mirror of
https://github.com/torvalds/linux.git
synced 2024-12-13 14:43:03 +00:00
bb016b8416
Switch to memblock interfaces for early memory allocator instead of bootmem allocator. No functional change in beahvior than what it is in current code from bootmem users points of view. Archs already converted to NO_BOOTMEM now directly use memblock interfaces instead of bootmem wrappers build on top of memblock. And the archs which still uses bootmem, these new apis just fallback to exiting bootmem APIs. Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Paul Walmsley <paul@pwsan.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Russell King <linux@arm.linux.org.uk> Cc: Tejun Heo <tj@kernel.org> Cc: Tony Lindgren <tony@atomide.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
236 lines
6.0 KiB
C
236 lines
6.0 KiB
C
/*
|
|
* Virtual Memory Map support
|
|
*
|
|
* (C) 2007 sgi. Christoph Lameter.
|
|
*
|
|
* Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
|
|
* virt_to_page, page_address() to be implemented as a base offset
|
|
* calculation without memory access.
|
|
*
|
|
* However, virtual mappings need a page table and TLBs. Many Linux
|
|
* architectures already map their physical space using 1-1 mappings
|
|
* via TLBs. For those arches the virtual memory map is essentially
|
|
* for free if we use the same page size as the 1-1 mappings. In that
|
|
* case the overhead consists of a few additional pages that are
|
|
* allocated to create a view of memory for vmemmap.
|
|
*
|
|
* The architecture is expected to provide a vmemmap_populate() function
|
|
* to instantiate the mapping.
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/sched.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
|
|
/*
|
|
* Allocate a block of memory to be used to back the virtual memory map
|
|
* or to back the page tables that are used to create the mapping.
|
|
* Uses the main allocators if they are available, else bootmem.
|
|
*/
|
|
|
|
static void * __init_refok __earlyonly_bootmem_alloc(int node,
|
|
unsigned long size,
|
|
unsigned long align,
|
|
unsigned long goal)
|
|
{
|
|
return memblock_virt_alloc_try_nid(size, align, goal,
|
|
BOOTMEM_ALLOC_ACCESSIBLE, node);
|
|
}
|
|
|
|
static void *vmemmap_buf;
|
|
static void *vmemmap_buf_end;
|
|
|
|
void * __meminit vmemmap_alloc_block(unsigned long size, int node)
|
|
{
|
|
/* If the main allocator is up use that, fallback to bootmem. */
|
|
if (slab_is_available()) {
|
|
struct page *page;
|
|
|
|
if (node_state(node, N_HIGH_MEMORY))
|
|
page = alloc_pages_node(
|
|
node, GFP_KERNEL | __GFP_ZERO | __GFP_REPEAT,
|
|
get_order(size));
|
|
else
|
|
page = alloc_pages(
|
|
GFP_KERNEL | __GFP_ZERO | __GFP_REPEAT,
|
|
get_order(size));
|
|
if (page)
|
|
return page_address(page);
|
|
return NULL;
|
|
} else
|
|
return __earlyonly_bootmem_alloc(node, size, size,
|
|
__pa(MAX_DMA_ADDRESS));
|
|
}
|
|
|
|
/* need to make sure size is all the same during early stage */
|
|
void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
|
|
{
|
|
void *ptr;
|
|
|
|
if (!vmemmap_buf)
|
|
return vmemmap_alloc_block(size, node);
|
|
|
|
/* take the from buf */
|
|
ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
|
|
if (ptr + size > vmemmap_buf_end)
|
|
return vmemmap_alloc_block(size, node);
|
|
|
|
vmemmap_buf = ptr + size;
|
|
|
|
return ptr;
|
|
}
|
|
|
|
void __meminit vmemmap_verify(pte_t *pte, int node,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long pfn = pte_pfn(*pte);
|
|
int actual_node = early_pfn_to_nid(pfn);
|
|
|
|
if (node_distance(actual_node, node) > LOCAL_DISTANCE)
|
|
printk(KERN_WARNING "[%lx-%lx] potential offnode "
|
|
"page_structs\n", start, end - 1);
|
|
}
|
|
|
|
pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
|
|
{
|
|
pte_t *pte = pte_offset_kernel(pmd, addr);
|
|
if (pte_none(*pte)) {
|
|
pte_t entry;
|
|
void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
|
|
set_pte_at(&init_mm, addr, pte, entry);
|
|
}
|
|
return pte;
|
|
}
|
|
|
|
pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
|
|
{
|
|
pmd_t *pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd)) {
|
|
void *p = vmemmap_alloc_block(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
pmd_populate_kernel(&init_mm, pmd, p);
|
|
}
|
|
return pmd;
|
|
}
|
|
|
|
pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
|
|
{
|
|
pud_t *pud = pud_offset(pgd, addr);
|
|
if (pud_none(*pud)) {
|
|
void *p = vmemmap_alloc_block(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
pud_populate(&init_mm, pud, p);
|
|
}
|
|
return pud;
|
|
}
|
|
|
|
pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
|
|
{
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
|
if (pgd_none(*pgd)) {
|
|
void *p = vmemmap_alloc_block(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
pgd_populate(&init_mm, pgd, p);
|
|
}
|
|
return pgd;
|
|
}
|
|
|
|
int __meminit vmemmap_populate_basepages(unsigned long start,
|
|
unsigned long end, int node)
|
|
{
|
|
unsigned long addr = start;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
for (; addr < end; addr += PAGE_SIZE) {
|
|
pgd = vmemmap_pgd_populate(addr, node);
|
|
if (!pgd)
|
|
return -ENOMEM;
|
|
pud = vmemmap_pud_populate(pgd, addr, node);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
pmd = vmemmap_pmd_populate(pud, addr, node);
|
|
if (!pmd)
|
|
return -ENOMEM;
|
|
pte = vmemmap_pte_populate(pmd, addr, node);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
|
|
{
|
|
unsigned long start;
|
|
unsigned long end;
|
|
struct page *map;
|
|
|
|
map = pfn_to_page(pnum * PAGES_PER_SECTION);
|
|
start = (unsigned long)map;
|
|
end = (unsigned long)(map + PAGES_PER_SECTION);
|
|
|
|
if (vmemmap_populate(start, end, nid))
|
|
return NULL;
|
|
|
|
return map;
|
|
}
|
|
|
|
void __init sparse_mem_maps_populate_node(struct page **map_map,
|
|
unsigned long pnum_begin,
|
|
unsigned long pnum_end,
|
|
unsigned long map_count, int nodeid)
|
|
{
|
|
unsigned long pnum;
|
|
unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
|
|
void *vmemmap_buf_start;
|
|
|
|
size = ALIGN(size, PMD_SIZE);
|
|
vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
|
|
PMD_SIZE, __pa(MAX_DMA_ADDRESS));
|
|
|
|
if (vmemmap_buf_start) {
|
|
vmemmap_buf = vmemmap_buf_start;
|
|
vmemmap_buf_end = vmemmap_buf_start + size * map_count;
|
|
}
|
|
|
|
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
|
|
struct mem_section *ms;
|
|
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
|
|
map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
|
|
if (map_map[pnum])
|
|
continue;
|
|
ms = __nr_to_section(pnum);
|
|
printk(KERN_ERR "%s: sparsemem memory map backing failed "
|
|
"some memory will not be available.\n", __func__);
|
|
ms->section_mem_map = 0;
|
|
}
|
|
|
|
if (vmemmap_buf_start) {
|
|
/* need to free left buf */
|
|
memblock_free_early(__pa(vmemmap_buf),
|
|
vmemmap_buf_end - vmemmap_buf);
|
|
vmemmap_buf = NULL;
|
|
vmemmap_buf_end = NULL;
|
|
}
|
|
}
|