = default;
}

P0(int **mem_pools, int *pool)
{
	/* add_mem_pool() */
	WRITE_ONCE(*pool, 999);
	rcu_assign_pointer(*mem_pools, pool);
}

P1(int **mem_pools, int *flag, int *buf)
{
	/* swiotlb_find_slots() */
	int *r0;
	int r1;

	rcu_read_lock();
	r0 = READ_ONCE(*mem_pools);
	r1 = READ_ONCE(*r0);
	rcu_read_unlock();

	if (r1) {
		WRITE_ONCE(*flag, 1);
		smp_mb();
	}

	/* device driver (presumed) */
	WRITE_ONCE(*buf, r1);
}

P2(int **mem_pools, int *flag, int *buf)
{
	/* device driver (presumed) */
	int r0 = READ_ONCE(*buf);

	/* is_swiotlb_buffer() */
	int r1;
	int *r2;
	int r3;

	smp_rmb();
	r1 = READ_ONCE(*flag);
	if (r1) {
		/* swiotlb_find_pool() */
		rcu_read_lock();
		r2 = READ_ONCE(*mem_pools);
		r3 = READ_ONCE(*r2);
		rcu_read_unlock();
	}
}

exists (2:r0<>0 /\ 2:r3=0) (* Not found. *)

Fixes: 1395706a14 ("swiotlb: search the software IO TLB only if the device makes use of it")
Reported-by: Jonathan Corbet <corbet@lwn.net>
Closes: https://lore.kernel.org/linux-iommu/87a5uz3ob8.fsf@meer.lwn.net/
Signed-off-by: Petr Tesarik <petr@tesarici.cz>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
2023-09-27 11:19:15 +02:00

1713 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Dynamic DMA mapping support.
*
* This implementation is a fallback for platforms that do not support
* I/O TLBs (aka DMA address translation hardware).
* Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
* Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
* Copyright (C) 2000, 2003 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*
* 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
* 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
* unnecessary i-cache flushing.
* 04/07/.. ak Better overflow handling. Assorted fixes.
* 05/09/10 linville Add support for syncing ranges, support syncing for
* DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
* 08/12/11 beckyb Add highmem support
*/
#define pr_fmt(fmt) "software IO TLB: " fmt
#include <linux/cache.h>
#include <linux/cc_platform.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/dma-direct.h>
#include <linux/dma-map-ops.h>
#include <linux/export.h>
#include <linux/gfp.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/iommu-helper.h>
#include <linux/init.h>
#include <linux/memblock.h>
#include <linux/mm.h>
#include <linux/pfn.h>
#include <linux/rculist.h>
#include <linux/scatterlist.h>
#include <linux/set_memory.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/swiotlb.h>
#include <linux/types.h>
#ifdef CONFIG_DMA_RESTRICTED_POOL
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_reserved_mem.h>
#include <linux/slab.h>
#endif
#define CREATE_TRACE_POINTS
#include <trace/events/swiotlb.h>
#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
/*
* Minimum IO TLB size to bother booting with. Systems with mainly
* 64bit capable cards will only lightly use the swiotlb. If we can't
* allocate a contiguous 1MB, we're probably in trouble anyway.
*/
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
/**
* struct io_tlb_slot - IO TLB slot descriptor
* @orig_addr: The original address corresponding to a mapped entry.
* @alloc_size: Size of the allocated buffer.
* @list: The free list describing the number of free entries available
* from each index.
*/
struct io_tlb_slot {
phys_addr_t orig_addr;
size_t alloc_size;
unsigned int list;
};
static bool swiotlb_force_bounce;
static bool swiotlb_force_disable;
#ifdef CONFIG_SWIOTLB_DYNAMIC
static void swiotlb_dyn_alloc(struct work_struct *work);
static struct io_tlb_mem io_tlb_default_mem = {
.lock = __SPIN_LOCK_UNLOCKED(io_tlb_default_mem.lock),
.pools = LIST_HEAD_INIT(io_tlb_default_mem.pools),
.dyn_alloc = __WORK_INITIALIZER(io_tlb_default_mem.dyn_alloc,
swiotlb_dyn_alloc),
};
#else /* !CONFIG_SWIOTLB_DYNAMIC */
static struct io_tlb_mem io_tlb_default_mem;
#endif /* CONFIG_SWIOTLB_DYNAMIC */
static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
static unsigned long default_nareas;
/**
* struct io_tlb_area - IO TLB memory area descriptor
*
* This is a single area with a single lock.
*
* @used: The number of used IO TLB block.
* @index: The slot index to start searching in this area for next round.
* @lock: The lock to protect the above data structures in the map and
* unmap calls.
*/
struct io_tlb_area {
unsigned long used;
unsigned int index;
spinlock_t lock;
};
/*
* Round up number of slabs to the next power of 2. The last area is going
* be smaller than the rest if default_nslabs is not power of two.
* The number of slot in an area should be a multiple of IO_TLB_SEGSIZE,
* otherwise a segment may span two or more areas. It conflicts with free
* contiguous slots tracking: free slots are treated contiguous no matter
* whether they cross an area boundary.
*
* Return true if default_nslabs is rounded up.
*/
static bool round_up_default_nslabs(void)
{
if (!default_nareas)
return false;
if (default_nslabs < IO_TLB_SEGSIZE * default_nareas)
default_nslabs = IO_TLB_SEGSIZE * default_nareas;
else if (is_power_of_2(default_nslabs))
return false;
default_nslabs = roundup_pow_of_two(default_nslabs);
return true;
}
/**
* swiotlb_adjust_nareas() - adjust the number of areas and slots
* @nareas: Desired number of areas. Zero is treated as 1.
*
* Adjust the default number of areas in a memory pool.
* The default size of the memory pool may also change to meet minimum area
* size requirements.
*/
static void swiotlb_adjust_nareas(unsigned int nareas)
{
if (!nareas)
nareas = 1;
else if (!is_power_of_2(nareas))
nareas = roundup_pow_of_two(nareas);
default_nareas = nareas;
pr_info("area num %d.\n", nareas);
if (round_up_default_nslabs())
pr_info("SWIOTLB bounce buffer size roundup to %luMB",
(default_nslabs << IO_TLB_SHIFT) >> 20);
}
/**
* limit_nareas() - get the maximum number of areas for a given memory pool size
* @nareas: Desired number of areas.
* @nslots: Total number of slots in the memory pool.
*
* Limit the number of areas to the maximum possible number of areas in
* a memory pool of the given size.
*
* Return: Maximum possible number of areas.
*/
static unsigned int limit_nareas(unsigned int nareas, unsigned long nslots)
{
if (nslots < nareas * IO_TLB_SEGSIZE)
return nslots / IO_TLB_SEGSIZE;
return nareas;
}
static int __init
setup_io_tlb_npages(char *str)
{
if (isdigit(*str)) {
/* avoid tail segment of size < IO_TLB_SEGSIZE */
default_nslabs =
ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
}
if (*str == ',')
++str;
if (isdigit(*str))
swiotlb_adjust_nareas(simple_strtoul(str, &str, 0));
if (*str == ',')
++str;
if (!strcmp(str, "force"))
swiotlb_force_bounce = true;
else if (!strcmp(str, "noforce"))
swiotlb_force_disable = true;
return 0;
}
early_param("swiotlb", setup_io_tlb_npages);
unsigned long swiotlb_size_or_default(void)
{
return default_nslabs << IO_TLB_SHIFT;
}
void __init swiotlb_adjust_size(unsigned long size)
{
/*
* If swiotlb parameter has not been specified, give a chance to
* architectures such as those supporting memory encryption to
* adjust/expand SWIOTLB size for their use.
*/
if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
return;
size = ALIGN(size, IO_TLB_SIZE);
default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
if (round_up_default_nslabs())
size = default_nslabs << IO_TLB_SHIFT;
pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
}
void swiotlb_print_info(void)
{
struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
if (!mem->nslabs) {
pr_warn("No low mem\n");
return;
}
pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
(mem->nslabs << IO_TLB_SHIFT) >> 20);
}
static inline unsigned long io_tlb_offset(unsigned long val)
{
return val & (IO_TLB_SEGSIZE - 1);
}
static inline unsigned long nr_slots(u64 val)
{
return DIV_ROUND_UP(val, IO_TLB_SIZE);
}
/*
* Early SWIOTLB allocation may be too early to allow an architecture to
* perform the desired operations. This function allows the architecture to
* call SWIOTLB when the operations are possible. It needs to be called
* before the SWIOTLB memory is used.
*/
void __init swiotlb_update_mem_attributes(void)
{
struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
unsigned long bytes;
if (!mem->nslabs || mem->late_alloc)
return;
bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
set_memory_decrypted((unsigned long)mem->vaddr, bytes >> PAGE_SHIFT);
}
static void swiotlb_init_io_tlb_pool(struct io_tlb_pool *mem, phys_addr_t start,
unsigned long nslabs, bool late_alloc, unsigned int nareas)
{
void *vaddr = phys_to_virt(start);
unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
mem->nslabs = nslabs;
mem->start = start;
mem->end = mem->start + bytes;
mem->late_alloc = late_alloc;
mem->nareas = nareas;
mem->area_nslabs = nslabs / mem->nareas;
for (i = 0; i < mem->nareas; i++) {
spin_lock_init(&mem->areas[i].lock);
mem->areas[i].index = 0;
mem->areas[i].used = 0;
}
for (i = 0; i < mem->nslabs; i++) {
mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
mem->slots[i].alloc_size = 0;
}
memset(vaddr, 0, bytes);
mem->vaddr = vaddr;
return;
}
/**
* add_mem_pool() - add a memory pool to the allocator
* @mem: Software IO TLB allocator.
* @pool: Memory pool to be added.
*/
static void add_mem_pool(struct io_tlb_mem *mem, struct io_tlb_pool *pool)
{
#ifdef CONFIG_SWIOTLB_DYNAMIC
spin_lock(&mem->lock);
list_add_rcu(&pool->node, &mem->pools);
mem->nslabs += pool->nslabs;
spin_unlock(&mem->lock);
#else
mem->nslabs = pool->nslabs;
#endif
}
static void __init *swiotlb_memblock_alloc(unsigned long nslabs,
unsigned int flags,
int (*remap)(void *tlb, unsigned long nslabs))
{
size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
void *tlb;
/*
* By default allocate the bounce buffer memory from low memory, but
* allow to pick a location everywhere for hypervisors with guest
* memory encryption.
*/
if (flags & SWIOTLB_ANY)
tlb = memblock_alloc(bytes, PAGE_SIZE);
else
tlb = memblock_alloc_low(bytes, PAGE_SIZE);
if (!tlb) {
pr_warn("%s: Failed to allocate %zu bytes tlb structure\n",
__func__, bytes);
return NULL;
}
if (remap && remap(tlb, nslabs) < 0) {
memblock_free(tlb, PAGE_ALIGN(bytes));
pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes);
return NULL;
}
return tlb;
}
/*
* Statically reserve bounce buffer space and initialize bounce buffer data
* structures for the software IO TLB used to implement the DMA API.
*/
void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
int (*remap)(void *tlb, unsigned long nslabs))
{
struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
unsigned long nslabs;
unsigned int nareas;
size_t alloc_size;
void *tlb;
if (!addressing_limit && !swiotlb_force_bounce)
return;
if (swiotlb_force_disable)
return;
io_tlb_default_mem.force_bounce =
swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
#ifdef CONFIG_SWIOTLB_DYNAMIC
if (!remap)
io_tlb_default_mem.can_grow = true;
if (flags & SWIOTLB_ANY)
io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
else
io_tlb_default_mem.phys_limit = ARCH_LOW_ADDRESS_LIMIT;
#endif
if (!default_nareas)
swiotlb_adjust_nareas(num_possible_cpus());
nslabs = default_nslabs;
nareas = limit_nareas(default_nareas, nslabs);
while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) {
if (nslabs <= IO_TLB_MIN_SLABS)
return;
nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
nareas = limit_nareas(nareas, nslabs);
}
if (default_nslabs != nslabs) {
pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs",
default_nslabs, nslabs);
default_nslabs = nslabs;
}
alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
if (!mem->slots) {
pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n",
__func__, alloc_size, PAGE_SIZE);
return;
}
mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area),
nareas), SMP_CACHE_BYTES);
if (!mem->areas) {
pr_warn("%s: Failed to allocate mem->areas.\n", __func__);
return;
}
swiotlb_init_io_tlb_pool(mem, __pa(tlb), nslabs, false, nareas);
add_mem_pool(&io_tlb_default_mem, mem);
if (flags & SWIOTLB_VERBOSE)
swiotlb_print_info();
}
void __init swiotlb_init(bool addressing_limit, unsigned int flags)
{
swiotlb_init_remap(addressing_limit, flags, NULL);
}
/*
* Systems with larger DMA zones (those that don't support ISA) can
* initialize the swiotlb later using the slab allocator if needed.
* This should be just like above, but with some error catching.
*/
int swiotlb_init_late(size_t size, gfp_t gfp_mask,
int (*remap)(void *tlb, unsigned long nslabs))
{
struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
unsigned int nareas;
unsigned char *vstart = NULL;
unsigned int order, area_order;
bool retried = false;
int rc = 0;
if (io_tlb_default_mem.nslabs)
return 0;
if (swiotlb_force_disable)
return 0;
io_tlb_default_mem.force_bounce = swiotlb_force_bounce;
#ifdef CONFIG_SWIOTLB_DYNAMIC
if (!remap)
io_tlb_default_mem.can_grow = true;
if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp_mask & __GFP_DMA))
io_tlb_default_mem.phys_limit = DMA_BIT_MASK(zone_dma_bits);
else if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp_mask & __GFP_DMA32))
io_tlb_default_mem.phys_limit = DMA_BIT_MASK(32);
else
io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
#endif
if (!default_nareas)
swiotlb_adjust_nareas(num_possible_cpus());
retry:
order = get_order(nslabs << IO_TLB_SHIFT);
nslabs = SLABS_PER_PAGE << order;
while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
order);
if (vstart)
break;
order--;
nslabs = SLABS_PER_PAGE << order;
retried = true;
}
if (!vstart)
return -ENOMEM;
if (remap)
rc = remap(vstart, nslabs);
if (rc) {
free_pages((unsigned long)vstart, order);
nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
if (nslabs < IO_TLB_MIN_SLABS)
return rc;
retried = true;
goto retry;
}
if (retried) {
pr_warn("only able to allocate %ld MB\n",
(PAGE_SIZE << order) >> 20);
}
nareas = limit_nareas(default_nareas, nslabs);
area_order = get_order(array_size(sizeof(*mem->areas), nareas));
mem->areas = (struct io_tlb_area *)
__get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order);
if (!mem->areas)
goto error_area;
mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(array_size(sizeof(*mem->slots), nslabs)));
if (!mem->slots)
goto error_slots;
set_memory_decrypted((unsigned long)vstart,
(nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
swiotlb_init_io_tlb_pool(mem, virt_to_phys(vstart), nslabs, true,
nareas);
add_mem_pool(&io_tlb_default_mem, mem);
swiotlb_print_info();
return 0;
error_slots:
free_pages((unsigned long)mem->areas, area_order);
error_area:
free_pages((unsigned long)vstart, order);
return -ENOMEM;
}
void __init swiotlb_exit(void)
{
struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
unsigned long tbl_vaddr;
size_t tbl_size, slots_size;
unsigned int area_order;
if (swiotlb_force_bounce)
return;
if (!mem->nslabs)
return;
pr_info("tearing down default memory pool\n");
tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
tbl_size = PAGE_ALIGN(mem->end - mem->start);
slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
if (mem->late_alloc) {
area_order = get_order(array_size(sizeof(*mem->areas),
mem->nareas));
free_pages((unsigned long)mem->areas, area_order);
free_pages(tbl_vaddr, get_order(tbl_size));
free_pages((unsigned long)mem->slots, get_order(slots_size));
} else {
memblock_free_late(__pa(mem->areas),
array_size(sizeof(*mem->areas), mem->nareas));
memblock_free_late(mem->start, tbl_size);
memblock_free_late(__pa(mem->slots), slots_size);
}
memset(mem, 0, sizeof(*mem));
}
#ifdef CONFIG_SWIOTLB_DYNAMIC
/**
* alloc_dma_pages() - allocate pages to be used for DMA
* @gfp: GFP flags for the allocation.
* @bytes: Size of the buffer.
*
* Allocate pages from the buddy allocator. If successful, make the allocated
* pages decrypted that they can be used for DMA.
*
* Return: Decrypted pages, or %NULL on failure.
*/
static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes)
{
unsigned int order = get_order(bytes);
struct page *page;
void *vaddr;
page = alloc_pages(gfp, order);
if (!page)
return NULL;
vaddr = page_address(page);
if (set_memory_decrypted((unsigned long)vaddr, PFN_UP(bytes)))
goto error;
return page;
error:
__free_pages(page, order);
return NULL;
}
/**
* swiotlb_alloc_tlb() - allocate a dynamic IO TLB buffer
* @dev: Device for which a memory pool is allocated.
* @bytes: Size of the buffer.
* @phys_limit: Maximum allowed physical address of the buffer.
* @gfp: GFP flags for the allocation.
*
* Return: Allocated pages, or %NULL on allocation failure.
*/
static struct page *swiotlb_alloc_tlb(struct device *dev, size_t bytes,
u64 phys_limit, gfp_t gfp)
{
struct page *page;
/*
* Allocate from the atomic pools if memory is encrypted and
* the allocation is atomic, because decrypting may block.
*/
if (!gfpflags_allow_blocking(gfp) && dev && force_dma_unencrypted(dev)) {
void *vaddr;
if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
return NULL;
return dma_alloc_from_pool(dev, bytes, &vaddr, gfp,
dma_coherent_ok);
}
gfp &= ~GFP_ZONEMASK;
if (phys_limit <= DMA_BIT_MASK(zone_dma_bits))
gfp |= __GFP_DMA;
else if (phys_limit <= DMA_BIT_MASK(32))
gfp |= __GFP_DMA32;
while ((page = alloc_dma_pages(gfp, bytes)) &&
page_to_phys(page) + bytes - 1 > phys_limit) {
/* allocated, but too high */
__free_pages(page, get_order(bytes));
if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
phys_limit < DMA_BIT_MASK(64) &&
!(gfp & (__GFP_DMA32 | __GFP_DMA)))
gfp |= __GFP_DMA32;
else if (IS_ENABLED(CONFIG_ZONE_DMA) &&
!(gfp & __GFP_DMA))
gfp = (gfp & ~__GFP_DMA32) | __GFP_DMA;
else
return NULL;
}
return page;
}
/**
* swiotlb_free_tlb() - free a dynamically allocated IO TLB buffer
* @vaddr: Virtual address of the buffer.
* @bytes: Size of the buffer.
*/
static void swiotlb_free_tlb(void *vaddr, size_t bytes)
{
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
dma_free_from_pool(NULL, vaddr, bytes))
return;
/* Intentional leak if pages cannot be encrypted again. */
if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
__free_pages(virt_to_page(vaddr), get_order(bytes));
}
/**
* swiotlb_alloc_pool() - allocate a new IO TLB memory pool
* @dev: Device for which a memory pool is allocated.
* @minslabs: Minimum number of slabs.
* @nslabs: Desired (maximum) number of slabs.
* @nareas: Number of areas.
* @phys_limit: Maximum DMA buffer physical address.
* @gfp: GFP flags for the allocations.
*
* Allocate and initialize a new IO TLB memory pool. The actual number of
* slabs may be reduced if allocation of @nslabs fails. If even
* @minslabs cannot be allocated, this function fails.
*
* Return: New memory pool, or %NULL on allocation failure.
*/
static struct io_tlb_pool *swiotlb_alloc_pool(struct device *dev,
unsigned long minslabs, unsigned long nslabs,
unsigned int nareas, u64 phys_limit, gfp_t gfp)
{
struct io_tlb_pool *pool;
unsigned int slot_order;
struct page *tlb;
size_t pool_size;
size_t tlb_size;
pool_size = sizeof(*pool) + array_size(sizeof(*pool->areas), nareas);
pool = kzalloc(pool_size, gfp);
if (!pool)
goto error;
pool->areas = (void *)pool + sizeof(*pool);
tlb_size = nslabs << IO_TLB_SHIFT;
while (!(tlb = swiotlb_alloc_tlb(dev, tlb_size, phys_limit, gfp))) {
if (nslabs <= minslabs)
goto error_tlb;
nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
nareas = limit_nareas(nareas, nslabs);
tlb_size = nslabs << IO_TLB_SHIFT;
}
slot_order = get_order(array_size(sizeof(*pool->slots), nslabs));
pool->slots = (struct io_tlb_slot *)
__get_free_pages(gfp, slot_order);
if (!pool->slots)
goto error_slots;
swiotlb_init_io_tlb_pool(pool, page_to_phys(tlb), nslabs, true, nareas);
return pool;
error_slots:
swiotlb_free_tlb(page_address(tlb), tlb_size);
error_tlb:
kfree(pool);
error:
return NULL;
}
/**
* swiotlb_dyn_alloc() - dynamic memory pool allocation worker
* @work: Pointer to dyn_alloc in struct io_tlb_mem.
*/
static void swiotlb_dyn_alloc(struct work_struct *work)
{
struct io_tlb_mem *mem =
container_of(work, struct io_tlb_mem, dyn_alloc);
struct io_tlb_pool *pool;
pool = swiotlb_alloc_pool(NULL, IO_TLB_MIN_SLABS, default_nslabs,
default_nareas, mem->phys_limit, GFP_KERNEL);
if (!pool) {
pr_warn_ratelimited("Failed to allocate new pool");
return;
}
add_mem_pool(mem, pool);
}
/**
* swiotlb_dyn_free() - RCU callback to free a memory pool
* @rcu: RCU head in the corresponding struct io_tlb_pool.
*/
static void swiotlb_dyn_free(struct rcu_head *rcu)
{
struct io_tlb_pool *pool = container_of(rcu, struct io_tlb_pool, rcu);
size_t slots_size = array_size(sizeof(*pool->slots), pool->nslabs);
size_t tlb_size = pool->end - pool->start;
free_pages((unsigned long)pool->slots, get_order(slots_size));
swiotlb_free_tlb(pool->vaddr, tlb_size);
kfree(pool);
}
/**
* swiotlb_find_pool() - find the IO TLB pool for a physical address
* @dev: Device which has mapped the DMA buffer.
* @paddr: Physical address within the DMA buffer.
*
* Find the IO TLB memory pool descriptor which contains the given physical
* address, if any.
*
* Return: Memory pool which contains @paddr, or %NULL if none.
*/
struct io_tlb_pool *swiotlb_find_pool(struct device *dev, phys_addr_t paddr)
{
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
struct io_tlb_pool *pool;
rcu_read_lock();
list_for_each_entry_rcu(pool, &mem->pools, node) {
if (paddr >= pool->start && paddr < pool->end)
goto out;
}
list_for_each_entry_rcu(pool, &dev->dma_io_tlb_pools, node) {
if (paddr >= pool->start && paddr < pool->end)
goto out;
}
pool = NULL;
out:
rcu_read_unlock();
return pool;
}
/**
* swiotlb_del_pool() - remove an IO TLB pool from a device
* @dev: Owning device.
* @pool: Memory pool to be removed.
*/
static void swiotlb_del_pool(struct device *dev, struct io_tlb_pool *pool)
{
unsigned long flags;
spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
list_del_rcu(&pool->node);
spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
call_rcu(&pool->rcu, swiotlb_dyn_free);
}
#endif /* CONFIG_SWIOTLB_DYNAMIC */
/**
* swiotlb_dev_init() - initialize swiotlb fields in &struct device
* @dev: Device to be initialized.
*/
void swiotlb_dev_init(struct device *dev)
{
dev->dma_io_tlb_mem = &io_tlb_default_mem;
#ifdef CONFIG_SWIOTLB_DYNAMIC
INIT_LIST_HEAD(&dev->dma_io_tlb_pools);
spin_lock_init(&dev->dma_io_tlb_lock);
dev->dma_uses_io_tlb = false;
#endif
}
/*
* Return the offset into a iotlb slot required to keep the device happy.
*/
static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
{
return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
}
/*
* Bounce: copy the swiotlb buffer from or back to the original dma location
*/
static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
enum dma_data_direction dir)
{
struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr);
int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
phys_addr_t orig_addr = mem->slots[index].orig_addr;
size_t alloc_size = mem->slots[index].alloc_size;
unsigned long pfn = PFN_DOWN(orig_addr);
unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
unsigned int tlb_offset, orig_addr_offset;
if (orig_addr == INVALID_PHYS_ADDR)
return;
tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
if (tlb_offset < orig_addr_offset) {
dev_WARN_ONCE(dev, 1,
"Access before mapping start detected. orig offset %u, requested offset %u.\n",
orig_addr_offset, tlb_offset);
return;
}
tlb_offset -= orig_addr_offset;
if (tlb_offset > alloc_size) {
dev_WARN_ONCE(dev, 1,
"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
alloc_size, size, tlb_offset);
return;
}
orig_addr += tlb_offset;
alloc_size -= tlb_offset;
if (size > alloc_size) {
dev_WARN_ONCE(dev, 1,
"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
alloc_size, size);
size = alloc_size;
}
if (PageHighMem(pfn_to_page(pfn))) {
unsigned int offset = orig_addr & ~PAGE_MASK;
struct page *page;
unsigned int sz = 0;
unsigned long flags;
while (size) {
sz = min_t(size_t, PAGE_SIZE - offset, size);
local_irq_save(flags);
page = pfn_to_page(pfn);
if (dir == DMA_TO_DEVICE)
memcpy_from_page(vaddr, page, offset, sz);
else
memcpy_to_page(page, offset, vaddr, sz);
local_irq_restore(flags);
size -= sz;
pfn++;
vaddr += sz;
offset = 0;
}
} else if (dir == DMA_TO_DEVICE) {
memcpy(vaddr, phys_to_virt(orig_addr), size);
} else {
memcpy(phys_to_virt(orig_addr), vaddr, size);
}
}
static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
{
return start + (idx << IO_TLB_SHIFT);
}
/*
* Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
*/
static inline unsigned long get_max_slots(unsigned long boundary_mask)
{
return (boundary_mask >> IO_TLB_SHIFT) + 1;
}
static unsigned int wrap_area_index(struct io_tlb_pool *mem, unsigned int index)
{
if (index >= mem->area_nslabs)
return 0;
return index;
}
/*
* Track the total used slots with a global atomic value in order to have
* correct information to determine the high water mark. The mem_used()
* function gives imprecise results because there's no locking across
* multiple areas.
*/
#ifdef CONFIG_DEBUG_FS
static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
{
unsigned long old_hiwater, new_used;
new_used = atomic_long_add_return(nslots, &mem->total_used);
old_hiwater = atomic_long_read(&mem->used_hiwater);
do {
if (new_used <= old_hiwater)
break;
} while (!atomic_long_try_cmpxchg(&mem->used_hiwater,
&old_hiwater, new_used));
}
static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
{
atomic_long_sub(nslots, &mem->total_used);
}
#else /* !CONFIG_DEBUG_FS */
static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
{
}
static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
{
}
#endif /* CONFIG_DEBUG_FS */
/**
* swiotlb_area_find_slots() - search for slots in one IO TLB memory area
* @dev: Device which maps the buffer.
* @pool: Memory pool to be searched.
* @area_index: Index of the IO TLB memory area to be searched.
* @orig_addr: Original (non-bounced) IO buffer address.
* @alloc_size: Total requested size of the bounce buffer,
* including initial alignment padding.
* @alloc_align_mask: Required alignment of the allocated buffer.
*
* Find a suitable sequence of IO TLB entries for the request and allocate
* a buffer from the given IO TLB memory area.
* This function takes care of locking.
*
* Return: Index of the first allocated slot, or -1 on error.
*/
static int swiotlb_area_find_slots(struct device *dev, struct io_tlb_pool *pool,
int area_index, phys_addr_t orig_addr, size_t alloc_size,
unsigned int alloc_align_mask)
{
struct io_tlb_area *area = pool->areas + area_index;
unsigned long boundary_mask = dma_get_seg_boundary(dev);
dma_addr_t tbl_dma_addr =
phys_to_dma_unencrypted(dev, pool->start) & boundary_mask;
unsigned long max_slots = get_max_slots(boundary_mask);
unsigned int iotlb_align_mask =
dma_get_min_align_mask(dev) | alloc_align_mask;
unsigned int nslots = nr_slots(alloc_size), stride;
unsigned int offset = swiotlb_align_offset(dev, orig_addr);
unsigned int index, slots_checked, count = 0, i;
unsigned long flags;
unsigned int slot_base;
unsigned int slot_index;
BUG_ON(!nslots);
BUG_ON(area_index >= pool->nareas);
/*
* For allocations of PAGE_SIZE or larger only look for page aligned
* allocations.
*/
if (alloc_size >= PAGE_SIZE)
iotlb_align_mask |= ~PAGE_MASK;
iotlb_align_mask &= ~(IO_TLB_SIZE - 1);
/*
* For mappings with an alignment requirement don't bother looping to
* unaligned slots once we found an aligned one.
*/
stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
spin_lock_irqsave(&area->lock, flags);
if (unlikely(nslots > pool->area_nslabs - area->used))
goto not_found;
slot_base = area_index * pool->area_nslabs;
index = area->index;
for (slots_checked = 0; slots_checked < pool->area_nslabs; ) {
slot_index = slot_base + index;
if (orig_addr &&
(slot_addr(tbl_dma_addr, slot_index) &
iotlb_align_mask) != (orig_addr & iotlb_align_mask)) {
index = wrap_area_index(pool, index + 1);
slots_checked++;
continue;
}
if (!iommu_is_span_boundary(slot_index, nslots,
nr_slots(tbl_dma_addr),
max_slots)) {
if (pool->slots[slot_index].list >= nslots)
goto found;
}
index = wrap_area_index(pool, index + stride);
slots_checked += stride;
}
not_found:
spin_unlock_irqrestore(&area->lock, flags);
return -1;
found:
/*
* If we find a slot that indicates we have 'nslots' number of
* contiguous buffers, we allocate the buffers from that slot onwards
* and set the list of free entries to '0' indicating unavailable.
*/
for (i = slot_index; i < slot_index + nslots; i++) {
pool->slots[i].list = 0;
pool->slots[i].alloc_size = alloc_size - (offset +
((i - slot_index) << IO_TLB_SHIFT));
}
for (i = slot_index - 1;
io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
pool->slots[i].list; i--)
pool->slots[i].list = ++count;
/*
* Update the indices to avoid searching in the next round.
*/
area->index = wrap_area_index(pool, index + nslots);
area->used += nslots;
spin_unlock_irqrestore(&area->lock, flags);
inc_used_and_hiwater(dev->dma_io_tlb_mem, nslots);
return slot_index;
}
/**
* swiotlb_pool_find_slots() - search for slots in one memory pool
* @dev: Device which maps the buffer.
* @pool: Memory pool to be searched.
* @orig_addr: Original (non-bounced) IO buffer address.
* @alloc_size: Total requested size of the bounce buffer,
* including initial alignment padding.
* @alloc_align_mask: Required alignment of the allocated buffer.
*
* Search through one memory pool to find a sequence of slots that match the
* allocation constraints.
*
* Return: Index of the first allocated slot, or -1 on error.
*/
static int swiotlb_pool_find_slots(struct device *dev, struct io_tlb_pool *pool,
phys_addr_t orig_addr, size_t alloc_size,
unsigned int alloc_align_mask)
{
int start = raw_smp_processor_id() & (pool->nareas - 1);
int i = start, index;
do {
index = swiotlb_area_find_slots(dev, pool, i, orig_addr,
alloc_size, alloc_align_mask);
if (index >= 0)
return index;
if (++i >= pool->nareas)
i = 0;
} while (i != start);
return -1;
}
#ifdef CONFIG_SWIOTLB_DYNAMIC
/**
* swiotlb_find_slots() - search for slots in the whole swiotlb
* @dev: Device which maps the buffer.
* @orig_addr: Original (non-bounced) IO buffer address.
* @alloc_size: Total requested size of the bounce buffer,
* including initial alignment padding.
* @alloc_align_mask: Required alignment of the allocated buffer.
* @retpool: Used memory pool, updated on return.
*
* Search through the whole software IO TLB to find a sequence of slots that
* match the allocation constraints.
*
* Return: Index of the first allocated slot, or -1 on error.
*/
static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
size_t alloc_size, unsigned int alloc_align_mask,
struct io_tlb_pool **retpool)
{
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
struct io_tlb_pool *pool;
unsigned long nslabs;
unsigned long flags;
u64 phys_limit;
int index;
rcu_read_lock();
list_for_each_entry_rcu(pool, &mem->pools, node) {
index = swiotlb_pool_find_slots(dev, pool, orig_addr,
alloc_size, alloc_align_mask);
if (index >= 0) {
rcu_read_unlock();
goto found;
}
}
rcu_read_unlock();
if (!mem->can_grow)
return -1;
schedule_work(&mem->dyn_alloc);
nslabs = nr_slots(alloc_size);
phys_limit = min_not_zero(*dev->dma_mask, dev->bus_dma_limit);
pool = swiotlb_alloc_pool(dev, nslabs, nslabs, 1, phys_limit,
GFP_NOWAIT | __GFP_NOWARN);
if (!pool)
return -1;
index = swiotlb_pool_find_slots(dev, pool, orig_addr,
alloc_size, alloc_align_mask);
if (index < 0) {
swiotlb_dyn_free(&pool->rcu);
return -1;
}
pool->transient = true;
spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
list_add_rcu(&pool->node, &dev->dma_io_tlb_pools);
spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
found:
WRITE_ONCE(dev->dma_uses_io_tlb, true);
/*
* The general barrier orders reads and writes against a presumed store
* of the SWIOTLB buffer address by a device driver (to a driver private
* data structure). It serves two purposes.
*
* First, the store to dev->dma_uses_io_tlb must be ordered before the
* presumed store. This guarantees that the returned buffer address
* cannot be passed to another CPU before updating dev->dma_uses_io_tlb.
*
* Second, the load from mem->pools must be ordered before the same
* presumed store. This guarantees that the returned buffer address
* cannot be observed by another CPU before an update of the RCU list
* that was made by swiotlb_dyn_alloc() on a third CPU (cf. multicopy
* atomicity).
*
* See also the comment in is_swiotlb_buffer().
*/
smp_mb();
*retpool = pool;
return index;
}
#else /* !CONFIG_SWIOTLB_DYNAMIC */
static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
size_t alloc_size, unsigned int alloc_align_mask,
struct io_tlb_pool **retpool)
{
*retpool = &dev->dma_io_tlb_mem->defpool;
return swiotlb_pool_find_slots(dev, *retpool,
orig_addr, alloc_size, alloc_align_mask);
}
#endif /* CONFIG_SWIOTLB_DYNAMIC */
#ifdef CONFIG_DEBUG_FS
/**
* mem_used() - get number of used slots in an allocator
* @mem: Software IO TLB allocator.
*
* The result is accurate in this version of the function, because an atomic
* counter is available if CONFIG_DEBUG_FS is set.
*
* Return: Number of used slots.
*/
static unsigned long mem_used(struct io_tlb_mem *mem)
{
return atomic_long_read(&mem->total_used);
}
#else /* !CONFIG_DEBUG_FS */
/**
* mem_pool_used() - get number of used slots in a memory pool
* @pool: Software IO TLB memory pool.
*
* The result is not accurate, see mem_used().
*
* Return: Approximate number of used slots.
*/
static unsigned long mem_pool_used(struct io_tlb_pool *pool)
{
int i;
unsigned long used = 0;
for (i = 0; i < pool->nareas; i++)
used += pool->areas[i].used;
return used;
}
/**
* mem_used() - get number of used slots in an allocator
* @mem: Software IO TLB allocator.
*
* The result is not accurate, because there is no locking of individual
* areas.
*
* Return: Approximate number of used slots.
*/
static unsigned long mem_used(struct io_tlb_mem *mem)
{
#ifdef CONFIG_SWIOTLB_DYNAMIC
struct io_tlb_pool *pool;
unsigned long used = 0;
rcu_read_lock();
list_for_each_entry_rcu(pool, &mem->pools, node)
used += mem_pool_used(pool);
rcu_read_unlock();
return used;
#else
return mem_pool_used(&mem->defpool);
#endif
}
#endif /* CONFIG_DEBUG_FS */
phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
size_t mapping_size, size_t alloc_size,
unsigned int alloc_align_mask, enum dma_data_direction dir,
unsigned long attrs)
{
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
unsigned int offset = swiotlb_align_offset(dev, orig_addr);
struct io_tlb_pool *pool;
unsigned int i;
int index;
phys_addr_t tlb_addr;
if (!mem || !mem->nslabs) {
dev_warn_ratelimited(dev,
"Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
return (phys_addr_t)DMA_MAPPING_ERROR;
}
if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
if (mapping_size > alloc_size) {
dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
mapping_size, alloc_size);
return (phys_addr_t)DMA_MAPPING_ERROR;
}
index = swiotlb_find_slots(dev, orig_addr,
alloc_size + offset, alloc_align_mask, &pool);
if (index == -1) {
if (!(attrs & DMA_ATTR_NO_WARN))
dev_warn_ratelimited(dev,
"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
alloc_size, mem->nslabs, mem_used(mem));
return (phys_addr_t)DMA_MAPPING_ERROR;
}
/*
* Save away the mapping from the original address to the DMA address.
* This is needed when we sync the memory. Then we sync the buffer if
* needed.
*/
for (i = 0; i < nr_slots(alloc_size + offset); i++)
pool->slots[index + i].orig_addr = slot_addr(orig_addr, i);
tlb_addr = slot_addr(pool->start, index) + offset;
/*
* When dir == DMA_FROM_DEVICE we could omit the copy from the orig
* to the tlb buffer, if we knew for sure the device will
* overwrite the entire current content. But we don't. Thus
* unconditional bounce may prevent leaking swiotlb content (i.e.
* kernel memory) to user-space.
*/
swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
return tlb_addr;
}
static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
{
struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr);
unsigned long flags;
unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
int nslots = nr_slots(mem->slots[index].alloc_size + offset);
int aindex = index / mem->area_nslabs;
struct io_tlb_area *area = &mem->areas[aindex];
int count, i;
/*
* Return the buffer to the free list by setting the corresponding
* entries to indicate the number of contiguous entries available.
* While returning the entries to the free list, we merge the entries
* with slots below and above the pool being returned.
*/
BUG_ON(aindex >= mem->nareas);
spin_lock_irqsave(&area->lock, flags);
if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
count = mem->slots[index + nslots].list;
else
count = 0;
/*
* Step 1: return the slots to the free list, merging the slots with
* superceeding slots
*/
for (i = index + nslots - 1; i >= index; i--) {
mem->slots[i].list = ++count;
mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
mem->slots[i].alloc_size = 0;
}
/*
* Step 2: merge the returned slots with the preceding slots, if
* available (non zero)
*/
for (i = index - 1;
io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
i--)
mem->slots[i].list = ++count;
area->used -= nslots;
spin_unlock_irqrestore(&area->lock, flags);
dec_used(dev->dma_io_tlb_mem, nslots);
}
#ifdef CONFIG_SWIOTLB_DYNAMIC
/**
* swiotlb_del_transient() - delete a transient memory pool
* @dev: Device which mapped the buffer.
* @tlb_addr: Physical address within a bounce buffer.
*
* Check whether the address belongs to a transient SWIOTLB memory pool.
* If yes, then delete the pool.
*
* Return: %true if @tlb_addr belonged to a transient pool that was released.
*/
static bool swiotlb_del_transient(struct device *dev, phys_addr_t tlb_addr)
{
struct io_tlb_pool *pool;
pool = swiotlb_find_pool(dev, tlb_addr);
if (!pool->transient)
return false;
dec_used(dev->dma_io_tlb_mem, pool->nslabs);
swiotlb_del_pool(dev, pool);
return true;
}
#else /* !CONFIG_SWIOTLB_DYNAMIC */
static inline bool swiotlb_del_transient(struct device *dev,
phys_addr_t tlb_addr)
{
return false;
}
#endif /* CONFIG_SWIOTLB_DYNAMIC */
/*
* tlb_addr is the physical address of the bounce buffer to unmap.
*/
void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
size_t mapping_size, enum dma_data_direction dir,
unsigned long attrs)
{
/*
* First, sync the memory before unmapping the entry
*/
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
if (swiotlb_del_transient(dev, tlb_addr))
return;
swiotlb_release_slots(dev, tlb_addr);
}
void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
size_t size, enum dma_data_direction dir)
{
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
else
BUG_ON(dir != DMA_FROM_DEVICE);
}
void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
size_t size, enum dma_data_direction dir)
{
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
else
BUG_ON(dir != DMA_TO_DEVICE);
}
/*
* Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
* to the device copy the data into it as well.
*/
dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
enum dma_data_direction dir, unsigned long attrs)
{
phys_addr_t swiotlb_addr;
dma_addr_t dma_addr;
trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
attrs);
if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
return DMA_MAPPING_ERROR;
/* Ensure that the address returned is DMA'ble */
dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
attrs | DMA_ATTR_SKIP_CPU_SYNC);
dev_WARN_ONCE(dev, 1,
"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
return DMA_MAPPING_ERROR;
}
if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
arch_sync_dma_for_device(swiotlb_addr, size, dir);
return dma_addr;
}
size_t swiotlb_max_mapping_size(struct device *dev)
{
int min_align_mask = dma_get_min_align_mask(dev);
int min_align = 0;
/*
* swiotlb_find_slots() skips slots according to
* min align mask. This affects max mapping size.
* Take it into acount here.
*/
if (min_align_mask)
min_align = roundup(min_align_mask, IO_TLB_SIZE);
return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
}
/**
* is_swiotlb_allocated() - check if the default software IO TLB is initialized
*/
bool is_swiotlb_allocated(void)
{
return io_tlb_default_mem.nslabs;
}
bool is_swiotlb_active(struct device *dev)
{
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
return mem && mem->nslabs;
}
/**
* default_swiotlb_base() - get the base address of the default SWIOTLB
*
* Get the lowest physical address used by the default software IO TLB pool.
*/
phys_addr_t default_swiotlb_base(void)
{
#ifdef CONFIG_SWIOTLB_DYNAMIC
io_tlb_default_mem.can_grow = false;
#endif
return io_tlb_default_mem.defpool.start;
}
/**
* default_swiotlb_limit() - get the address limit of the default SWIOTLB
*
* Get the highest physical address used by the default software IO TLB pool.
*/
phys_addr_t default_swiotlb_limit(void)
{
#ifdef CONFIG_SWIOTLB_DYNAMIC
return io_tlb_default_mem.phys_limit;
#else
return io_tlb_default_mem.defpool.end - 1;
#endif
}
#ifdef CONFIG_DEBUG_FS
static int io_tlb_used_get(void *data, u64 *val)
{
struct io_tlb_mem *mem = data;
*val = mem_used(mem);
return 0;
}
static int io_tlb_hiwater_get(void *data, u64 *val)
{
struct io_tlb_mem *mem = data;
*val = atomic_long_read(&mem->used_hiwater);
return 0;
}
static int io_tlb_hiwater_set(void *data, u64 val)
{
struct io_tlb_mem *mem = data;
/* Only allow setting to zero */
if (val != 0)
return -EINVAL;
atomic_long_set(&mem->used_hiwater, val);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n");
DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_hiwater, io_tlb_hiwater_get,
io_tlb_hiwater_set, "%llu\n");
static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
const char *dirname)
{
atomic_long_set(&mem->total_used, 0);
atomic_long_set(&mem->used_hiwater, 0);
mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
if (!mem->nslabs)
return;
debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
debugfs_create_file("io_tlb_used", 0400, mem->debugfs, mem,
&fops_io_tlb_used);
debugfs_create_file("io_tlb_used_hiwater", 0600, mem->debugfs, mem,
&fops_io_tlb_hiwater);
}
static int __init swiotlb_create_default_debugfs(void)
{
swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
return 0;
}
late_initcall(swiotlb_create_default_debugfs);
#else /* !CONFIG_DEBUG_FS */
static inline void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
const char *dirname)
{
}
#endif /* CONFIG_DEBUG_FS */
#ifdef CONFIG_DMA_RESTRICTED_POOL
struct page *swiotlb_alloc(struct device *dev, size_t size)
{
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
struct io_tlb_pool *pool;
phys_addr_t tlb_addr;
int index;
if (!mem)
return NULL;
index = swiotlb_find_slots(dev, 0, size, 0, &pool);
if (index == -1)
return NULL;
tlb_addr = slot_addr(pool->start, index);
return pfn_to_page(PFN_DOWN(tlb_addr));
}
bool swiotlb_free(struct device *dev, struct page *page, size_t size)
{
phys_addr_t tlb_addr = page_to_phys(page);
if (!is_swiotlb_buffer(dev, tlb_addr))
return false;
swiotlb_release_slots(dev, tlb_addr);
return true;
}
static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
struct device *dev)
{
struct io_tlb_mem *mem = rmem->priv;
unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
/* Set Per-device io tlb area to one */
unsigned int nareas = 1;
if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
dev_err(dev, "Restricted DMA pool must be accessible within the linear mapping.");
return -EINVAL;
}
/*
* Since multiple devices can share the same pool, the private data,
* io_tlb_mem struct, will be initialized by the first device attached
* to it.
*/
if (!mem) {
struct io_tlb_pool *pool;
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
if (!mem)
return -ENOMEM;
pool = &mem->defpool;
pool->slots = kcalloc(nslabs, sizeof(*pool->slots), GFP_KERNEL);
if (!pool->slots) {
kfree(mem);
return -ENOMEM;
}
pool->areas = kcalloc(nareas, sizeof(*pool->areas),
GFP_KERNEL);
if (!pool->areas) {
kfree(pool->slots);
kfree(mem);
return -ENOMEM;
}
set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
rmem->size >> PAGE_SHIFT);
swiotlb_init_io_tlb_pool(pool, rmem->base, nslabs,
false, nareas);
mem->force_bounce = true;
mem->for_alloc = true;
#ifdef CONFIG_SWIOTLB_DYNAMIC
spin_lock_init(&mem->lock);
#endif
add_mem_pool(mem, pool);
rmem->priv = mem;
swiotlb_create_debugfs_files(mem, rmem->name);
}
dev->dma_io_tlb_mem = mem;
return 0;
}
static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
struct device *dev)
{
dev->dma_io_tlb_mem = &io_tlb_default_mem;
}
static const struct reserved_mem_ops rmem_swiotlb_ops = {
.device_init = rmem_swiotlb_device_init,
.device_release = rmem_swiotlb_device_release,
};
static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
{
unsigned long node = rmem->fdt_node;
if (of_get_flat_dt_prop(node, "reusable", NULL) ||
of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
of_get_flat_dt_prop(node, "no-map", NULL))
return -EINVAL;
rmem->ops = &rmem_swiotlb_ops;
pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
&rmem->base, (unsigned long)rmem->size / SZ_1M);
return 0;
}
RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
#endif /* CONFIG_DMA_RESTRICTED_POOL */