linux/drivers/net/gianfar_ethtool.c
Wang Shaoyan 588dc91151 gianfar: reduce stack usage in gianfar_ethtool.c
drivers/net/gianfar_ethtool.c:765: warning: the frame size of 2048 bytes is larger than 1024 bytes

Signed-off-by: Wang Shaoyan <wangshaoyan.pt@taobao.com>
Reviewed-and-tested-by: Sebastian Pöhn <sebastian.poehn@belden.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-08-13 18:00:33 -07:00

1764 lines
46 KiB
C

/*
* drivers/net/gianfar_ethtool.c
*
* Gianfar Ethernet Driver
* Ethtool support for Gianfar Enet
* Based on e1000 ethtool support
*
* Author: Andy Fleming
* Maintainer: Kumar Gala
* Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
*
* Copyright 2003-2006, 2008-2009, 2011 Freescale Semiconductor, Inc.
*
* This software may be used and distributed according to
* the terms of the GNU Public License, Version 2, incorporated herein
* by reference.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <linux/module.h>
#include <linux/crc32.h>
#include <asm/types.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/sort.h>
#include <linux/if_vlan.h>
#include "gianfar.h"
extern void gfar_start(struct net_device *dev);
extern int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
#define GFAR_MAX_COAL_USECS 0xffff
#define GFAR_MAX_COAL_FRAMES 0xff
static void gfar_fill_stats(struct net_device *dev, struct ethtool_stats *dummy,
u64 * buf);
static void gfar_gstrings(struct net_device *dev, u32 stringset, u8 * buf);
static int gfar_gcoalesce(struct net_device *dev, struct ethtool_coalesce *cvals);
static int gfar_scoalesce(struct net_device *dev, struct ethtool_coalesce *cvals);
static void gfar_gringparam(struct net_device *dev, struct ethtool_ringparam *rvals);
static int gfar_sringparam(struct net_device *dev, struct ethtool_ringparam *rvals);
static void gfar_gdrvinfo(struct net_device *dev, struct ethtool_drvinfo *drvinfo);
static char stat_gstrings[][ETH_GSTRING_LEN] = {
"rx-dropped-by-kernel",
"rx-large-frame-errors",
"rx-short-frame-errors",
"rx-non-octet-errors",
"rx-crc-errors",
"rx-overrun-errors",
"rx-busy-errors",
"rx-babbling-errors",
"rx-truncated-frames",
"ethernet-bus-error",
"tx-babbling-errors",
"tx-underrun-errors",
"rx-skb-missing-errors",
"tx-timeout-errors",
"tx-rx-64-frames",
"tx-rx-65-127-frames",
"tx-rx-128-255-frames",
"tx-rx-256-511-frames",
"tx-rx-512-1023-frames",
"tx-rx-1024-1518-frames",
"tx-rx-1519-1522-good-vlan",
"rx-bytes",
"rx-packets",
"rx-fcs-errors",
"receive-multicast-packet",
"receive-broadcast-packet",
"rx-control-frame-packets",
"rx-pause-frame-packets",
"rx-unknown-op-code",
"rx-alignment-error",
"rx-frame-length-error",
"rx-code-error",
"rx-carrier-sense-error",
"rx-undersize-packets",
"rx-oversize-packets",
"rx-fragmented-frames",
"rx-jabber-frames",
"rx-dropped-frames",
"tx-byte-counter",
"tx-packets",
"tx-multicast-packets",
"tx-broadcast-packets",
"tx-pause-control-frames",
"tx-deferral-packets",
"tx-excessive-deferral-packets",
"tx-single-collision-packets",
"tx-multiple-collision-packets",
"tx-late-collision-packets",
"tx-excessive-collision-packets",
"tx-total-collision",
"reserved",
"tx-dropped-frames",
"tx-jabber-frames",
"tx-fcs-errors",
"tx-control-frames",
"tx-oversize-frames",
"tx-undersize-frames",
"tx-fragmented-frames",
};
/* Fill in a buffer with the strings which correspond to the
* stats */
static void gfar_gstrings(struct net_device *dev, u32 stringset, u8 * buf)
{
struct gfar_private *priv = netdev_priv(dev);
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON)
memcpy(buf, stat_gstrings, GFAR_STATS_LEN * ETH_GSTRING_LEN);
else
memcpy(buf, stat_gstrings,
GFAR_EXTRA_STATS_LEN * ETH_GSTRING_LEN);
}
/* Fill in an array of 64-bit statistics from various sources.
* This array will be appended to the end of the ethtool_stats
* structure, and returned to user space
*/
static void gfar_fill_stats(struct net_device *dev, struct ethtool_stats *dummy, u64 * buf)
{
int i;
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u64 *extra = (u64 *) & priv->extra_stats;
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
u32 __iomem *rmon = (u32 __iomem *) &regs->rmon;
struct gfar_stats *stats = (struct gfar_stats *) buf;
for (i = 0; i < GFAR_RMON_LEN; i++)
stats->rmon[i] = (u64) gfar_read(&rmon[i]);
for (i = 0; i < GFAR_EXTRA_STATS_LEN; i++)
stats->extra[i] = extra[i];
} else
for (i = 0; i < GFAR_EXTRA_STATS_LEN; i++)
buf[i] = extra[i];
}
static int gfar_sset_count(struct net_device *dev, int sset)
{
struct gfar_private *priv = netdev_priv(dev);
switch (sset) {
case ETH_SS_STATS:
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON)
return GFAR_STATS_LEN;
else
return GFAR_EXTRA_STATS_LEN;
default:
return -EOPNOTSUPP;
}
}
/* Fills in the drvinfo structure with some basic info */
static void gfar_gdrvinfo(struct net_device *dev, struct
ethtool_drvinfo *drvinfo)
{
strncpy(drvinfo->driver, DRV_NAME, GFAR_INFOSTR_LEN);
strncpy(drvinfo->version, gfar_driver_version, GFAR_INFOSTR_LEN);
strncpy(drvinfo->fw_version, "N/A", GFAR_INFOSTR_LEN);
strncpy(drvinfo->bus_info, "N/A", GFAR_INFOSTR_LEN);
drvinfo->regdump_len = 0;
drvinfo->eedump_len = 0;
}
static int gfar_ssettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct gfar_private *priv = netdev_priv(dev);
struct phy_device *phydev = priv->phydev;
if (NULL == phydev)
return -ENODEV;
return phy_ethtool_sset(phydev, cmd);
}
/* Return the current settings in the ethtool_cmd structure */
static int gfar_gsettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct gfar_private *priv = netdev_priv(dev);
struct phy_device *phydev = priv->phydev;
struct gfar_priv_rx_q *rx_queue = NULL;
struct gfar_priv_tx_q *tx_queue = NULL;
if (NULL == phydev)
return -ENODEV;
tx_queue = priv->tx_queue[0];
rx_queue = priv->rx_queue[0];
/* etsec-1.7 and older versions have only one txic
* and rxic regs although they support multiple queues */
cmd->maxtxpkt = get_icft_value(tx_queue->txic);
cmd->maxrxpkt = get_icft_value(rx_queue->rxic);
return phy_ethtool_gset(phydev, cmd);
}
/* Return the length of the register structure */
static int gfar_reglen(struct net_device *dev)
{
return sizeof (struct gfar);
}
/* Return a dump of the GFAR register space */
static void gfar_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *regbuf)
{
int i;
struct gfar_private *priv = netdev_priv(dev);
u32 __iomem *theregs = (u32 __iomem *) priv->gfargrp[0].regs;
u32 *buf = (u32 *) regbuf;
for (i = 0; i < sizeof (struct gfar) / sizeof (u32); i++)
buf[i] = gfar_read(&theregs[i]);
}
/* Convert microseconds to ethernet clock ticks, which changes
* depending on what speed the controller is running at */
static unsigned int gfar_usecs2ticks(struct gfar_private *priv, unsigned int usecs)
{
unsigned int count;
/* The timer is different, depending on the interface speed */
switch (priv->phydev->speed) {
case SPEED_1000:
count = GFAR_GBIT_TIME;
break;
case SPEED_100:
count = GFAR_100_TIME;
break;
case SPEED_10:
default:
count = GFAR_10_TIME;
break;
}
/* Make sure we return a number greater than 0
* if usecs > 0 */
return (usecs * 1000 + count - 1) / count;
}
/* Convert ethernet clock ticks to microseconds */
static unsigned int gfar_ticks2usecs(struct gfar_private *priv, unsigned int ticks)
{
unsigned int count;
/* The timer is different, depending on the interface speed */
switch (priv->phydev->speed) {
case SPEED_1000:
count = GFAR_GBIT_TIME;
break;
case SPEED_100:
count = GFAR_100_TIME;
break;
case SPEED_10:
default:
count = GFAR_10_TIME;
break;
}
/* Make sure we return a number greater than 0 */
/* if ticks is > 0 */
return (ticks * count) / 1000;
}
/* Get the coalescing parameters, and put them in the cvals
* structure. */
static int gfar_gcoalesce(struct net_device *dev, struct ethtool_coalesce *cvals)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar_priv_rx_q *rx_queue = NULL;
struct gfar_priv_tx_q *tx_queue = NULL;
unsigned long rxtime;
unsigned long rxcount;
unsigned long txtime;
unsigned long txcount;
if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_COALESCE))
return -EOPNOTSUPP;
if (NULL == priv->phydev)
return -ENODEV;
rx_queue = priv->rx_queue[0];
tx_queue = priv->tx_queue[0];
rxtime = get_ictt_value(rx_queue->rxic);
rxcount = get_icft_value(rx_queue->rxic);
txtime = get_ictt_value(tx_queue->txic);
txcount = get_icft_value(tx_queue->txic);
cvals->rx_coalesce_usecs = gfar_ticks2usecs(priv, rxtime);
cvals->rx_max_coalesced_frames = rxcount;
cvals->tx_coalesce_usecs = gfar_ticks2usecs(priv, txtime);
cvals->tx_max_coalesced_frames = txcount;
cvals->use_adaptive_rx_coalesce = 0;
cvals->use_adaptive_tx_coalesce = 0;
cvals->pkt_rate_low = 0;
cvals->rx_coalesce_usecs_low = 0;
cvals->rx_max_coalesced_frames_low = 0;
cvals->tx_coalesce_usecs_low = 0;
cvals->tx_max_coalesced_frames_low = 0;
/* When the packet rate is below pkt_rate_high but above
* pkt_rate_low (both measured in packets per second) the
* normal {rx,tx}_* coalescing parameters are used.
*/
/* When the packet rate is (measured in packets per second)
* is above pkt_rate_high, the {rx,tx}_*_high parameters are
* used.
*/
cvals->pkt_rate_high = 0;
cvals->rx_coalesce_usecs_high = 0;
cvals->rx_max_coalesced_frames_high = 0;
cvals->tx_coalesce_usecs_high = 0;
cvals->tx_max_coalesced_frames_high = 0;
/* How often to do adaptive coalescing packet rate sampling,
* measured in seconds. Must not be zero.
*/
cvals->rate_sample_interval = 0;
return 0;
}
/* Change the coalescing values.
* Both cvals->*_usecs and cvals->*_frames have to be > 0
* in order for coalescing to be active
*/
static int gfar_scoalesce(struct net_device *dev, struct ethtool_coalesce *cvals)
{
struct gfar_private *priv = netdev_priv(dev);
int i = 0;
if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_COALESCE))
return -EOPNOTSUPP;
/* Set up rx coalescing */
/* As of now, we will enable/disable coalescing for all
* queues together in case of eTSEC2, this will be modified
* along with the ethtool interface */
if ((cvals->rx_coalesce_usecs == 0) ||
(cvals->rx_max_coalesced_frames == 0)) {
for (i = 0; i < priv->num_rx_queues; i++)
priv->rx_queue[i]->rxcoalescing = 0;
} else {
for (i = 0; i < priv->num_rx_queues; i++)
priv->rx_queue[i]->rxcoalescing = 1;
}
if (NULL == priv->phydev)
return -ENODEV;
/* Check the bounds of the values */
if (cvals->rx_coalesce_usecs > GFAR_MAX_COAL_USECS) {
pr_info("Coalescing is limited to %d microseconds\n",
GFAR_MAX_COAL_USECS);
return -EINVAL;
}
if (cvals->rx_max_coalesced_frames > GFAR_MAX_COAL_FRAMES) {
pr_info("Coalescing is limited to %d frames\n",
GFAR_MAX_COAL_FRAMES);
return -EINVAL;
}
for (i = 0; i < priv->num_rx_queues; i++) {
priv->rx_queue[i]->rxic = mk_ic_value(
cvals->rx_max_coalesced_frames,
gfar_usecs2ticks(priv, cvals->rx_coalesce_usecs));
}
/* Set up tx coalescing */
if ((cvals->tx_coalesce_usecs == 0) ||
(cvals->tx_max_coalesced_frames == 0)) {
for (i = 0; i < priv->num_tx_queues; i++)
priv->tx_queue[i]->txcoalescing = 0;
} else {
for (i = 0; i < priv->num_tx_queues; i++)
priv->tx_queue[i]->txcoalescing = 1;
}
/* Check the bounds of the values */
if (cvals->tx_coalesce_usecs > GFAR_MAX_COAL_USECS) {
pr_info("Coalescing is limited to %d microseconds\n",
GFAR_MAX_COAL_USECS);
return -EINVAL;
}
if (cvals->tx_max_coalesced_frames > GFAR_MAX_COAL_FRAMES) {
pr_info("Coalescing is limited to %d frames\n",
GFAR_MAX_COAL_FRAMES);
return -EINVAL;
}
for (i = 0; i < priv->num_tx_queues; i++) {
priv->tx_queue[i]->txic = mk_ic_value(
cvals->tx_max_coalesced_frames,
gfar_usecs2ticks(priv, cvals->tx_coalesce_usecs));
}
gfar_configure_coalescing(priv, 0xFF, 0xFF);
return 0;
}
/* Fills in rvals with the current ring parameters. Currently,
* rx, rx_mini, and rx_jumbo rings are the same size, as mini and
* jumbo are ignored by the driver */
static void gfar_gringparam(struct net_device *dev, struct ethtool_ringparam *rvals)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar_priv_tx_q *tx_queue = NULL;
struct gfar_priv_rx_q *rx_queue = NULL;
tx_queue = priv->tx_queue[0];
rx_queue = priv->rx_queue[0];
rvals->rx_max_pending = GFAR_RX_MAX_RING_SIZE;
rvals->rx_mini_max_pending = GFAR_RX_MAX_RING_SIZE;
rvals->rx_jumbo_max_pending = GFAR_RX_MAX_RING_SIZE;
rvals->tx_max_pending = GFAR_TX_MAX_RING_SIZE;
/* Values changeable by the user. The valid values are
* in the range 1 to the "*_max_pending" counterpart above.
*/
rvals->rx_pending = rx_queue->rx_ring_size;
rvals->rx_mini_pending = rx_queue->rx_ring_size;
rvals->rx_jumbo_pending = rx_queue->rx_ring_size;
rvals->tx_pending = tx_queue->tx_ring_size;
}
/* Change the current ring parameters, stopping the controller if
* necessary so that we don't mess things up while we're in
* motion. We wait for the ring to be clean before reallocating
* the rings. */
static int gfar_sringparam(struct net_device *dev, struct ethtool_ringparam *rvals)
{
struct gfar_private *priv = netdev_priv(dev);
int err = 0, i = 0;
if (rvals->rx_pending > GFAR_RX_MAX_RING_SIZE)
return -EINVAL;
if (!is_power_of_2(rvals->rx_pending)) {
netdev_err(dev, "Ring sizes must be a power of 2\n");
return -EINVAL;
}
if (rvals->tx_pending > GFAR_TX_MAX_RING_SIZE)
return -EINVAL;
if (!is_power_of_2(rvals->tx_pending)) {
netdev_err(dev, "Ring sizes must be a power of 2\n");
return -EINVAL;
}
if (dev->flags & IFF_UP) {
unsigned long flags;
/* Halt TX and RX, and process the frames which
* have already been received */
local_irq_save(flags);
lock_tx_qs(priv);
lock_rx_qs(priv);
gfar_halt(dev);
unlock_rx_qs(priv);
unlock_tx_qs(priv);
local_irq_restore(flags);
for (i = 0; i < priv->num_rx_queues; i++)
gfar_clean_rx_ring(priv->rx_queue[i],
priv->rx_queue[i]->rx_ring_size);
/* Now we take down the rings to rebuild them */
stop_gfar(dev);
}
/* Change the size */
for (i = 0; i < priv->num_rx_queues; i++) {
priv->rx_queue[i]->rx_ring_size = rvals->rx_pending;
priv->tx_queue[i]->tx_ring_size = rvals->tx_pending;
priv->tx_queue[i]->num_txbdfree = priv->tx_queue[i]->tx_ring_size;
}
/* Rebuild the rings with the new size */
if (dev->flags & IFF_UP) {
err = startup_gfar(dev);
netif_tx_wake_all_queues(dev);
}
return err;
}
int gfar_set_features(struct net_device *dev, u32 features)
{
struct gfar_private *priv = netdev_priv(dev);
unsigned long flags;
int err = 0, i = 0;
u32 changed = dev->features ^ features;
if (changed & (NETIF_F_HW_VLAN_TX|NETIF_F_HW_VLAN_RX))
gfar_vlan_mode(dev, features);
if (!(changed & NETIF_F_RXCSUM))
return 0;
if (dev->flags & IFF_UP) {
/* Halt TX and RX, and process the frames which
* have already been received */
local_irq_save(flags);
lock_tx_qs(priv);
lock_rx_qs(priv);
gfar_halt(dev);
unlock_tx_qs(priv);
unlock_rx_qs(priv);
local_irq_restore(flags);
for (i = 0; i < priv->num_rx_queues; i++)
gfar_clean_rx_ring(priv->rx_queue[i],
priv->rx_queue[i]->rx_ring_size);
/* Now we take down the rings to rebuild them */
stop_gfar(dev);
dev->features = features;
err = startup_gfar(dev);
netif_tx_wake_all_queues(dev);
}
return err;
}
static uint32_t gfar_get_msglevel(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
return priv->msg_enable;
}
static void gfar_set_msglevel(struct net_device *dev, uint32_t data)
{
struct gfar_private *priv = netdev_priv(dev);
priv->msg_enable = data;
}
#ifdef CONFIG_PM
static void gfar_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct gfar_private *priv = netdev_priv(dev);
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) {
wol->supported = WAKE_MAGIC;
wol->wolopts = priv->wol_en ? WAKE_MAGIC : 0;
} else {
wol->supported = wol->wolopts = 0;
}
}
static int gfar_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct gfar_private *priv = netdev_priv(dev);
unsigned long flags;
if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
wol->wolopts != 0)
return -EINVAL;
if (wol->wolopts & ~WAKE_MAGIC)
return -EINVAL;
device_set_wakeup_enable(&dev->dev, wol->wolopts & WAKE_MAGIC);
spin_lock_irqsave(&priv->bflock, flags);
priv->wol_en = !!device_may_wakeup(&dev->dev);
spin_unlock_irqrestore(&priv->bflock, flags);
return 0;
}
#endif
static void ethflow_to_filer_rules (struct gfar_private *priv, u64 ethflow)
{
u32 fcr = 0x0, fpr = FPR_FILER_MASK;
if (ethflow & RXH_L2DA) {
fcr = RQFCR_PID_DAH |RQFCR_CMP_NOMATCH |
RQFCR_HASH | RQFCR_AND | RQFCR_HASHTBL_0;
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->cur_filer_idx = priv->cur_filer_idx - 1;
fcr = RQFCR_PID_DAL | RQFCR_AND | RQFCR_CMP_NOMATCH |
RQFCR_HASH | RQFCR_AND | RQFCR_HASHTBL_0;
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
if (ethflow & RXH_VLAN) {
fcr = RQFCR_PID_VID | RQFCR_CMP_NOMATCH | RQFCR_HASH |
RQFCR_AND | RQFCR_HASHTBL_0;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
if (ethflow & RXH_IP_SRC) {
fcr = RQFCR_PID_SIA | RQFCR_CMP_NOMATCH | RQFCR_HASH |
RQFCR_AND | RQFCR_HASHTBL_0;
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
if (ethflow & (RXH_IP_DST)) {
fcr = RQFCR_PID_DIA | RQFCR_CMP_NOMATCH | RQFCR_HASH |
RQFCR_AND | RQFCR_HASHTBL_0;
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
if (ethflow & RXH_L3_PROTO) {
fcr = RQFCR_PID_L4P | RQFCR_CMP_NOMATCH | RQFCR_HASH |
RQFCR_AND | RQFCR_HASHTBL_0;
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
if (ethflow & RXH_L4_B_0_1) {
fcr = RQFCR_PID_SPT | RQFCR_CMP_NOMATCH | RQFCR_HASH |
RQFCR_AND | RQFCR_HASHTBL_0;
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
if (ethflow & RXH_L4_B_2_3) {
fcr = RQFCR_PID_DPT | RQFCR_CMP_NOMATCH | RQFCR_HASH |
RQFCR_AND | RQFCR_HASHTBL_0;
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
}
static int gfar_ethflow_to_filer_table(struct gfar_private *priv, u64 ethflow, u64 class)
{
unsigned int last_rule_idx = priv->cur_filer_idx;
unsigned int cmp_rqfpr;
unsigned int *local_rqfpr;
unsigned int *local_rqfcr;
int i = 0x0, k = 0x0;
int j = MAX_FILER_IDX, l = 0x0;
int ret = 1;
local_rqfpr = kmalloc(sizeof(unsigned int) * (MAX_FILER_IDX + 1),
GFP_KERNEL);
local_rqfcr = kmalloc(sizeof(unsigned int) * (MAX_FILER_IDX + 1),
GFP_KERNEL);
if (!local_rqfpr || !local_rqfcr) {
pr_err("Out of memory\n");
ret = 0;
goto err;
}
switch (class) {
case TCP_V4_FLOW:
cmp_rqfpr = RQFPR_IPV4 |RQFPR_TCP;
break;
case UDP_V4_FLOW:
cmp_rqfpr = RQFPR_IPV4 |RQFPR_UDP;
break;
case TCP_V6_FLOW:
cmp_rqfpr = RQFPR_IPV6 |RQFPR_TCP;
break;
case UDP_V6_FLOW:
cmp_rqfpr = RQFPR_IPV6 |RQFPR_UDP;
break;
default:
pr_err("Right now this class is not supported\n");
ret = 0;
goto err;
}
for (i = 0; i < MAX_FILER_IDX + 1; i++) {
local_rqfpr[j] = priv->ftp_rqfpr[i];
local_rqfcr[j] = priv->ftp_rqfcr[i];
j--;
if ((priv->ftp_rqfcr[i] == (RQFCR_PID_PARSE |
RQFCR_CLE |RQFCR_AND)) &&
(priv->ftp_rqfpr[i] == cmp_rqfpr))
break;
}
if (i == MAX_FILER_IDX + 1) {
pr_err("No parse rule found, can't create hash rules\n");
ret = 0;
goto err;
}
/* If a match was found, then it begins the starting of a cluster rule
* if it was already programmed, we need to overwrite these rules
*/
for (l = i+1; l < MAX_FILER_IDX; l++) {
if ((priv->ftp_rqfcr[l] & RQFCR_CLE) &&
!(priv->ftp_rqfcr[l] & RQFCR_AND)) {
priv->ftp_rqfcr[l] = RQFCR_CLE | RQFCR_CMP_EXACT |
RQFCR_HASHTBL_0 | RQFCR_PID_MASK;
priv->ftp_rqfpr[l] = FPR_FILER_MASK;
gfar_write_filer(priv, l, priv->ftp_rqfcr[l],
priv->ftp_rqfpr[l]);
break;
}
if (!(priv->ftp_rqfcr[l] & RQFCR_CLE) &&
(priv->ftp_rqfcr[l] & RQFCR_AND))
continue;
else {
local_rqfpr[j] = priv->ftp_rqfpr[l];
local_rqfcr[j] = priv->ftp_rqfcr[l];
j--;
}
}
priv->cur_filer_idx = l - 1;
last_rule_idx = l;
/* hash rules */
ethflow_to_filer_rules(priv, ethflow);
/* Write back the popped out rules again */
for (k = j+1; k < MAX_FILER_IDX; k++) {
priv->ftp_rqfpr[priv->cur_filer_idx] = local_rqfpr[k];
priv->ftp_rqfcr[priv->cur_filer_idx] = local_rqfcr[k];
gfar_write_filer(priv, priv->cur_filer_idx,
local_rqfcr[k], local_rqfpr[k]);
if (!priv->cur_filer_idx)
break;
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
err:
kfree(local_rqfcr);
kfree(local_rqfpr);
return ret;
}
static int gfar_set_hash_opts(struct gfar_private *priv, struct ethtool_rxnfc *cmd)
{
/* write the filer rules here */
if (!gfar_ethflow_to_filer_table(priv, cmd->data, cmd->flow_type))
return -EINVAL;
return 0;
}
static int gfar_check_filer_hardware(struct gfar_private *priv)
{
struct gfar __iomem *regs = NULL;
u32 i;
regs = priv->gfargrp[0].regs;
/* Check if we are in FIFO mode */
i = gfar_read(&regs->ecntrl);
i &= ECNTRL_FIFM;
if (i == ECNTRL_FIFM) {
netdev_notice(priv->ndev, "Interface in FIFO mode\n");
i = gfar_read(&regs->rctrl);
i &= RCTRL_PRSDEP_MASK | RCTRL_PRSFM;
if (i == (RCTRL_PRSDEP_MASK | RCTRL_PRSFM)) {
netdev_info(priv->ndev,
"Receive Queue Filtering enabled\n");
} else {
netdev_warn(priv->ndev,
"Receive Queue Filtering disabled\n");
return -EOPNOTSUPP;
}
}
/* Or in standard mode */
else {
i = gfar_read(&regs->rctrl);
i &= RCTRL_PRSDEP_MASK;
if (i == RCTRL_PRSDEP_MASK) {
netdev_info(priv->ndev,
"Receive Queue Filtering enabled\n");
} else {
netdev_warn(priv->ndev,
"Receive Queue Filtering disabled\n");
return -EOPNOTSUPP;
}
}
/* Sets the properties for arbitrary filer rule
* to the first 4 Layer 4 Bytes */
regs->rbifx = 0xC0C1C2C3;
return 0;
}
static int gfar_comp_asc(const void *a, const void *b)
{
return memcmp(a, b, 4);
}
static int gfar_comp_desc(const void *a, const void *b)
{
return -memcmp(a, b, 4);
}
static void gfar_swap(void *a, void *b, int size)
{
u32 *_a = a;
u32 *_b = b;
swap(_a[0], _b[0]);
swap(_a[1], _b[1]);
swap(_a[2], _b[2]);
swap(_a[3], _b[3]);
}
/* Write a mask to filer cache */
static void gfar_set_mask(u32 mask, struct filer_table *tab)
{
tab->fe[tab->index].ctrl = RQFCR_AND | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
tab->fe[tab->index].prop = mask;
tab->index++;
}
/* Sets parse bits (e.g. IP or TCP) */
static void gfar_set_parse_bits(u32 value, u32 mask, struct filer_table *tab)
{
gfar_set_mask(mask, tab);
tab->fe[tab->index].ctrl = RQFCR_CMP_EXACT | RQFCR_PID_PARSE
| RQFCR_AND;
tab->fe[tab->index].prop = value;
tab->index++;
}
static void gfar_set_general_attribute(u32 value, u32 mask, u32 flag,
struct filer_table *tab)
{
gfar_set_mask(mask, tab);
tab->fe[tab->index].ctrl = RQFCR_CMP_EXACT | RQFCR_AND | flag;
tab->fe[tab->index].prop = value;
tab->index++;
}
/*
* For setting a tuple of value and mask of type flag
* Example:
* IP-Src = 10.0.0.0/255.0.0.0
* value: 0x0A000000 mask: FF000000 flag: RQFPR_IPV4
*
* Ethtool gives us a value=0 and mask=~0 for don't care a tuple
* For a don't care mask it gives us a 0
*
* The check if don't care and the mask adjustment if mask=0 is done for VLAN
* and MAC stuff on an upper level (due to missing information on this level).
* For these guys we can discard them if they are value=0 and mask=0.
*
* Further the all masks are one-padded for better hardware efficiency.
*/
static void gfar_set_attribute(u32 value, u32 mask, u32 flag,
struct filer_table *tab)
{
switch (flag) {
/* 3bit */
case RQFCR_PID_PRI:
if (!(value | mask))
return;
mask |= RQFCR_PID_PRI_MASK;
break;
/* 8bit */
case RQFCR_PID_L4P:
case RQFCR_PID_TOS:
if (!~(mask | RQFCR_PID_L4P_MASK))
return;
if (!mask)
mask = ~0;
else
mask |= RQFCR_PID_L4P_MASK;
break;
/* 12bit */
case RQFCR_PID_VID:
if (!(value | mask))
return;
mask |= RQFCR_PID_VID_MASK;
break;
/* 16bit */
case RQFCR_PID_DPT:
case RQFCR_PID_SPT:
case RQFCR_PID_ETY:
if (!~(mask | RQFCR_PID_PORT_MASK))
return;
if (!mask)
mask = ~0;
else
mask |= RQFCR_PID_PORT_MASK;
break;
/* 24bit */
case RQFCR_PID_DAH:
case RQFCR_PID_DAL:
case RQFCR_PID_SAH:
case RQFCR_PID_SAL:
if (!(value | mask))
return;
mask |= RQFCR_PID_MAC_MASK;
break;
/* for all real 32bit masks */
default:
if (!~mask)
return;
if (!mask)
mask = ~0;
break;
}
gfar_set_general_attribute(value, mask, flag, tab);
}
/* Translates value and mask for UDP, TCP or SCTP */
static void gfar_set_basic_ip(struct ethtool_tcpip4_spec *value,
struct ethtool_tcpip4_spec *mask, struct filer_table *tab)
{
gfar_set_attribute(value->ip4src, mask->ip4src, RQFCR_PID_SIA, tab);
gfar_set_attribute(value->ip4dst, mask->ip4dst, RQFCR_PID_DIA, tab);
gfar_set_attribute(value->pdst, mask->pdst, RQFCR_PID_DPT, tab);
gfar_set_attribute(value->psrc, mask->psrc, RQFCR_PID_SPT, tab);
gfar_set_attribute(value->tos, mask->tos, RQFCR_PID_TOS, tab);
}
/* Translates value and mask for RAW-IP4 */
static void gfar_set_user_ip(struct ethtool_usrip4_spec *value,
struct ethtool_usrip4_spec *mask, struct filer_table *tab)
{
gfar_set_attribute(value->ip4src, mask->ip4src, RQFCR_PID_SIA, tab);
gfar_set_attribute(value->ip4dst, mask->ip4dst, RQFCR_PID_DIA, tab);
gfar_set_attribute(value->tos, mask->tos, RQFCR_PID_TOS, tab);
gfar_set_attribute(value->proto, mask->proto, RQFCR_PID_L4P, tab);
gfar_set_attribute(value->l4_4_bytes, mask->l4_4_bytes, RQFCR_PID_ARB,
tab);
}
/* Translates value and mask for ETHER spec */
static void gfar_set_ether(struct ethhdr *value, struct ethhdr *mask,
struct filer_table *tab)
{
u32 upper_temp_mask = 0;
u32 lower_temp_mask = 0;
/* Source address */
if (!is_broadcast_ether_addr(mask->h_source)) {
if (is_zero_ether_addr(mask->h_source)) {
upper_temp_mask = 0xFFFFFFFF;
lower_temp_mask = 0xFFFFFFFF;
} else {
upper_temp_mask = mask->h_source[0] << 16
| mask->h_source[1] << 8
| mask->h_source[2];
lower_temp_mask = mask->h_source[3] << 16
| mask->h_source[4] << 8
| mask->h_source[5];
}
/* Upper 24bit */
gfar_set_attribute(
value->h_source[0] << 16 | value->h_source[1]
<< 8 | value->h_source[2],
upper_temp_mask, RQFCR_PID_SAH, tab);
/* And the same for the lower part */
gfar_set_attribute(
value->h_source[3] << 16 | value->h_source[4]
<< 8 | value->h_source[5],
lower_temp_mask, RQFCR_PID_SAL, tab);
}
/* Destination address */
if (!is_broadcast_ether_addr(mask->h_dest)) {
/* Special for destination is limited broadcast */
if ((is_broadcast_ether_addr(value->h_dest)
&& is_zero_ether_addr(mask->h_dest))) {
gfar_set_parse_bits(RQFPR_EBC, RQFPR_EBC, tab);
} else {
if (is_zero_ether_addr(mask->h_dest)) {
upper_temp_mask = 0xFFFFFFFF;
lower_temp_mask = 0xFFFFFFFF;
} else {
upper_temp_mask = mask->h_dest[0] << 16
| mask->h_dest[1] << 8
| mask->h_dest[2];
lower_temp_mask = mask->h_dest[3] << 16
| mask->h_dest[4] << 8
| mask->h_dest[5];
}
/* Upper 24bit */
gfar_set_attribute(
value->h_dest[0] << 16
| value->h_dest[1] << 8
| value->h_dest[2],
upper_temp_mask, RQFCR_PID_DAH, tab);
/* And the same for the lower part */
gfar_set_attribute(
value->h_dest[3] << 16
| value->h_dest[4] << 8
| value->h_dest[5],
lower_temp_mask, RQFCR_PID_DAL, tab);
}
}
gfar_set_attribute(value->h_proto, mask->h_proto, RQFCR_PID_ETY, tab);
}
/* Convert a rule to binary filter format of gianfar */
static int gfar_convert_to_filer(struct ethtool_rx_flow_spec *rule,
struct filer_table *tab)
{
u32 vlan = 0, vlan_mask = 0;
u32 id = 0, id_mask = 0;
u32 cfi = 0, cfi_mask = 0;
u32 prio = 0, prio_mask = 0;
u32 old_index = tab->index;
/* Check if vlan is wanted */
if ((rule->flow_type & FLOW_EXT) && (rule->m_ext.vlan_tci != 0xFFFF)) {
if (!rule->m_ext.vlan_tci)
rule->m_ext.vlan_tci = 0xFFFF;
vlan = RQFPR_VLN;
vlan_mask = RQFPR_VLN;
/* Separate the fields */
id = rule->h_ext.vlan_tci & VLAN_VID_MASK;
id_mask = rule->m_ext.vlan_tci & VLAN_VID_MASK;
cfi = rule->h_ext.vlan_tci & VLAN_CFI_MASK;
cfi_mask = rule->m_ext.vlan_tci & VLAN_CFI_MASK;
prio = (rule->h_ext.vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
prio_mask = (rule->m_ext.vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
if (cfi == VLAN_TAG_PRESENT && cfi_mask == VLAN_TAG_PRESENT) {
vlan |= RQFPR_CFI;
vlan_mask |= RQFPR_CFI;
} else if (cfi != VLAN_TAG_PRESENT && cfi_mask == VLAN_TAG_PRESENT) {
vlan_mask |= RQFPR_CFI;
}
}
switch (rule->flow_type & ~FLOW_EXT) {
case TCP_V4_FLOW:
gfar_set_parse_bits(RQFPR_IPV4 | RQFPR_TCP | vlan,
RQFPR_IPV4 | RQFPR_TCP | vlan_mask, tab);
gfar_set_basic_ip(&rule->h_u.tcp_ip4_spec,
&rule->m_u.tcp_ip4_spec, tab);
break;
case UDP_V4_FLOW:
gfar_set_parse_bits(RQFPR_IPV4 | RQFPR_UDP | vlan,
RQFPR_IPV4 | RQFPR_UDP | vlan_mask, tab);
gfar_set_basic_ip(&rule->h_u.udp_ip4_spec,
&rule->m_u.udp_ip4_spec, tab);
break;
case SCTP_V4_FLOW:
gfar_set_parse_bits(RQFPR_IPV4 | vlan, RQFPR_IPV4 | vlan_mask,
tab);
gfar_set_attribute(132, 0, RQFCR_PID_L4P, tab);
gfar_set_basic_ip((struct ethtool_tcpip4_spec *) &rule->h_u,
(struct ethtool_tcpip4_spec *) &rule->m_u, tab);
break;
case IP_USER_FLOW:
gfar_set_parse_bits(RQFPR_IPV4 | vlan, RQFPR_IPV4 | vlan_mask,
tab);
gfar_set_user_ip((struct ethtool_usrip4_spec *) &rule->h_u,
(struct ethtool_usrip4_spec *) &rule->m_u, tab);
break;
case ETHER_FLOW:
if (vlan)
gfar_set_parse_bits(vlan, vlan_mask, tab);
gfar_set_ether((struct ethhdr *) &rule->h_u,
(struct ethhdr *) &rule->m_u, tab);
break;
default:
return -1;
}
/* Set the vlan attributes in the end */
if (vlan) {
gfar_set_attribute(id, id_mask, RQFCR_PID_VID, tab);
gfar_set_attribute(prio, prio_mask, RQFCR_PID_PRI, tab);
}
/* If there has been nothing written till now, it must be a default */
if (tab->index == old_index) {
gfar_set_mask(0xFFFFFFFF, tab);
tab->fe[tab->index].ctrl = 0x20;
tab->fe[tab->index].prop = 0x0;
tab->index++;
}
/* Remove last AND */
tab->fe[tab->index - 1].ctrl &= (~RQFCR_AND);
/* Specify which queue to use or to drop */
if (rule->ring_cookie == RX_CLS_FLOW_DISC)
tab->fe[tab->index - 1].ctrl |= RQFCR_RJE;
else
tab->fe[tab->index - 1].ctrl |= (rule->ring_cookie << 10);
/* Only big enough entries can be clustered */
if (tab->index > (old_index + 2)) {
tab->fe[old_index + 1].ctrl |= RQFCR_CLE;
tab->fe[tab->index - 1].ctrl |= RQFCR_CLE;
}
/* In rare cases the cache can be full while there is free space in hw */
if (tab->index > MAX_FILER_CACHE_IDX - 1)
return -EBUSY;
return 0;
}
/* Copy size filer entries */
static void gfar_copy_filer_entries(struct gfar_filer_entry dst[0],
struct gfar_filer_entry src[0], s32 size)
{
while (size > 0) {
size--;
dst[size].ctrl = src[size].ctrl;
dst[size].prop = src[size].prop;
}
}
/* Delete the contents of the filer-table between start and end
* and collapse them */
static int gfar_trim_filer_entries(u32 begin, u32 end, struct filer_table *tab)
{
int length;
if (end > MAX_FILER_CACHE_IDX || end < begin)
return -EINVAL;
end++;
length = end - begin;
/* Copy */
while (end < tab->index) {
tab->fe[begin].ctrl = tab->fe[end].ctrl;
tab->fe[begin++].prop = tab->fe[end++].prop;
}
/* Fill up with don't cares */
while (begin < tab->index) {
tab->fe[begin].ctrl = 0x60;
tab->fe[begin].prop = 0xFFFFFFFF;
begin++;
}
tab->index -= length;
return 0;
}
/* Make space on the wanted location */
static int gfar_expand_filer_entries(u32 begin, u32 length,
struct filer_table *tab)
{
if (length == 0 || length + tab->index > MAX_FILER_CACHE_IDX || begin
> MAX_FILER_CACHE_IDX)
return -EINVAL;
gfar_copy_filer_entries(&(tab->fe[begin + length]), &(tab->fe[begin]),
tab->index - length + 1);
tab->index += length;
return 0;
}
static int gfar_get_next_cluster_start(int start, struct filer_table *tab)
{
for (; (start < tab->index) && (start < MAX_FILER_CACHE_IDX - 1); start++) {
if ((tab->fe[start].ctrl & (RQFCR_AND | RQFCR_CLE))
== (RQFCR_AND | RQFCR_CLE))
return start;
}
return -1;
}
static int gfar_get_next_cluster_end(int start, struct filer_table *tab)
{
for (; (start < tab->index) && (start < MAX_FILER_CACHE_IDX - 1); start++) {
if ((tab->fe[start].ctrl & (RQFCR_AND | RQFCR_CLE))
== (RQFCR_CLE))
return start;
}
return -1;
}
/*
* Uses hardwares clustering option to reduce
* the number of filer table entries
*/
static void gfar_cluster_filer(struct filer_table *tab)
{
s32 i = -1, j, iend, jend;
while ((i = gfar_get_next_cluster_start(++i, tab)) != -1) {
j = i;
while ((j = gfar_get_next_cluster_start(++j, tab)) != -1) {
/*
* The cluster entries self and the previous one
* (a mask) must be identical!
*/
if (tab->fe[i].ctrl != tab->fe[j].ctrl)
break;
if (tab->fe[i].prop != tab->fe[j].prop)
break;
if (tab->fe[i - 1].ctrl != tab->fe[j - 1].ctrl)
break;
if (tab->fe[i - 1].prop != tab->fe[j - 1].prop)
break;
iend = gfar_get_next_cluster_end(i, tab);
jend = gfar_get_next_cluster_end(j, tab);
if (jend == -1 || iend == -1)
break;
/*
* First we make some free space, where our cluster
* element should be. Then we copy it there and finally
* delete in from its old location.
*/
if (gfar_expand_filer_entries(iend, (jend - j), tab)
== -EINVAL)
break;
gfar_copy_filer_entries(&(tab->fe[iend + 1]),
&(tab->fe[jend + 1]), jend - j);
if (gfar_trim_filer_entries(jend - 1,
jend + (jend - j), tab) == -EINVAL)
return;
/* Mask out cluster bit */
tab->fe[iend].ctrl &= ~(RQFCR_CLE);
}
}
}
/* Swaps the masked bits of a1<>a2 and b1<>b2 */
static void gfar_swap_bits(struct gfar_filer_entry *a1,
struct gfar_filer_entry *a2, struct gfar_filer_entry *b1,
struct gfar_filer_entry *b2, u32 mask)
{
u32 temp[4];
temp[0] = a1->ctrl & mask;
temp[1] = a2->ctrl & mask;
temp[2] = b1->ctrl & mask;
temp[3] = b2->ctrl & mask;
a1->ctrl &= ~mask;
a2->ctrl &= ~mask;
b1->ctrl &= ~mask;
b2->ctrl &= ~mask;
a1->ctrl |= temp[1];
a2->ctrl |= temp[0];
b1->ctrl |= temp[3];
b2->ctrl |= temp[2];
}
/*
* Generate a list consisting of masks values with their start and
* end of validity and block as indicator for parts belonging
* together (glued by ANDs) in mask_table
*/
static u32 gfar_generate_mask_table(struct gfar_mask_entry *mask_table,
struct filer_table *tab)
{
u32 i, and_index = 0, block_index = 1;
for (i = 0; i < tab->index; i++) {
/* LSByte of control = 0 sets a mask */
if (!(tab->fe[i].ctrl & 0xF)) {
mask_table[and_index].mask = tab->fe[i].prop;
mask_table[and_index].start = i;
mask_table[and_index].block = block_index;
if (and_index >= 1)
mask_table[and_index - 1].end = i - 1;
and_index++;
}
/* cluster starts and ends will be separated because they should
* hold their position */
if (tab->fe[i].ctrl & RQFCR_CLE)
block_index++;
/* A not set AND indicates the end of a depended block */
if (!(tab->fe[i].ctrl & RQFCR_AND))
block_index++;
}
mask_table[and_index - 1].end = i - 1;
return and_index;
}
/*
* Sorts the entries of mask_table by the values of the masks.
* Important: The 0xFF80 flags of the first and last entry of a
* block must hold their position (which queue, CLusterEnable, ReJEct,
* AND)
*/
static void gfar_sort_mask_table(struct gfar_mask_entry *mask_table,
struct filer_table *temp_table, u32 and_index)
{
/* Pointer to compare function (_asc or _desc) */
int (*gfar_comp)(const void *, const void *);
u32 i, size = 0, start = 0, prev = 1;
u32 old_first, old_last, new_first, new_last;
gfar_comp = &gfar_comp_desc;
for (i = 0; i < and_index; i++) {
if (prev != mask_table[i].block) {
old_first = mask_table[start].start + 1;
old_last = mask_table[i - 1].end;
sort(mask_table + start, size,
sizeof(struct gfar_mask_entry),
gfar_comp, &gfar_swap);
/* Toggle order for every block. This makes the
* thing more efficient! */
if (gfar_comp == gfar_comp_desc)
gfar_comp = &gfar_comp_asc;
else
gfar_comp = &gfar_comp_desc;
new_first = mask_table[start].start + 1;
new_last = mask_table[i - 1].end;
gfar_swap_bits(&temp_table->fe[new_first],
&temp_table->fe[old_first],
&temp_table->fe[new_last],
&temp_table->fe[old_last],
RQFCR_QUEUE | RQFCR_CLE |
RQFCR_RJE | RQFCR_AND
);
start = i;
size = 0;
}
size++;
prev = mask_table[i].block;
}
}
/*
* Reduces the number of masks needed in the filer table to save entries
* This is done by sorting the masks of a depended block. A depended block is
* identified by gluing ANDs or CLE. The sorting order toggles after every
* block. Of course entries in scope of a mask must change their location with
* it.
*/
static int gfar_optimize_filer_masks(struct filer_table *tab)
{
struct filer_table *temp_table;
struct gfar_mask_entry *mask_table;
u32 and_index = 0, previous_mask = 0, i = 0, j = 0, size = 0;
s32 ret = 0;
/* We need a copy of the filer table because
* we want to change its order */
temp_table = kmalloc(sizeof(*temp_table), GFP_KERNEL);
if (temp_table == NULL)
return -ENOMEM;
memcpy(temp_table, tab, sizeof(*temp_table));
mask_table = kcalloc(MAX_FILER_CACHE_IDX / 2 + 1,
sizeof(struct gfar_mask_entry), GFP_KERNEL);
if (mask_table == NULL) {
ret = -ENOMEM;
goto end;
}
and_index = gfar_generate_mask_table(mask_table, tab);
gfar_sort_mask_table(mask_table, temp_table, and_index);
/* Now we can copy the data from our duplicated filer table to
* the real one in the order the mask table says */
for (i = 0; i < and_index; i++) {
size = mask_table[i].end - mask_table[i].start + 1;
gfar_copy_filer_entries(&(tab->fe[j]),
&(temp_table->fe[mask_table[i].start]), size);
j += size;
}
/* And finally we just have to check for duplicated masks and drop the
* second ones */
for (i = 0; i < tab->index && i < MAX_FILER_CACHE_IDX; i++) {
if (tab->fe[i].ctrl == 0x80) {
previous_mask = i++;
break;
}
}
for (; i < tab->index && i < MAX_FILER_CACHE_IDX; i++) {
if (tab->fe[i].ctrl == 0x80) {
if (tab->fe[i].prop == tab->fe[previous_mask].prop) {
/* Two identical ones found!
* So drop the second one! */
gfar_trim_filer_entries(i, i, tab);
} else
/* Not identical! */
previous_mask = i;
}
}
kfree(mask_table);
end: kfree(temp_table);
return ret;
}
/* Write the bit-pattern from software's buffer to hardware registers */
static int gfar_write_filer_table(struct gfar_private *priv,
struct filer_table *tab)
{
u32 i = 0;
if (tab->index > MAX_FILER_IDX - 1)
return -EBUSY;
/* Avoid inconsistent filer table to be processed */
lock_rx_qs(priv);
/* Fill regular entries */
for (; i < MAX_FILER_IDX - 1 && (tab->fe[i].ctrl | tab->fe[i].ctrl); i++)
gfar_write_filer(priv, i, tab->fe[i].ctrl, tab->fe[i].prop);
/* Fill the rest with fall-troughs */
for (; i < MAX_FILER_IDX - 1; i++)
gfar_write_filer(priv, i, 0x60, 0xFFFFFFFF);
/* Last entry must be default accept
* because that's what people expect */
gfar_write_filer(priv, i, 0x20, 0x0);
unlock_rx_qs(priv);
return 0;
}
static int gfar_check_capability(struct ethtool_rx_flow_spec *flow,
struct gfar_private *priv)
{
if (flow->flow_type & FLOW_EXT) {
if (~flow->m_ext.data[0] || ~flow->m_ext.data[1])
netdev_warn(priv->ndev,
"User-specific data not supported!\n");
if (~flow->m_ext.vlan_etype)
netdev_warn(priv->ndev,
"VLAN-etype not supported!\n");
}
if (flow->flow_type == IP_USER_FLOW)
if (flow->h_u.usr_ip4_spec.ip_ver != ETH_RX_NFC_IP4)
netdev_warn(priv->ndev,
"IP-Version differing from IPv4 not supported!\n");
return 0;
}
static int gfar_process_filer_changes(struct gfar_private *priv)
{
struct ethtool_flow_spec_container *j;
struct filer_table *tab;
s32 i = 0;
s32 ret = 0;
/* So index is set to zero, too! */
tab = kzalloc(sizeof(*tab), GFP_KERNEL);
if (tab == NULL)
return -ENOMEM;
/* Now convert the existing filer data from flow_spec into
* filer tables binary format */
list_for_each_entry(j, &priv->rx_list.list, list) {
ret = gfar_convert_to_filer(&j->fs, tab);
if (ret == -EBUSY) {
netdev_err(priv->ndev, "Rule not added: No free space!\n");
goto end;
}
if (ret == -1) {
netdev_err(priv->ndev, "Rule not added: Unsupported Flow-type!\n");
goto end;
}
}
i = tab->index;
/* Optimizations to save entries */
gfar_cluster_filer(tab);
gfar_optimize_filer_masks(tab);
pr_debug("\n\tSummary:\n"
"\tData on hardware: %d\n"
"\tCompression rate: %d%%\n",
tab->index, 100 - (100 * tab->index) / i);
/* Write everything to hardware */
ret = gfar_write_filer_table(priv, tab);
if (ret == -EBUSY) {
netdev_err(priv->ndev, "Rule not added: No free space!\n");
goto end;
}
end: kfree(tab);
return ret;
}
static void gfar_invert_masks(struct ethtool_rx_flow_spec *flow)
{
u32 i = 0;
for (i = 0; i < sizeof(flow->m_u); i++)
flow->m_u.hdata[i] ^= 0xFF;
flow->m_ext.vlan_etype ^= 0xFFFF;
flow->m_ext.vlan_tci ^= 0xFFFF;
flow->m_ext.data[0] ^= ~0;
flow->m_ext.data[1] ^= ~0;
}
static int gfar_add_cls(struct gfar_private *priv,
struct ethtool_rx_flow_spec *flow)
{
struct ethtool_flow_spec_container *temp, *comp;
int ret = 0;
temp = kmalloc(sizeof(*temp), GFP_KERNEL);
if (temp == NULL)
return -ENOMEM;
memcpy(&temp->fs, flow, sizeof(temp->fs));
gfar_invert_masks(&temp->fs);
ret = gfar_check_capability(&temp->fs, priv);
if (ret)
goto clean_mem;
/* Link in the new element at the right @location */
if (list_empty(&priv->rx_list.list)) {
ret = gfar_check_filer_hardware(priv);
if (ret != 0)
goto clean_mem;
list_add(&temp->list, &priv->rx_list.list);
goto process;
} else {
list_for_each_entry(comp, &priv->rx_list.list, list) {
if (comp->fs.location > flow->location) {
list_add_tail(&temp->list, &comp->list);
goto process;
}
if (comp->fs.location == flow->location) {
netdev_err(priv->ndev,
"Rule not added: ID %d not free!\n",
flow->location);
ret = -EBUSY;
goto clean_mem;
}
}
list_add_tail(&temp->list, &priv->rx_list.list);
}
process:
ret = gfar_process_filer_changes(priv);
if (ret)
goto clean_list;
priv->rx_list.count++;
return ret;
clean_list:
list_del(&temp->list);
clean_mem:
kfree(temp);
return ret;
}
static int gfar_del_cls(struct gfar_private *priv, u32 loc)
{
struct ethtool_flow_spec_container *comp;
u32 ret = -EINVAL;
if (list_empty(&priv->rx_list.list))
return ret;
list_for_each_entry(comp, &priv->rx_list.list, list) {
if (comp->fs.location == loc) {
list_del(&comp->list);
kfree(comp);
priv->rx_list.count--;
gfar_process_filer_changes(priv);
ret = 0;
break;
}
}
return ret;
}
static int gfar_get_cls(struct gfar_private *priv, struct ethtool_rxnfc *cmd)
{
struct ethtool_flow_spec_container *comp;
u32 ret = -EINVAL;
list_for_each_entry(comp, &priv->rx_list.list, list) {
if (comp->fs.location == cmd->fs.location) {
memcpy(&cmd->fs, &comp->fs, sizeof(cmd->fs));
gfar_invert_masks(&cmd->fs);
ret = 0;
break;
}
}
return ret;
}
static int gfar_get_cls_all(struct gfar_private *priv,
struct ethtool_rxnfc *cmd, u32 *rule_locs)
{
struct ethtool_flow_spec_container *comp;
u32 i = 0;
list_for_each_entry(comp, &priv->rx_list.list, list) {
if (i <= cmd->rule_cnt) {
rule_locs[i] = comp->fs.location;
i++;
}
}
cmd->data = MAX_FILER_IDX;
return 0;
}
static int gfar_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
{
struct gfar_private *priv = netdev_priv(dev);
int ret = 0;
mutex_lock(&priv->rx_queue_access);
switch (cmd->cmd) {
case ETHTOOL_SRXFH:
ret = gfar_set_hash_opts(priv, cmd);
break;
case ETHTOOL_SRXCLSRLINS:
if (cmd->fs.ring_cookie != RX_CLS_FLOW_DISC &&
cmd->fs.ring_cookie >= priv->num_rx_queues) {
ret = -EINVAL;
break;
}
ret = gfar_add_cls(priv, &cmd->fs);
break;
case ETHTOOL_SRXCLSRLDEL:
ret = gfar_del_cls(priv, cmd->fs.location);
break;
default:
ret = -EINVAL;
}
mutex_unlock(&priv->rx_queue_access);
return ret;
}
static int gfar_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
void *rule_locs)
{
struct gfar_private *priv = netdev_priv(dev);
int ret = 0;
switch (cmd->cmd) {
case ETHTOOL_GRXRINGS:
cmd->data = priv->num_rx_queues;
break;
case ETHTOOL_GRXCLSRLCNT:
cmd->rule_cnt = priv->rx_list.count;
break;
case ETHTOOL_GRXCLSRULE:
ret = gfar_get_cls(priv, cmd);
break;
case ETHTOOL_GRXCLSRLALL:
ret = gfar_get_cls_all(priv, cmd, (u32 *) rule_locs);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
const struct ethtool_ops gfar_ethtool_ops = {
.get_settings = gfar_gsettings,
.set_settings = gfar_ssettings,
.get_drvinfo = gfar_gdrvinfo,
.get_regs_len = gfar_reglen,
.get_regs = gfar_get_regs,
.get_link = ethtool_op_get_link,
.get_coalesce = gfar_gcoalesce,
.set_coalesce = gfar_scoalesce,
.get_ringparam = gfar_gringparam,
.set_ringparam = gfar_sringparam,
.get_strings = gfar_gstrings,
.get_sset_count = gfar_sset_count,
.get_ethtool_stats = gfar_fill_stats,
.get_msglevel = gfar_get_msglevel,
.set_msglevel = gfar_set_msglevel,
#ifdef CONFIG_PM
.get_wol = gfar_get_wol,
.set_wol = gfar_set_wol,
#endif
.set_rxnfc = gfar_set_nfc,
.get_rxnfc = gfar_get_nfc,
};