linux/arch/x86/kvm/hyperv.c
Like Xu 765da7fe0e KVM: x86: Remove break statements that will never be executed
Fix compiler warnings when compiling KVM with [-Wunreachable-code-break].
No functional change intended.

Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230807094243.32516-1-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-08-17 11:28:00 -07:00

2865 lines
75 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* KVM Microsoft Hyper-V emulation
*
* derived from arch/x86/kvm/x86.c
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright (C) 2008 Qumranet, Inc.
* Copyright IBM Corporation, 2008
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
* Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
* Amit Shah <amit.shah@qumranet.com>
* Ben-Ami Yassour <benami@il.ibm.com>
* Andrey Smetanin <asmetanin@virtuozzo.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "x86.h"
#include "lapic.h"
#include "ioapic.h"
#include "cpuid.h"
#include "hyperv.h"
#include "mmu.h"
#include "xen.h"
#include <linux/cpu.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/sched/cputime.h>
#include <linux/spinlock.h>
#include <linux/eventfd.h>
#include <asm/apicdef.h>
#include <asm/mshyperv.h>
#include <trace/events/kvm.h>
#include "trace.h"
#include "irq.h"
#include "fpu.h"
#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, HV_VCPUS_PER_SPARSE_BANK)
/*
* As per Hyper-V TLFS, extended hypercalls start from 0x8001
* (HvExtCallQueryCapabilities). Response of this hypercalls is a 64 bit value
* where each bit tells which extended hypercall is available besides
* HvExtCallQueryCapabilities.
*
* 0x8001 - First extended hypercall, HvExtCallQueryCapabilities, no bit
* assigned.
*
* 0x8002 - Bit 0
* 0x8003 - Bit 1
* ..
* 0x8041 - Bit 63
*
* Therefore, HV_EXT_CALL_MAX = 0x8001 + 64
*/
#define HV_EXT_CALL_MAX (HV_EXT_CALL_QUERY_CAPABILITIES + 64)
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
bool vcpu_kick);
static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
{
return atomic64_read(&synic->sint[sint]);
}
static inline int synic_get_sint_vector(u64 sint_value)
{
if (sint_value & HV_SYNIC_SINT_MASKED)
return -1;
return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
}
static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
int vector)
{
int i;
for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
return true;
}
return false;
}
static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
int vector)
{
int i;
u64 sint_value;
for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
sint_value = synic_read_sint(synic, i);
if (synic_get_sint_vector(sint_value) == vector &&
sint_value & HV_SYNIC_SINT_AUTO_EOI)
return true;
}
return false;
}
static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
int vector)
{
struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
bool auto_eoi_old, auto_eoi_new;
if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
return;
if (synic_has_vector_connected(synic, vector))
__set_bit(vector, synic->vec_bitmap);
else
__clear_bit(vector, synic->vec_bitmap);
auto_eoi_old = !bitmap_empty(synic->auto_eoi_bitmap, 256);
if (synic_has_vector_auto_eoi(synic, vector))
__set_bit(vector, synic->auto_eoi_bitmap);
else
__clear_bit(vector, synic->auto_eoi_bitmap);
auto_eoi_new = !bitmap_empty(synic->auto_eoi_bitmap, 256);
if (auto_eoi_old == auto_eoi_new)
return;
if (!enable_apicv)
return;
down_write(&vcpu->kvm->arch.apicv_update_lock);
if (auto_eoi_new)
hv->synic_auto_eoi_used++;
else
hv->synic_auto_eoi_used--;
/*
* Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on
* the hypervisor to manually inject IRQs.
*/
__kvm_set_or_clear_apicv_inhibit(vcpu->kvm,
APICV_INHIBIT_REASON_HYPERV,
!!hv->synic_auto_eoi_used);
up_write(&vcpu->kvm->arch.apicv_update_lock);
}
static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
u64 data, bool host)
{
int vector, old_vector;
bool masked;
vector = data & HV_SYNIC_SINT_VECTOR_MASK;
masked = data & HV_SYNIC_SINT_MASKED;
/*
* Valid vectors are 16-255, however, nested Hyper-V attempts to write
* default '0x10000' value on boot and this should not #GP. We need to
* allow zero-initing the register from host as well.
*/
if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
return 1;
/*
* Guest may configure multiple SINTs to use the same vector, so
* we maintain a bitmap of vectors handled by synic, and a
* bitmap of vectors with auto-eoi behavior. The bitmaps are
* updated here, and atomically queried on fast paths.
*/
old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
atomic64_set(&synic->sint[sint], data);
synic_update_vector(synic, old_vector);
synic_update_vector(synic, vector);
/* Load SynIC vectors into EOI exit bitmap */
kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
return 0;
}
static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
{
struct kvm_vcpu *vcpu = NULL;
unsigned long i;
if (vpidx >= KVM_MAX_VCPUS)
return NULL;
vcpu = kvm_get_vcpu(kvm, vpidx);
if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
return vcpu;
kvm_for_each_vcpu(i, vcpu, kvm)
if (kvm_hv_get_vpindex(vcpu) == vpidx)
return vcpu;
return NULL;
}
static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
{
struct kvm_vcpu *vcpu;
struct kvm_vcpu_hv_synic *synic;
vcpu = get_vcpu_by_vpidx(kvm, vpidx);
if (!vcpu || !to_hv_vcpu(vcpu))
return NULL;
synic = to_hv_synic(vcpu);
return (synic->active) ? synic : NULL;
}
static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
struct kvm_vcpu_hv_stimer *stimer;
int gsi, idx;
trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
/* Try to deliver pending Hyper-V SynIC timers messages */
for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
stimer = &hv_vcpu->stimer[idx];
if (stimer->msg_pending && stimer->config.enable &&
!stimer->config.direct_mode &&
stimer->config.sintx == sint)
stimer_mark_pending(stimer, false);
}
idx = srcu_read_lock(&kvm->irq_srcu);
gsi = atomic_read(&synic->sint_to_gsi[sint]);
if (gsi != -1)
kvm_notify_acked_gsi(kvm, gsi);
srcu_read_unlock(&kvm->irq_srcu, idx);
}
static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
{
struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
hv_vcpu->exit.u.synic.msr = msr;
hv_vcpu->exit.u.synic.control = synic->control;
hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
}
static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
u32 msr, u64 data, bool host)
{
struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
int ret;
if (!synic->active && (!host || data))
return 1;
trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
ret = 0;
switch (msr) {
case HV_X64_MSR_SCONTROL:
synic->control = data;
if (!host)
synic_exit(synic, msr);
break;
case HV_X64_MSR_SVERSION:
if (!host) {
ret = 1;
break;
}
synic->version = data;
break;
case HV_X64_MSR_SIEFP:
if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
!synic->dont_zero_synic_pages)
if (kvm_clear_guest(vcpu->kvm,
data & PAGE_MASK, PAGE_SIZE)) {
ret = 1;
break;
}
synic->evt_page = data;
if (!host)
synic_exit(synic, msr);
break;
case HV_X64_MSR_SIMP:
if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
!synic->dont_zero_synic_pages)
if (kvm_clear_guest(vcpu->kvm,
data & PAGE_MASK, PAGE_SIZE)) {
ret = 1;
break;
}
synic->msg_page = data;
if (!host)
synic_exit(synic, msr);
break;
case HV_X64_MSR_EOM: {
int i;
if (!synic->active)
break;
for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
kvm_hv_notify_acked_sint(vcpu, i);
break;
}
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
break;
default:
ret = 1;
break;
}
return ret;
}
static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
return hv_vcpu->cpuid_cache.syndbg_cap_eax &
HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
}
static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
{
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
hv->hv_syndbg.control.status =
vcpu->run->hyperv.u.syndbg.status;
return 1;
}
static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
{
struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
hv_vcpu->exit.u.syndbg.msr = msr;
hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
vcpu->arch.complete_userspace_io =
kvm_hv_syndbg_complete_userspace;
kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
}
static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
{
struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
return 1;
trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
to_hv_vcpu(vcpu)->vp_index, msr, data);
switch (msr) {
case HV_X64_MSR_SYNDBG_CONTROL:
syndbg->control.control = data;
if (!host)
syndbg_exit(vcpu, msr);
break;
case HV_X64_MSR_SYNDBG_STATUS:
syndbg->control.status = data;
break;
case HV_X64_MSR_SYNDBG_SEND_BUFFER:
syndbg->control.send_page = data;
break;
case HV_X64_MSR_SYNDBG_RECV_BUFFER:
syndbg->control.recv_page = data;
break;
case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
syndbg->control.pending_page = data;
if (!host)
syndbg_exit(vcpu, msr);
break;
case HV_X64_MSR_SYNDBG_OPTIONS:
syndbg->options = data;
break;
default:
break;
}
return 0;
}
static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
{
struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
return 1;
switch (msr) {
case HV_X64_MSR_SYNDBG_CONTROL:
*pdata = syndbg->control.control;
break;
case HV_X64_MSR_SYNDBG_STATUS:
*pdata = syndbg->control.status;
break;
case HV_X64_MSR_SYNDBG_SEND_BUFFER:
*pdata = syndbg->control.send_page;
break;
case HV_X64_MSR_SYNDBG_RECV_BUFFER:
*pdata = syndbg->control.recv_page;
break;
case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
*pdata = syndbg->control.pending_page;
break;
case HV_X64_MSR_SYNDBG_OPTIONS:
*pdata = syndbg->options;
break;
default:
break;
}
trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
return 0;
}
static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
bool host)
{
int ret;
if (!synic->active && !host)
return 1;
ret = 0;
switch (msr) {
case HV_X64_MSR_SCONTROL:
*pdata = synic->control;
break;
case HV_X64_MSR_SVERSION:
*pdata = synic->version;
break;
case HV_X64_MSR_SIEFP:
*pdata = synic->evt_page;
break;
case HV_X64_MSR_SIMP:
*pdata = synic->msg_page;
break;
case HV_X64_MSR_EOM:
*pdata = 0;
break;
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
*pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
break;
default:
ret = 1;
break;
}
return ret;
}
static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
{
struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
struct kvm_lapic_irq irq;
int ret, vector;
if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm))
return -EINVAL;
if (sint >= ARRAY_SIZE(synic->sint))
return -EINVAL;
vector = synic_get_sint_vector(synic_read_sint(synic, sint));
if (vector < 0)
return -ENOENT;
memset(&irq, 0, sizeof(irq));
irq.shorthand = APIC_DEST_SELF;
irq.dest_mode = APIC_DEST_PHYSICAL;
irq.delivery_mode = APIC_DM_FIXED;
irq.vector = vector;
irq.level = 1;
ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
return ret;
}
int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
{
struct kvm_vcpu_hv_synic *synic;
synic = synic_get(kvm, vpidx);
if (!synic)
return -EINVAL;
return synic_set_irq(synic, sint);
}
void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
{
struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
int i;
trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
kvm_hv_notify_acked_sint(vcpu, i);
}
static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
{
struct kvm_vcpu_hv_synic *synic;
synic = synic_get(kvm, vpidx);
if (!synic)
return -EINVAL;
if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
return -EINVAL;
atomic_set(&synic->sint_to_gsi[sint], gsi);
return 0;
}
void kvm_hv_irq_routing_update(struct kvm *kvm)
{
struct kvm_irq_routing_table *irq_rt;
struct kvm_kernel_irq_routing_entry *e;
u32 gsi;
irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
lockdep_is_held(&kvm->irq_lock));
for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
if (e->type == KVM_IRQ_ROUTING_HV_SINT)
kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
e->hv_sint.sint, gsi);
}
}
}
static void synic_init(struct kvm_vcpu_hv_synic *synic)
{
int i;
memset(synic, 0, sizeof(*synic));
synic->version = HV_SYNIC_VERSION_1;
for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
atomic_set(&synic->sint_to_gsi[i], -1);
}
}
static u64 get_time_ref_counter(struct kvm *kvm)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
struct kvm_vcpu *vcpu;
u64 tsc;
/*
* Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
* is broken, disabled or being updated.
*/
if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
return div_u64(get_kvmclock_ns(kvm), 100);
vcpu = kvm_get_vcpu(kvm, 0);
tsc = kvm_read_l1_tsc(vcpu, rdtsc());
return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
+ hv->tsc_ref.tsc_offset;
}
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
bool vcpu_kick)
{
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
set_bit(stimer->index,
to_hv_vcpu(vcpu)->stimer_pending_bitmap);
kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
if (vcpu_kick)
kvm_vcpu_kick(vcpu);
}
static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
{
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
stimer->index);
hrtimer_cancel(&stimer->timer);
clear_bit(stimer->index,
to_hv_vcpu(vcpu)->stimer_pending_bitmap);
stimer->msg_pending = false;
stimer->exp_time = 0;
}
static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
{
struct kvm_vcpu_hv_stimer *stimer;
stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
stimer->index);
stimer_mark_pending(stimer, true);
return HRTIMER_NORESTART;
}
/*
* stimer_start() assumptions:
* a) stimer->count is not equal to 0
* b) stimer->config has HV_STIMER_ENABLE flag
*/
static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
{
u64 time_now;
ktime_t ktime_now;
time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
ktime_now = ktime_get();
if (stimer->config.periodic) {
if (stimer->exp_time) {
if (time_now >= stimer->exp_time) {
u64 remainder;
div64_u64_rem(time_now - stimer->exp_time,
stimer->count, &remainder);
stimer->exp_time =
time_now + (stimer->count - remainder);
}
} else
stimer->exp_time = time_now + stimer->count;
trace_kvm_hv_stimer_start_periodic(
hv_stimer_to_vcpu(stimer)->vcpu_id,
stimer->index,
time_now, stimer->exp_time);
hrtimer_start(&stimer->timer,
ktime_add_ns(ktime_now,
100 * (stimer->exp_time - time_now)),
HRTIMER_MODE_ABS);
return 0;
}
stimer->exp_time = stimer->count;
if (time_now >= stimer->count) {
/*
* Expire timer according to Hypervisor Top-Level Functional
* specification v4(15.3.1):
* "If a one shot is enabled and the specified count is in
* the past, it will expire immediately."
*/
stimer_mark_pending(stimer, false);
return 0;
}
trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
stimer->index,
time_now, stimer->count);
hrtimer_start(&stimer->timer,
ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
HRTIMER_MODE_ABS);
return 0;
}
static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
bool host)
{
union hv_stimer_config new_config = {.as_uint64 = config},
old_config = {.as_uint64 = stimer->config.as_uint64};
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
if (!synic->active && (!host || config))
return 1;
if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
!(hv_vcpu->cpuid_cache.features_edx &
HV_STIMER_DIRECT_MODE_AVAILABLE)))
return 1;
trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
stimer->index, config, host);
stimer_cleanup(stimer);
if (old_config.enable &&
!new_config.direct_mode && new_config.sintx == 0)
new_config.enable = 0;
stimer->config.as_uint64 = new_config.as_uint64;
if (stimer->config.enable)
stimer_mark_pending(stimer, false);
return 0;
}
static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
bool host)
{
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
if (!synic->active && (!host || count))
return 1;
trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
stimer->index, count, host);
stimer_cleanup(stimer);
stimer->count = count;
if (stimer->count == 0)
stimer->config.enable = 0;
else if (stimer->config.auto_enable)
stimer->config.enable = 1;
if (stimer->config.enable)
stimer_mark_pending(stimer, false);
return 0;
}
static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
{
*pconfig = stimer->config.as_uint64;
return 0;
}
static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
{
*pcount = stimer->count;
return 0;
}
static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
struct hv_message *src_msg, bool no_retry)
{
struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
gfn_t msg_page_gfn;
struct hv_message_header hv_hdr;
int r;
if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
return -ENOENT;
msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
/*
* Strictly following the spec-mandated ordering would assume setting
* .msg_pending before checking .message_type. However, this function
* is only called in vcpu context so the entire update is atomic from
* guest POV and thus the exact order here doesn't matter.
*/
r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
msg_off + offsetof(struct hv_message,
header.message_type),
sizeof(hv_hdr.message_type));
if (r < 0)
return r;
if (hv_hdr.message_type != HVMSG_NONE) {
if (no_retry)
return 0;
hv_hdr.message_flags.msg_pending = 1;
r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
&hv_hdr.message_flags,
msg_off +
offsetof(struct hv_message,
header.message_flags),
sizeof(hv_hdr.message_flags));
if (r < 0)
return r;
return -EAGAIN;
}
r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
sizeof(src_msg->header) +
src_msg->header.payload_size);
if (r < 0)
return r;
r = synic_set_irq(synic, sint);
if (r < 0)
return r;
if (r == 0)
return -EFAULT;
return 0;
}
static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
{
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
struct hv_message *msg = &stimer->msg;
struct hv_timer_message_payload *payload =
(struct hv_timer_message_payload *)&msg->u.payload;
/*
* To avoid piling up periodic ticks, don't retry message
* delivery for them (within "lazy" lost ticks policy).
*/
bool no_retry = stimer->config.periodic;
payload->expiration_time = stimer->exp_time;
payload->delivery_time = get_time_ref_counter(vcpu->kvm);
return synic_deliver_msg(to_hv_synic(vcpu),
stimer->config.sintx, msg,
no_retry);
}
static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
{
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
struct kvm_lapic_irq irq = {
.delivery_mode = APIC_DM_FIXED,
.vector = stimer->config.apic_vector
};
if (lapic_in_kernel(vcpu))
return !kvm_apic_set_irq(vcpu, &irq, NULL);
return 0;
}
static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
{
int r, direct = stimer->config.direct_mode;
stimer->msg_pending = true;
if (!direct)
r = stimer_send_msg(stimer);
else
r = stimer_notify_direct(stimer);
trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
stimer->index, direct, r);
if (!r) {
stimer->msg_pending = false;
if (!(stimer->config.periodic))
stimer->config.enable = 0;
}
}
void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
struct kvm_vcpu_hv_stimer *stimer;
u64 time_now, exp_time;
int i;
if (!hv_vcpu)
return;
for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
stimer = &hv_vcpu->stimer[i];
if (stimer->config.enable) {
exp_time = stimer->exp_time;
if (exp_time) {
time_now =
get_time_ref_counter(vcpu->kvm);
if (time_now >= exp_time)
stimer_expiration(stimer);
}
if ((stimer->config.enable) &&
stimer->count) {
if (!stimer->msg_pending)
stimer_start(stimer);
} else
stimer_cleanup(stimer);
}
}
}
void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
int i;
if (!hv_vcpu)
return;
for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
stimer_cleanup(&hv_vcpu->stimer[i]);
kfree(hv_vcpu);
vcpu->arch.hyperv = NULL;
}
bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
if (!hv_vcpu)
return false;
if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
return false;
return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
}
EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
int kvm_hv_get_assist_page(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
if (!hv_vcpu || !kvm_hv_assist_page_enabled(vcpu))
return -EFAULT;
return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
&hv_vcpu->vp_assist_page, sizeof(struct hv_vp_assist_page));
}
EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
{
struct hv_message *msg = &stimer->msg;
struct hv_timer_message_payload *payload =
(struct hv_timer_message_payload *)&msg->u.payload;
memset(&msg->header, 0, sizeof(msg->header));
msg->header.message_type = HVMSG_TIMER_EXPIRED;
msg->header.payload_size = sizeof(*payload);
payload->timer_index = stimer->index;
payload->expiration_time = 0;
payload->delivery_time = 0;
}
static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
{
memset(stimer, 0, sizeof(*stimer));
stimer->index = timer_index;
hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
stimer->timer.function = stimer_timer_callback;
stimer_prepare_msg(stimer);
}
int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
int i;
if (hv_vcpu)
return 0;
hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
if (!hv_vcpu)
return -ENOMEM;
vcpu->arch.hyperv = hv_vcpu;
hv_vcpu->vcpu = vcpu;
synic_init(&hv_vcpu->synic);
bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
stimer_init(&hv_vcpu->stimer[i], i);
hv_vcpu->vp_index = vcpu->vcpu_idx;
for (i = 0; i < HV_NR_TLB_FLUSH_FIFOS; i++) {
INIT_KFIFO(hv_vcpu->tlb_flush_fifo[i].entries);
spin_lock_init(&hv_vcpu->tlb_flush_fifo[i].write_lock);
}
return 0;
}
int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
{
struct kvm_vcpu_hv_synic *synic;
int r;
r = kvm_hv_vcpu_init(vcpu);
if (r)
return r;
synic = to_hv_synic(vcpu);
synic->active = true;
synic->dont_zero_synic_pages = dont_zero_synic_pages;
synic->control = HV_SYNIC_CONTROL_ENABLE;
return 0;
}
static bool kvm_hv_msr_partition_wide(u32 msr)
{
bool r = false;
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
case HV_X64_MSR_HYPERCALL:
case HV_X64_MSR_REFERENCE_TSC:
case HV_X64_MSR_TIME_REF_COUNT:
case HV_X64_MSR_CRASH_CTL:
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
case HV_X64_MSR_RESET:
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
case HV_X64_MSR_TSC_EMULATION_CONTROL:
case HV_X64_MSR_TSC_EMULATION_STATUS:
case HV_X64_MSR_TSC_INVARIANT_CONTROL:
case HV_X64_MSR_SYNDBG_OPTIONS:
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
r = true;
break;
}
return r;
}
static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
size_t size = ARRAY_SIZE(hv->hv_crash_param);
if (WARN_ON_ONCE(index >= size))
return -EINVAL;
*pdata = hv->hv_crash_param[array_index_nospec(index, size)];
return 0;
}
static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
*pdata = hv->hv_crash_ctl;
return 0;
}
static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
return 0;
}
static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
size_t size = ARRAY_SIZE(hv->hv_crash_param);
if (WARN_ON_ONCE(index >= size))
return -EINVAL;
hv->hv_crash_param[array_index_nospec(index, size)] = data;
return 0;
}
/*
* The kvmclock and Hyper-V TSC page use similar formulas, and converting
* between them is possible:
*
* kvmclock formula:
* nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
* + system_time
*
* Hyper-V formula:
* nsec/100 = ticks * scale / 2^64 + offset
*
* When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
* By dividing the kvmclock formula by 100 and equating what's left we get:
* ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
* scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
* scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
*
* Now expand the kvmclock formula and divide by 100:
* nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
* - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
* + system_time
* nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
* - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
* + system_time / 100
*
* Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
* nsec/100 = ticks * scale / 2^64
* - tsc_timestamp * scale / 2^64
* + system_time / 100
*
* Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
* offset = system_time / 100 - tsc_timestamp * scale / 2^64
*
* These two equivalencies are implemented in this function.
*/
static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
struct ms_hyperv_tsc_page *tsc_ref)
{
u64 max_mul;
if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
return false;
/*
* check if scale would overflow, if so we use the time ref counter
* tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
* tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
* tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
*/
max_mul = 100ull << (32 - hv_clock->tsc_shift);
if (hv_clock->tsc_to_system_mul >= max_mul)
return false;
/*
* Otherwise compute the scale and offset according to the formulas
* derived above.
*/
tsc_ref->tsc_scale =
mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
hv_clock->tsc_to_system_mul,
100);
tsc_ref->tsc_offset = hv_clock->system_time;
do_div(tsc_ref->tsc_offset, 100);
tsc_ref->tsc_offset -=
mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
return true;
}
/*
* Don't touch TSC page values if the guest has opted for TSC emulation after
* migration. KVM doesn't fully support reenlightenment notifications and TSC
* access emulation and Hyper-V is known to expect the values in TSC page to
* stay constant before TSC access emulation is disabled from guest side
* (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
* frequency and guest visible TSC value across migration (and prevent it when
* TSC scaling is unsupported).
*/
static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
{
return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
hv->hv_tsc_emulation_control;
}
void kvm_hv_setup_tsc_page(struct kvm *kvm,
struct pvclock_vcpu_time_info *hv_clock)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
u32 tsc_seq;
u64 gfn;
BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
mutex_lock(&hv->hv_lock);
if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
hv->hv_tsc_page_status == HV_TSC_PAGE_SET ||
hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
goto out_unlock;
if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
goto out_unlock;
gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
/*
* Because the TSC parameters only vary when there is a
* change in the master clock, do not bother with caching.
*/
if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
&tsc_seq, sizeof(tsc_seq))))
goto out_err;
if (tsc_seq && tsc_page_update_unsafe(hv)) {
if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
goto out_err;
hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
goto out_unlock;
}
/*
* While we're computing and writing the parameters, force the
* guest to use the time reference count MSR.
*/
hv->tsc_ref.tsc_sequence = 0;
if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
&hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
goto out_err;
if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
goto out_err;
/* Ensure sequence is zero before writing the rest of the struct. */
smp_wmb();
if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
goto out_err;
/*
* Now switch to the TSC page mechanism by writing the sequence.
*/
tsc_seq++;
if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
tsc_seq = 1;
/* Write the struct entirely before the non-zero sequence. */
smp_wmb();
hv->tsc_ref.tsc_sequence = tsc_seq;
if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
&hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
goto out_err;
hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
goto out_unlock;
out_err:
hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
out_unlock:
mutex_unlock(&hv->hv_lock);
}
void kvm_hv_request_tsc_page_update(struct kvm *kvm)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
mutex_lock(&hv->hv_lock);
if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET &&
!tsc_page_update_unsafe(hv))
hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
mutex_unlock(&hv->hv_lock);
}
static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
{
if (!hv_vcpu->enforce_cpuid)
return true;
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
case HV_X64_MSR_HYPERCALL:
return hv_vcpu->cpuid_cache.features_eax &
HV_MSR_HYPERCALL_AVAILABLE;
case HV_X64_MSR_VP_RUNTIME:
return hv_vcpu->cpuid_cache.features_eax &
HV_MSR_VP_RUNTIME_AVAILABLE;
case HV_X64_MSR_TIME_REF_COUNT:
return hv_vcpu->cpuid_cache.features_eax &
HV_MSR_TIME_REF_COUNT_AVAILABLE;
case HV_X64_MSR_VP_INDEX:
return hv_vcpu->cpuid_cache.features_eax &
HV_MSR_VP_INDEX_AVAILABLE;
case HV_X64_MSR_RESET:
return hv_vcpu->cpuid_cache.features_eax &
HV_MSR_RESET_AVAILABLE;
case HV_X64_MSR_REFERENCE_TSC:
return hv_vcpu->cpuid_cache.features_eax &
HV_MSR_REFERENCE_TSC_AVAILABLE;
case HV_X64_MSR_SCONTROL:
case HV_X64_MSR_SVERSION:
case HV_X64_MSR_SIEFP:
case HV_X64_MSR_SIMP:
case HV_X64_MSR_EOM:
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
return hv_vcpu->cpuid_cache.features_eax &
HV_MSR_SYNIC_AVAILABLE;
case HV_X64_MSR_STIMER0_CONFIG:
case HV_X64_MSR_STIMER1_CONFIG:
case HV_X64_MSR_STIMER2_CONFIG:
case HV_X64_MSR_STIMER3_CONFIG:
case HV_X64_MSR_STIMER0_COUNT:
case HV_X64_MSR_STIMER1_COUNT:
case HV_X64_MSR_STIMER2_COUNT:
case HV_X64_MSR_STIMER3_COUNT:
return hv_vcpu->cpuid_cache.features_eax &
HV_MSR_SYNTIMER_AVAILABLE;
case HV_X64_MSR_EOI:
case HV_X64_MSR_ICR:
case HV_X64_MSR_TPR:
case HV_X64_MSR_VP_ASSIST_PAGE:
return hv_vcpu->cpuid_cache.features_eax &
HV_MSR_APIC_ACCESS_AVAILABLE;
case HV_X64_MSR_TSC_FREQUENCY:
case HV_X64_MSR_APIC_FREQUENCY:
return hv_vcpu->cpuid_cache.features_eax &
HV_ACCESS_FREQUENCY_MSRS;
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
case HV_X64_MSR_TSC_EMULATION_CONTROL:
case HV_X64_MSR_TSC_EMULATION_STATUS:
return hv_vcpu->cpuid_cache.features_eax &
HV_ACCESS_REENLIGHTENMENT;
case HV_X64_MSR_TSC_INVARIANT_CONTROL:
return hv_vcpu->cpuid_cache.features_eax &
HV_ACCESS_TSC_INVARIANT;
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
case HV_X64_MSR_CRASH_CTL:
return hv_vcpu->cpuid_cache.features_edx &
HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
case HV_X64_MSR_SYNDBG_OPTIONS:
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
return hv_vcpu->cpuid_cache.features_edx &
HV_FEATURE_DEBUG_MSRS_AVAILABLE;
default:
break;
}
return false;
}
static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
bool host)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_hv *hv = to_kvm_hv(kvm);
if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
return 1;
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
hv->hv_guest_os_id = data;
/* setting guest os id to zero disables hypercall page */
if (!hv->hv_guest_os_id)
hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
break;
case HV_X64_MSR_HYPERCALL: {
u8 instructions[9];
int i = 0;
u64 addr;
/* if guest os id is not set hypercall should remain disabled */
if (!hv->hv_guest_os_id)
break;
if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
hv->hv_hypercall = data;
break;
}
/*
* If Xen and Hyper-V hypercalls are both enabled, disambiguate
* the same way Xen itself does, by setting the bit 31 of EAX
* which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
* going to be clobbered on 64-bit.
*/
if (kvm_xen_hypercall_enabled(kvm)) {
/* orl $0x80000000, %eax */
instructions[i++] = 0x0d;
instructions[i++] = 0x00;
instructions[i++] = 0x00;
instructions[i++] = 0x00;
instructions[i++] = 0x80;
}
/* vmcall/vmmcall */
static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
i += 3;
/* ret */
((unsigned char *)instructions)[i++] = 0xc3;
addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
return 1;
hv->hv_hypercall = data;
break;
}
case HV_X64_MSR_REFERENCE_TSC:
hv->hv_tsc_page = data;
if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
if (!host)
hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
else
hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
} else {
hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
}
break;
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
return kvm_hv_msr_set_crash_data(kvm,
msr - HV_X64_MSR_CRASH_P0,
data);
case HV_X64_MSR_CRASH_CTL:
if (host)
return kvm_hv_msr_set_crash_ctl(kvm, data);
if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
hv->hv_crash_param[0],
hv->hv_crash_param[1],
hv->hv_crash_param[2],
hv->hv_crash_param[3],
hv->hv_crash_param[4]);
/* Send notification about crash to user space */
kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
}
break;
case HV_X64_MSR_RESET:
if (data == 1) {
vcpu_debug(vcpu, "hyper-v reset requested\n");
kvm_make_request(KVM_REQ_HV_RESET, vcpu);
}
break;
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
hv->hv_reenlightenment_control = data;
break;
case HV_X64_MSR_TSC_EMULATION_CONTROL:
hv->hv_tsc_emulation_control = data;
break;
case HV_X64_MSR_TSC_EMULATION_STATUS:
if (data && !host)
return 1;
hv->hv_tsc_emulation_status = data;
break;
case HV_X64_MSR_TIME_REF_COUNT:
/* read-only, but still ignore it if host-initiated */
if (!host)
return 1;
break;
case HV_X64_MSR_TSC_INVARIANT_CONTROL:
/* Only bit 0 is supported */
if (data & ~HV_EXPOSE_INVARIANT_TSC)
return 1;
/* The feature can't be disabled from the guest */
if (!host && hv->hv_invtsc_control && !data)
return 1;
hv->hv_invtsc_control = data;
break;
case HV_X64_MSR_SYNDBG_OPTIONS:
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
return syndbg_set_msr(vcpu, msr, data, host);
default:
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
return 1;
}
return 0;
}
/* Calculate cpu time spent by current task in 100ns units */
static u64 current_task_runtime_100ns(void)
{
u64 utime, stime;
task_cputime_adjusted(current, &utime, &stime);
return div_u64(utime + stime, 100);
}
static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
return 1;
switch (msr) {
case HV_X64_MSR_VP_INDEX: {
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
u32 new_vp_index = (u32)data;
if (!host || new_vp_index >= KVM_MAX_VCPUS)
return 1;
if (new_vp_index == hv_vcpu->vp_index)
return 0;
/*
* The VP index is initialized to vcpu_index by
* kvm_hv_vcpu_postcreate so they initially match. Now the
* VP index is changing, adjust num_mismatched_vp_indexes if
* it now matches or no longer matches vcpu_idx.
*/
if (hv_vcpu->vp_index == vcpu->vcpu_idx)
atomic_inc(&hv->num_mismatched_vp_indexes);
else if (new_vp_index == vcpu->vcpu_idx)
atomic_dec(&hv->num_mismatched_vp_indexes);
hv_vcpu->vp_index = new_vp_index;
break;
}
case HV_X64_MSR_VP_ASSIST_PAGE: {
u64 gfn;
unsigned long addr;
if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
hv_vcpu->hv_vapic = data;
if (kvm_lapic_set_pv_eoi(vcpu, 0, 0))
return 1;
break;
}
gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
if (kvm_is_error_hva(addr))
return 1;
/*
* Clear apic_assist portion of struct hv_vp_assist_page
* only, there can be valuable data in the rest which needs
* to be preserved e.g. on migration.
*/
if (__put_user(0, (u32 __user *)addr))
return 1;
hv_vcpu->hv_vapic = data;
kvm_vcpu_mark_page_dirty(vcpu, gfn);
if (kvm_lapic_set_pv_eoi(vcpu,
gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
sizeof(struct hv_vp_assist_page)))
return 1;
break;
}
case HV_X64_MSR_EOI:
return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
case HV_X64_MSR_ICR:
return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
case HV_X64_MSR_TPR:
return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
case HV_X64_MSR_VP_RUNTIME:
if (!host)
return 1;
hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
break;
case HV_X64_MSR_SCONTROL:
case HV_X64_MSR_SVERSION:
case HV_X64_MSR_SIEFP:
case HV_X64_MSR_SIMP:
case HV_X64_MSR_EOM:
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
case HV_X64_MSR_STIMER0_CONFIG:
case HV_X64_MSR_STIMER1_CONFIG:
case HV_X64_MSR_STIMER2_CONFIG:
case HV_X64_MSR_STIMER3_CONFIG: {
int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
return stimer_set_config(to_hv_stimer(vcpu, timer_index),
data, host);
}
case HV_X64_MSR_STIMER0_COUNT:
case HV_X64_MSR_STIMER1_COUNT:
case HV_X64_MSR_STIMER2_COUNT:
case HV_X64_MSR_STIMER3_COUNT: {
int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
return stimer_set_count(to_hv_stimer(vcpu, timer_index),
data, host);
}
case HV_X64_MSR_TSC_FREQUENCY:
case HV_X64_MSR_APIC_FREQUENCY:
/* read-only, but still ignore it if host-initiated */
if (!host)
return 1;
break;
default:
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
return 1;
}
return 0;
}
static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
bool host)
{
u64 data = 0;
struct kvm *kvm = vcpu->kvm;
struct kvm_hv *hv = to_kvm_hv(kvm);
if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
return 1;
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
data = hv->hv_guest_os_id;
break;
case HV_X64_MSR_HYPERCALL:
data = hv->hv_hypercall;
break;
case HV_X64_MSR_TIME_REF_COUNT:
data = get_time_ref_counter(kvm);
break;
case HV_X64_MSR_REFERENCE_TSC:
data = hv->hv_tsc_page;
break;
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
return kvm_hv_msr_get_crash_data(kvm,
msr - HV_X64_MSR_CRASH_P0,
pdata);
case HV_X64_MSR_CRASH_CTL:
return kvm_hv_msr_get_crash_ctl(kvm, pdata);
case HV_X64_MSR_RESET:
data = 0;
break;
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
data = hv->hv_reenlightenment_control;
break;
case HV_X64_MSR_TSC_EMULATION_CONTROL:
data = hv->hv_tsc_emulation_control;
break;
case HV_X64_MSR_TSC_EMULATION_STATUS:
data = hv->hv_tsc_emulation_status;
break;
case HV_X64_MSR_TSC_INVARIANT_CONTROL:
data = hv->hv_invtsc_control;
break;
case HV_X64_MSR_SYNDBG_OPTIONS:
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
return syndbg_get_msr(vcpu, msr, pdata, host);
default:
kvm_pr_unimpl_rdmsr(vcpu, msr);
return 1;
}
*pdata = data;
return 0;
}
static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
bool host)
{
u64 data = 0;
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
return 1;
switch (msr) {
case HV_X64_MSR_VP_INDEX:
data = hv_vcpu->vp_index;
break;
case HV_X64_MSR_EOI:
return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
case HV_X64_MSR_ICR:
return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
case HV_X64_MSR_TPR:
return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
case HV_X64_MSR_VP_ASSIST_PAGE:
data = hv_vcpu->hv_vapic;
break;
case HV_X64_MSR_VP_RUNTIME:
data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
break;
case HV_X64_MSR_SCONTROL:
case HV_X64_MSR_SVERSION:
case HV_X64_MSR_SIEFP:
case HV_X64_MSR_SIMP:
case HV_X64_MSR_EOM:
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
case HV_X64_MSR_STIMER0_CONFIG:
case HV_X64_MSR_STIMER1_CONFIG:
case HV_X64_MSR_STIMER2_CONFIG:
case HV_X64_MSR_STIMER3_CONFIG: {
int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
return stimer_get_config(to_hv_stimer(vcpu, timer_index),
pdata);
}
case HV_X64_MSR_STIMER0_COUNT:
case HV_X64_MSR_STIMER1_COUNT:
case HV_X64_MSR_STIMER2_COUNT:
case HV_X64_MSR_STIMER3_COUNT: {
int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
return stimer_get_count(to_hv_stimer(vcpu, timer_index),
pdata);
}
case HV_X64_MSR_TSC_FREQUENCY:
data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
break;
case HV_X64_MSR_APIC_FREQUENCY:
data = APIC_BUS_FREQUENCY;
break;
default:
kvm_pr_unimpl_rdmsr(vcpu, msr);
return 1;
}
*pdata = data;
return 0;
}
int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
{
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
if (!host && !vcpu->arch.hyperv_enabled)
return 1;
if (kvm_hv_vcpu_init(vcpu))
return 1;
if (kvm_hv_msr_partition_wide(msr)) {
int r;
mutex_lock(&hv->hv_lock);
r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
mutex_unlock(&hv->hv_lock);
return r;
} else
return kvm_hv_set_msr(vcpu, msr, data, host);
}
int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
{
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
if (!host && !vcpu->arch.hyperv_enabled)
return 1;
if (kvm_hv_vcpu_init(vcpu))
return 1;
if (kvm_hv_msr_partition_wide(msr)) {
int r;
mutex_lock(&hv->hv_lock);
r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
mutex_unlock(&hv->hv_lock);
return r;
} else
return kvm_hv_get_msr(vcpu, msr, pdata, host);
}
static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks,
u64 valid_bank_mask, unsigned long *vcpu_mask)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
bool has_mismatch = atomic_read(&hv->num_mismatched_vp_indexes);
u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
struct kvm_vcpu *vcpu;
int bank, sbank = 0;
unsigned long i;
u64 *bitmap;
BUILD_BUG_ON(sizeof(vp_bitmap) >
sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS));
/*
* If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else
* fill a temporary buffer and manually test each vCPU's VP index.
*/
if (likely(!has_mismatch))
bitmap = (u64 *)vcpu_mask;
else
bitmap = vp_bitmap;
/*
* Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask
* having a '1' for each bank that exists in sparse_banks. Sets must
* be in ascending order, i.e. bank0..bankN.
*/
memset(bitmap, 0, sizeof(vp_bitmap));
for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
bitmap[bank] = sparse_banks[sbank++];
if (likely(!has_mismatch))
return;
bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
kvm_for_each_vcpu(i, vcpu, kvm) {
if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
__set_bit(i, vcpu_mask);
}
}
static bool hv_is_vp_in_sparse_set(u32 vp_id, u64 valid_bank_mask, u64 sparse_banks[])
{
int valid_bit_nr = vp_id / HV_VCPUS_PER_SPARSE_BANK;
unsigned long sbank;
if (!test_bit(valid_bit_nr, (unsigned long *)&valid_bank_mask))
return false;
/*
* The index into the sparse bank is the number of preceding bits in
* the valid mask. Optimize for VMs with <64 vCPUs by skipping the
* fancy math if there can't possibly be preceding bits.
*/
if (valid_bit_nr)
sbank = hweight64(valid_bank_mask & GENMASK_ULL(valid_bit_nr - 1, 0));
else
sbank = 0;
return test_bit(vp_id % HV_VCPUS_PER_SPARSE_BANK,
(unsigned long *)&sparse_banks[sbank]);
}
struct kvm_hv_hcall {
/* Hypercall input data */
u64 param;
u64 ingpa;
u64 outgpa;
u16 code;
u16 var_cnt;
u16 rep_cnt;
u16 rep_idx;
bool fast;
bool rep;
sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
/*
* Current read offset when KVM reads hypercall input data gradually,
* either offset in bytes from 'ingpa' for regular hypercalls or the
* number of already consumed 'XMM halves' for 'fast' hypercalls.
*/
union {
gpa_t data_offset;
int consumed_xmm_halves;
};
};
static int kvm_hv_get_hc_data(struct kvm *kvm, struct kvm_hv_hcall *hc,
u16 orig_cnt, u16 cnt_cap, u64 *data)
{
/*
* Preserve the original count when ignoring entries via a "cap", KVM
* still needs to validate the guest input (though the non-XMM path
* punts on the checks).
*/
u16 cnt = min(orig_cnt, cnt_cap);
int i, j;
if (hc->fast) {
/*
* Each XMM holds two sparse banks, but do not count halves that
* have already been consumed for hypercall parameters.
*/
if (orig_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - hc->consumed_xmm_halves)
return HV_STATUS_INVALID_HYPERCALL_INPUT;
for (i = 0; i < cnt; i++) {
j = i + hc->consumed_xmm_halves;
if (j % 2)
data[i] = sse128_hi(hc->xmm[j / 2]);
else
data[i] = sse128_lo(hc->xmm[j / 2]);
}
return 0;
}
return kvm_read_guest(kvm, hc->ingpa + hc->data_offset, data,
cnt * sizeof(*data));
}
static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc,
u64 *sparse_banks)
{
if (hc->var_cnt > HV_MAX_SPARSE_VCPU_BANKS)
return -EINVAL;
/* Cap var_cnt to ignore banks that cannot contain a legal VP index. */
return kvm_hv_get_hc_data(kvm, hc, hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS,
sparse_banks);
}
static int kvm_hv_get_tlb_flush_entries(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 entries[])
{
return kvm_hv_get_hc_data(kvm, hc, hc->rep_cnt, hc->rep_cnt, entries);
}
static void hv_tlb_flush_enqueue(struct kvm_vcpu *vcpu,
struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo,
u64 *entries, int count)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
u64 flush_all_entry = KVM_HV_TLB_FLUSHALL_ENTRY;
if (!hv_vcpu)
return;
spin_lock(&tlb_flush_fifo->write_lock);
/*
* All entries should fit on the fifo leaving one free for 'flush all'
* entry in case another request comes in. In case there's not enough
* space, just put 'flush all' entry there.
*/
if (count && entries && count < kfifo_avail(&tlb_flush_fifo->entries)) {
WARN_ON(kfifo_in(&tlb_flush_fifo->entries, entries, count) != count);
goto out_unlock;
}
/*
* Note: full fifo always contains 'flush all' entry, no need to check the
* return value.
*/
kfifo_in(&tlb_flush_fifo->entries, &flush_all_entry, 1);
out_unlock:
spin_unlock(&tlb_flush_fifo->write_lock);
}
int kvm_hv_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
u64 entries[KVM_HV_TLB_FLUSH_FIFO_SIZE];
int i, j, count;
gva_t gva;
if (!tdp_enabled || !hv_vcpu)
return -EINVAL;
tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu, is_guest_mode(vcpu));
count = kfifo_out(&tlb_flush_fifo->entries, entries, KVM_HV_TLB_FLUSH_FIFO_SIZE);
for (i = 0; i < count; i++) {
if (entries[i] == KVM_HV_TLB_FLUSHALL_ENTRY)
goto out_flush_all;
/*
* Lower 12 bits of 'address' encode the number of additional
* pages to flush.
*/
gva = entries[i] & PAGE_MASK;
for (j = 0; j < (entries[i] & ~PAGE_MASK) + 1; j++)
static_call(kvm_x86_flush_tlb_gva)(vcpu, gva + j * PAGE_SIZE);
++vcpu->stat.tlb_flush;
}
return 0;
out_flush_all:
kfifo_reset_out(&tlb_flush_fifo->entries);
/* Fall back to full flush. */
return -ENOSPC;
}
static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
u64 *sparse_banks = hv_vcpu->sparse_banks;
struct kvm *kvm = vcpu->kvm;
struct hv_tlb_flush_ex flush_ex;
struct hv_tlb_flush flush;
DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
/*
* Normally, there can be no more than 'KVM_HV_TLB_FLUSH_FIFO_SIZE'
* entries on the TLB flush fifo. The last entry, however, needs to be
* always left free for 'flush all' entry which gets placed when
* there is not enough space to put all the requested entries.
*/
u64 __tlb_flush_entries[KVM_HV_TLB_FLUSH_FIFO_SIZE - 1];
u64 *tlb_flush_entries;
u64 valid_bank_mask;
struct kvm_vcpu *v;
unsigned long i;
bool all_cpus;
/*
* The Hyper-V TLFS doesn't allow more than HV_MAX_SPARSE_VCPU_BANKS
* sparse banks. Fail the build if KVM's max allowed number of
* vCPUs (>4096) exceeds this limit.
*/
BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > HV_MAX_SPARSE_VCPU_BANKS);
/*
* 'Slow' hypercall's first parameter is the address in guest's memory
* where hypercall parameters are placed. This is either a GPA or a
* nested GPA when KVM is handling the call from L2 ('direct' TLB
* flush). Translate the address here so the memory can be uniformly
* read with kvm_read_guest().
*/
if (!hc->fast && is_guest_mode(vcpu)) {
hc->ingpa = translate_nested_gpa(vcpu, hc->ingpa, 0, NULL);
if (unlikely(hc->ingpa == INVALID_GPA))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
}
if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST ||
hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) {
if (hc->fast) {
flush.address_space = hc->ingpa;
flush.flags = hc->outgpa;
flush.processor_mask = sse128_lo(hc->xmm[0]);
hc->consumed_xmm_halves = 1;
} else {
if (unlikely(kvm_read_guest(kvm, hc->ingpa,
&flush, sizeof(flush))))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
hc->data_offset = sizeof(flush);
}
trace_kvm_hv_flush_tlb(flush.processor_mask,
flush.address_space, flush.flags,
is_guest_mode(vcpu));
valid_bank_mask = BIT_ULL(0);
sparse_banks[0] = flush.processor_mask;
/*
* Work around possible WS2012 bug: it sends hypercalls
* with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
* while also expecting us to flush something and crashing if
* we don't. Let's treat processor_mask == 0 same as
* HV_FLUSH_ALL_PROCESSORS.
*/
all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
flush.processor_mask == 0;
} else {
if (hc->fast) {
flush_ex.address_space = hc->ingpa;
flush_ex.flags = hc->outgpa;
memcpy(&flush_ex.hv_vp_set,
&hc->xmm[0], sizeof(hc->xmm[0]));
hc->consumed_xmm_halves = 2;
} else {
if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
sizeof(flush_ex))))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
hc->data_offset = sizeof(flush_ex);
}
trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
flush_ex.hv_vp_set.format,
flush_ex.address_space,
flush_ex.flags, is_guest_mode(vcpu));
valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
all_cpus = flush_ex.hv_vp_set.format !=
HV_GENERIC_SET_SPARSE_4K;
if (hc->var_cnt != hweight64(valid_bank_mask))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
if (!all_cpus) {
if (!hc->var_cnt)
goto ret_success;
if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
}
/*
* Hyper-V TLFS doesn't explicitly forbid non-empty sparse vCPU
* banks (and, thus, non-zero 'var_cnt') for the 'all vCPUs'
* case (HV_GENERIC_SET_ALL). Always adjust data_offset and
* consumed_xmm_halves to make sure TLB flush entries are read
* from the correct offset.
*/
if (hc->fast)
hc->consumed_xmm_halves += hc->var_cnt;
else
hc->data_offset += hc->var_cnt * sizeof(sparse_banks[0]);
}
if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE ||
hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX ||
hc->rep_cnt > ARRAY_SIZE(__tlb_flush_entries)) {
tlb_flush_entries = NULL;
} else {
if (kvm_hv_get_tlb_flush_entries(kvm, hc, __tlb_flush_entries))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
tlb_flush_entries = __tlb_flush_entries;
}
/*
* vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
* analyze it here, flush TLB regardless of the specified address space.
*/
if (all_cpus && !is_guest_mode(vcpu)) {
kvm_for_each_vcpu(i, v, kvm) {
tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
hv_tlb_flush_enqueue(v, tlb_flush_fifo,
tlb_flush_entries, hc->rep_cnt);
}
kvm_make_all_cpus_request(kvm, KVM_REQ_HV_TLB_FLUSH);
} else if (!is_guest_mode(vcpu)) {
sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask);
for_each_set_bit(i, vcpu_mask, KVM_MAX_VCPUS) {
v = kvm_get_vcpu(kvm, i);
if (!v)
continue;
tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
hv_tlb_flush_enqueue(v, tlb_flush_fifo,
tlb_flush_entries, hc->rep_cnt);
}
kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
} else {
struct kvm_vcpu_hv *hv_v;
bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
kvm_for_each_vcpu(i, v, kvm) {
hv_v = to_hv_vcpu(v);
/*
* The following check races with nested vCPUs entering/exiting
* and/or migrating between L1's vCPUs, however the only case when
* KVM *must* flush the TLB is when the target L2 vCPU keeps
* running on the same L1 vCPU from the moment of the request until
* kvm_hv_flush_tlb() returns. TLB is fully flushed in all other
* cases, e.g. when the target L2 vCPU migrates to a different L1
* vCPU or when the corresponding L1 vCPU temporary switches to a
* different L2 vCPU while the request is being processed.
*/
if (!hv_v || hv_v->nested.vm_id != hv_vcpu->nested.vm_id)
continue;
if (!all_cpus &&
!hv_is_vp_in_sparse_set(hv_v->nested.vp_id, valid_bank_mask,
sparse_banks))
continue;
__set_bit(i, vcpu_mask);
tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, true);
hv_tlb_flush_enqueue(v, tlb_flush_fifo,
tlb_flush_entries, hc->rep_cnt);
}
kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
}
ret_success:
/* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
return (u64)HV_STATUS_SUCCESS |
((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
}
static void kvm_hv_send_ipi_to_many(struct kvm *kvm, u32 vector,
u64 *sparse_banks, u64 valid_bank_mask)
{
struct kvm_lapic_irq irq = {
.delivery_mode = APIC_DM_FIXED,
.vector = vector
};
struct kvm_vcpu *vcpu;
unsigned long i;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (sparse_banks &&
!hv_is_vp_in_sparse_set(kvm_hv_get_vpindex(vcpu),
valid_bank_mask, sparse_banks))
continue;
/* We fail only when APIC is disabled */
kvm_apic_set_irq(vcpu, &irq, NULL);
}
}
static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
u64 *sparse_banks = hv_vcpu->sparse_banks;
struct kvm *kvm = vcpu->kvm;
struct hv_send_ipi_ex send_ipi_ex;
struct hv_send_ipi send_ipi;
u64 valid_bank_mask;
u32 vector;
bool all_cpus;
if (hc->code == HVCALL_SEND_IPI) {
if (!hc->fast) {
if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
sizeof(send_ipi))))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
sparse_banks[0] = send_ipi.cpu_mask;
vector = send_ipi.vector;
} else {
/* 'reserved' part of hv_send_ipi should be 0 */
if (unlikely(hc->ingpa >> 32 != 0))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
sparse_banks[0] = hc->outgpa;
vector = (u32)hc->ingpa;
}
all_cpus = false;
valid_bank_mask = BIT_ULL(0);
trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
} else {
if (!hc->fast) {
if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
sizeof(send_ipi_ex))))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
} else {
send_ipi_ex.vector = (u32)hc->ingpa;
send_ipi_ex.vp_set.format = hc->outgpa;
send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]);
}
trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
send_ipi_ex.vp_set.format,
send_ipi_ex.vp_set.valid_bank_mask);
vector = send_ipi_ex.vector;
valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
if (hc->var_cnt != hweight64(valid_bank_mask))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
if (all_cpus)
goto check_and_send_ipi;
if (!hc->var_cnt)
goto ret_success;
if (!hc->fast)
hc->data_offset = offsetof(struct hv_send_ipi_ex,
vp_set.bank_contents);
else
hc->consumed_xmm_halves = 1;
if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
}
check_and_send_ipi:
if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
if (all_cpus)
kvm_hv_send_ipi_to_many(kvm, vector, NULL, 0);
else
kvm_hv_send_ipi_to_many(kvm, vector, sparse_banks, valid_bank_mask);
ret_success:
return HV_STATUS_SUCCESS;
}
void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu, bool hyperv_enabled)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
struct kvm_cpuid_entry2 *entry;
vcpu->arch.hyperv_enabled = hyperv_enabled;
if (!hv_vcpu) {
/*
* KVM should have already allocated kvm_vcpu_hv if Hyper-V is
* enabled in CPUID.
*/
WARN_ON_ONCE(vcpu->arch.hyperv_enabled);
return;
}
memset(&hv_vcpu->cpuid_cache, 0, sizeof(hv_vcpu->cpuid_cache));
if (!vcpu->arch.hyperv_enabled)
return;
entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES);
if (entry) {
hv_vcpu->cpuid_cache.features_eax = entry->eax;
hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
hv_vcpu->cpuid_cache.features_edx = entry->edx;
}
entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO);
if (entry) {
hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
}
entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
if (entry)
hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_NESTED_FEATURES);
if (entry) {
hv_vcpu->cpuid_cache.nested_eax = entry->eax;
hv_vcpu->cpuid_cache.nested_ebx = entry->ebx;
}
}
int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
{
struct kvm_vcpu_hv *hv_vcpu;
int ret = 0;
if (!to_hv_vcpu(vcpu)) {
if (enforce) {
ret = kvm_hv_vcpu_init(vcpu);
if (ret)
return ret;
} else {
return 0;
}
}
hv_vcpu = to_hv_vcpu(vcpu);
hv_vcpu->enforce_cpuid = enforce;
return ret;
}
static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
{
bool longmode;
longmode = is_64_bit_hypercall(vcpu);
if (longmode)
kvm_rax_write(vcpu, result);
else {
kvm_rdx_write(vcpu, result >> 32);
kvm_rax_write(vcpu, result & 0xffffffff);
}
}
static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
{
u32 tlb_lock_count = 0;
int ret;
if (hv_result_success(result) && is_guest_mode(vcpu) &&
kvm_hv_is_tlb_flush_hcall(vcpu) &&
kvm_read_guest(vcpu->kvm, to_hv_vcpu(vcpu)->nested.pa_page_gpa,
&tlb_lock_count, sizeof(tlb_lock_count)))
result = HV_STATUS_INVALID_HYPERCALL_INPUT;
trace_kvm_hv_hypercall_done(result);
kvm_hv_hypercall_set_result(vcpu, result);
++vcpu->stat.hypercalls;
ret = kvm_skip_emulated_instruction(vcpu);
if (tlb_lock_count)
kvm_x86_ops.nested_ops->hv_inject_synthetic_vmexit_post_tlb_flush(vcpu);
return ret;
}
static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
{
return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
}
static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
{
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
struct eventfd_ctx *eventfd;
if (unlikely(!hc->fast)) {
int ret;
gpa_t gpa = hc->ingpa;
if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
return HV_STATUS_INVALID_ALIGNMENT;
ret = kvm_vcpu_read_guest(vcpu, gpa,
&hc->ingpa, sizeof(hc->ingpa));
if (ret < 0)
return HV_STATUS_INVALID_ALIGNMENT;
}
/*
* Per spec, bits 32-47 contain the extra "flag number". However, we
* have no use for it, and in all known usecases it is zero, so just
* report lookup failure if it isn't.
*/
if (hc->ingpa & 0xffff00000000ULL)
return HV_STATUS_INVALID_PORT_ID;
/* remaining bits are reserved-zero */
if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
return HV_STATUS_INVALID_HYPERCALL_INPUT;
/* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
rcu_read_lock();
eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
rcu_read_unlock();
if (!eventfd)
return HV_STATUS_INVALID_PORT_ID;
eventfd_signal(eventfd, 1);
return HV_STATUS_SUCCESS;
}
static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
{
switch (hc->code) {
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
case HVCALL_SEND_IPI_EX:
return true;
}
return false;
}
static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
{
int reg;
kvm_fpu_get();
for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
_kvm_read_sse_reg(reg, &hc->xmm[reg]);
kvm_fpu_put();
}
static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
{
if (!hv_vcpu->enforce_cpuid)
return true;
switch (code) {
case HVCALL_NOTIFY_LONG_SPIN_WAIT:
return hv_vcpu->cpuid_cache.enlightenments_ebx &&
hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
case HVCALL_POST_MESSAGE:
return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
case HVCALL_SIGNAL_EVENT:
return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
case HVCALL_POST_DEBUG_DATA:
case HVCALL_RETRIEVE_DEBUG_DATA:
case HVCALL_RESET_DEBUG_SESSION:
/*
* Return 'true' when SynDBG is disabled so the resulting code
* will be HV_STATUS_INVALID_HYPERCALL_CODE.
*/
return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
return false;
fallthrough;
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
return hv_vcpu->cpuid_cache.enlightenments_eax &
HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
case HVCALL_SEND_IPI_EX:
if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
return false;
fallthrough;
case HVCALL_SEND_IPI:
return hv_vcpu->cpuid_cache.enlightenments_eax &
HV_X64_CLUSTER_IPI_RECOMMENDED;
case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
return hv_vcpu->cpuid_cache.features_ebx &
HV_ENABLE_EXTENDED_HYPERCALLS;
default:
break;
}
return true;
}
int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
struct kvm_hv_hcall hc;
u64 ret = HV_STATUS_SUCCESS;
/*
* hypercall generates UD from non zero cpl and real mode
* per HYPER-V spec
*/
if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
#ifdef CONFIG_X86_64
if (is_64_bit_hypercall(vcpu)) {
hc.param = kvm_rcx_read(vcpu);
hc.ingpa = kvm_rdx_read(vcpu);
hc.outgpa = kvm_r8_read(vcpu);
} else
#endif
{
hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
(kvm_rax_read(vcpu) & 0xffffffff);
hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
(kvm_rcx_read(vcpu) & 0xffffffff);
hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
(kvm_rsi_read(vcpu) & 0xffffffff);
}
hc.code = hc.param & 0xffff;
hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET;
hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
hc.rep = !!(hc.rep_cnt || hc.rep_idx);
trace_kvm_hv_hypercall(hc.code, hc.fast, hc.var_cnt, hc.rep_cnt,
hc.rep_idx, hc.ingpa, hc.outgpa);
if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
ret = HV_STATUS_ACCESS_DENIED;
goto hypercall_complete;
}
if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
goto hypercall_complete;
}
if (hc.fast && is_xmm_fast_hypercall(&hc)) {
if (unlikely(hv_vcpu->enforce_cpuid &&
!(hv_vcpu->cpuid_cache.features_edx &
HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
kvm_hv_hypercall_read_xmm(&hc);
}
switch (hc.code) {
case HVCALL_NOTIFY_LONG_SPIN_WAIT:
if (unlikely(hc.rep || hc.var_cnt)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
kvm_vcpu_on_spin(vcpu, true);
break;
case HVCALL_SIGNAL_EVENT:
if (unlikely(hc.rep || hc.var_cnt)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hvcall_signal_event(vcpu, &hc);
if (ret != HV_STATUS_INVALID_PORT_ID)
break;
fallthrough; /* maybe userspace knows this conn_id */
case HVCALL_POST_MESSAGE:
/* don't bother userspace if it has no way to handle it */
if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
goto hypercall_userspace_exit;
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
if (unlikely(hc.var_cnt)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
fallthrough;
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_flush_tlb(vcpu, &hc);
break;
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
if (unlikely(hc.var_cnt)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
fallthrough;
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
if (unlikely(hc.rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_flush_tlb(vcpu, &hc);
break;
case HVCALL_SEND_IPI:
if (unlikely(hc.var_cnt)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
fallthrough;
case HVCALL_SEND_IPI_EX:
if (unlikely(hc.rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_send_ipi(vcpu, &hc);
break;
case HVCALL_POST_DEBUG_DATA:
case HVCALL_RETRIEVE_DEBUG_DATA:
if (unlikely(hc.fast)) {
ret = HV_STATUS_INVALID_PARAMETER;
break;
}
fallthrough;
case HVCALL_RESET_DEBUG_SESSION: {
struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
if (!kvm_hv_is_syndbg_enabled(vcpu)) {
ret = HV_STATUS_INVALID_HYPERCALL_CODE;
break;
}
if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
ret = HV_STATUS_OPERATION_DENIED;
break;
}
goto hypercall_userspace_exit;
}
case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
if (unlikely(hc.fast)) {
ret = HV_STATUS_INVALID_PARAMETER;
break;
}
goto hypercall_userspace_exit;
default:
ret = HV_STATUS_INVALID_HYPERCALL_CODE;
break;
}
hypercall_complete:
return kvm_hv_hypercall_complete(vcpu, ret);
hypercall_userspace_exit:
vcpu->run->exit_reason = KVM_EXIT_HYPERV;
vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
vcpu->run->hyperv.u.hcall.input = hc.param;
vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace;
return 0;
}
void kvm_hv_init_vm(struct kvm *kvm)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
mutex_init(&hv->hv_lock);
idr_init(&hv->conn_to_evt);
}
void kvm_hv_destroy_vm(struct kvm *kvm)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
struct eventfd_ctx *eventfd;
int i;
idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
eventfd_ctx_put(eventfd);
idr_destroy(&hv->conn_to_evt);
}
static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
struct eventfd_ctx *eventfd;
int ret;
eventfd = eventfd_ctx_fdget(fd);
if (IS_ERR(eventfd))
return PTR_ERR(eventfd);
mutex_lock(&hv->hv_lock);
ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
GFP_KERNEL_ACCOUNT);
mutex_unlock(&hv->hv_lock);
if (ret >= 0)
return 0;
if (ret == -ENOSPC)
ret = -EEXIST;
eventfd_ctx_put(eventfd);
return ret;
}
static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
struct eventfd_ctx *eventfd;
mutex_lock(&hv->hv_lock);
eventfd = idr_remove(&hv->conn_to_evt, conn_id);
mutex_unlock(&hv->hv_lock);
if (!eventfd)
return -ENOENT;
synchronize_srcu(&kvm->srcu);
eventfd_ctx_put(eventfd);
return 0;
}
int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
{
if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
(args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
return -EINVAL;
if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
return kvm_hv_eventfd_deassign(kvm, args->conn_id);
return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
}
int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
uint16_t evmcs_ver = 0;
struct kvm_cpuid_entry2 cpuid_entries[] = {
{ .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
{ .function = HYPERV_CPUID_INTERFACE },
{ .function = HYPERV_CPUID_VERSION },
{ .function = HYPERV_CPUID_FEATURES },
{ .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
{ .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
{ .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
{ .function = HYPERV_CPUID_SYNDBG_INTERFACE },
{ .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
{ .function = HYPERV_CPUID_NESTED_FEATURES },
};
int i, nent = ARRAY_SIZE(cpuid_entries);
if (kvm_x86_ops.nested_ops->get_evmcs_version)
evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
if (cpuid->nent < nent)
return -E2BIG;
if (cpuid->nent > nent)
cpuid->nent = nent;
for (i = 0; i < nent; i++) {
struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
u32 signature[3];
switch (ent->function) {
case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
memcpy(signature, "Linux KVM Hv", 12);
ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
ent->ebx = signature[0];
ent->ecx = signature[1];
ent->edx = signature[2];
break;
case HYPERV_CPUID_INTERFACE:
ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
break;
case HYPERV_CPUID_VERSION:
/*
* We implement some Hyper-V 2016 functions so let's use
* this version.
*/
ent->eax = 0x00003839;
ent->ebx = 0x000A0000;
break;
case HYPERV_CPUID_FEATURES:
ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
ent->eax |= HV_MSR_SYNIC_AVAILABLE;
ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
ent->eax |= HV_MSR_RESET_AVAILABLE;
ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
ent->eax |= HV_ACCESS_REENLIGHTENMENT;
ent->eax |= HV_ACCESS_TSC_INVARIANT;
ent->ebx |= HV_POST_MESSAGES;
ent->ebx |= HV_SIGNAL_EVENTS;
ent->ebx |= HV_ENABLE_EXTENDED_HYPERCALLS;
ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
ent->ebx |= HV_DEBUGGING;
ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
ent->edx |= HV_FEATURE_EXT_GVA_RANGES_FLUSH;
/*
* Direct Synthetic timers only make sense with in-kernel
* LAPIC
*/
if (!vcpu || lapic_in_kernel(vcpu))
ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
break;
case HYPERV_CPUID_ENLIGHTMENT_INFO:
ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
if (evmcs_ver)
ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
if (!cpu_smt_possible())
ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED;
/*
* Default number of spinlock retry attempts, matches
* HyperV 2016.
*/
ent->ebx = 0x00000FFF;
break;
case HYPERV_CPUID_IMPLEMENT_LIMITS:
/* Maximum number of virtual processors */
ent->eax = KVM_MAX_VCPUS;
/*
* Maximum number of logical processors, matches
* HyperV 2016.
*/
ent->ebx = 64;
break;
case HYPERV_CPUID_NESTED_FEATURES:
ent->eax = evmcs_ver;
ent->eax |= HV_X64_NESTED_DIRECT_FLUSH;
ent->eax |= HV_X64_NESTED_MSR_BITMAP;
ent->ebx |= HV_X64_NESTED_EVMCS1_PERF_GLOBAL_CTRL;
break;
case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
memcpy(signature, "Linux KVM Hv", 12);
ent->eax = 0;
ent->ebx = signature[0];
ent->ecx = signature[1];
ent->edx = signature[2];
break;
case HYPERV_CPUID_SYNDBG_INTERFACE:
memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
ent->eax = signature[0];
break;
case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
break;
default:
break;
}
}
if (copy_to_user(entries, cpuid_entries,
nent * sizeof(struct kvm_cpuid_entry2)))
return -EFAULT;
return 0;
}