mirror of
https://github.com/torvalds/linux.git
synced 2024-12-12 14:12:51 +00:00
802f192e4a
A new option for SPARSEMEM is ARCH_SPARSEMEM_EXTREME. Architecture platforms with a very sparse physical address space would likely want to select this option. For those architecture platforms that don't select the option, the code generated is equivalent to SPARSEMEM currently in -mm. I'll be posting a patch on ia64 ml which uses this new SPARSEMEM feature. ARCH_SPARSEMEM_EXTREME makes mem_section a one dimensional array of pointers to mem_sections. This two level layout scheme is able to achieve smaller memory requirements for SPARSEMEM with the tradeoff of an additional shift and load when fetching the memory section. The current SPARSEMEM -mm implementation is a one dimensional array of mem_sections which is the default SPARSEMEM configuration. The patch attempts isolates the implementation details of the physical layout of the sparsemem section array. ARCH_SPARSEMEM_EXTREME depends on 64BIT and is by default boolean false. I've boot tested under aim load ia64 configured for ARCH_SPARSEMEM_EXTREME. I've also boot tested a 4 way Opteron machine with !ARCH_SPARSEMEM_EXTREME and tested with aim. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
780 lines
20 KiB
C
780 lines
20 KiB
C
/*
|
|
* pSeries NUMA support
|
|
*
|
|
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
#include <linux/threads.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/module.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <asm/lmb.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/abs_addr.h>
|
|
|
|
static int numa_enabled = 1;
|
|
|
|
static int numa_debug;
|
|
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
|
|
|
|
#ifdef DEBUG_NUMA
|
|
#define ARRAY_INITIALISER -1
|
|
#else
|
|
#define ARRAY_INITIALISER 0
|
|
#endif
|
|
|
|
int numa_cpu_lookup_table[NR_CPUS] = { [ 0 ... (NR_CPUS - 1)] =
|
|
ARRAY_INITIALISER};
|
|
char *numa_memory_lookup_table;
|
|
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
|
|
int nr_cpus_in_node[MAX_NUMNODES] = { [0 ... (MAX_NUMNODES -1)] = 0};
|
|
|
|
struct pglist_data *node_data[MAX_NUMNODES];
|
|
bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
|
|
static int min_common_depth;
|
|
|
|
/*
|
|
* We need somewhere to store start/span for each node until we have
|
|
* allocated the real node_data structures.
|
|
*/
|
|
static struct {
|
|
unsigned long node_start_pfn;
|
|
unsigned long node_end_pfn;
|
|
unsigned long node_present_pages;
|
|
} init_node_data[MAX_NUMNODES] __initdata;
|
|
|
|
EXPORT_SYMBOL(node_data);
|
|
EXPORT_SYMBOL(numa_cpu_lookup_table);
|
|
EXPORT_SYMBOL(numa_memory_lookup_table);
|
|
EXPORT_SYMBOL(numa_cpumask_lookup_table);
|
|
EXPORT_SYMBOL(nr_cpus_in_node);
|
|
|
|
static inline void map_cpu_to_node(int cpu, int node)
|
|
{
|
|
numa_cpu_lookup_table[cpu] = node;
|
|
if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) {
|
|
cpu_set(cpu, numa_cpumask_lookup_table[node]);
|
|
nr_cpus_in_node[node]++;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void unmap_cpu_from_node(unsigned long cpu)
|
|
{
|
|
int node = numa_cpu_lookup_table[cpu];
|
|
|
|
dbg("removing cpu %lu from node %d\n", cpu, node);
|
|
|
|
if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
|
|
cpu_clear(cpu, numa_cpumask_lookup_table[node]);
|
|
nr_cpus_in_node[node]--;
|
|
} else {
|
|
printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
|
|
cpu, node);
|
|
}
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
static struct device_node * __devinit find_cpu_node(unsigned int cpu)
|
|
{
|
|
unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
|
|
struct device_node *cpu_node = NULL;
|
|
unsigned int *interrupt_server, *reg;
|
|
int len;
|
|
|
|
while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
|
|
/* Try interrupt server first */
|
|
interrupt_server = (unsigned int *)get_property(cpu_node,
|
|
"ibm,ppc-interrupt-server#s", &len);
|
|
|
|
len = len / sizeof(u32);
|
|
|
|
if (interrupt_server && (len > 0)) {
|
|
while (len--) {
|
|
if (interrupt_server[len] == hw_cpuid)
|
|
return cpu_node;
|
|
}
|
|
} else {
|
|
reg = (unsigned int *)get_property(cpu_node,
|
|
"reg", &len);
|
|
if (reg && (len > 0) && (reg[0] == hw_cpuid))
|
|
return cpu_node;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* must hold reference to node during call */
|
|
static int *of_get_associativity(struct device_node *dev)
|
|
{
|
|
return (unsigned int *)get_property(dev, "ibm,associativity", NULL);
|
|
}
|
|
|
|
static int of_node_numa_domain(struct device_node *device)
|
|
{
|
|
int numa_domain;
|
|
unsigned int *tmp;
|
|
|
|
if (min_common_depth == -1)
|
|
return 0;
|
|
|
|
tmp = of_get_associativity(device);
|
|
if (tmp && (tmp[0] >= min_common_depth)) {
|
|
numa_domain = tmp[min_common_depth];
|
|
} else {
|
|
dbg("WARNING: no NUMA information for %s\n",
|
|
device->full_name);
|
|
numa_domain = 0;
|
|
}
|
|
return numa_domain;
|
|
}
|
|
|
|
/*
|
|
* In theory, the "ibm,associativity" property may contain multiple
|
|
* associativity lists because a resource may be multiply connected
|
|
* into the machine. This resource then has different associativity
|
|
* characteristics relative to its multiple connections. We ignore
|
|
* this for now. We also assume that all cpu and memory sets have
|
|
* their distances represented at a common level. This won't be
|
|
* true for heirarchical NUMA.
|
|
*
|
|
* In any case the ibm,associativity-reference-points should give
|
|
* the correct depth for a normal NUMA system.
|
|
*
|
|
* - Dave Hansen <haveblue@us.ibm.com>
|
|
*/
|
|
static int __init find_min_common_depth(void)
|
|
{
|
|
int depth;
|
|
unsigned int *ref_points;
|
|
struct device_node *rtas_root;
|
|
unsigned int len;
|
|
|
|
rtas_root = of_find_node_by_path("/rtas");
|
|
|
|
if (!rtas_root)
|
|
return -1;
|
|
|
|
/*
|
|
* this property is 2 32-bit integers, each representing a level of
|
|
* depth in the associativity nodes. The first is for an SMP
|
|
* configuration (should be all 0's) and the second is for a normal
|
|
* NUMA configuration.
|
|
*/
|
|
ref_points = (unsigned int *)get_property(rtas_root,
|
|
"ibm,associativity-reference-points", &len);
|
|
|
|
if ((len >= 1) && ref_points) {
|
|
depth = ref_points[1];
|
|
} else {
|
|
dbg("WARNING: could not find NUMA "
|
|
"associativity reference point\n");
|
|
depth = -1;
|
|
}
|
|
of_node_put(rtas_root);
|
|
|
|
return depth;
|
|
}
|
|
|
|
static int __init get_mem_addr_cells(void)
|
|
{
|
|
struct device_node *memory = NULL;
|
|
int rc;
|
|
|
|
memory = of_find_node_by_type(memory, "memory");
|
|
if (!memory)
|
|
return 0; /* it won't matter */
|
|
|
|
rc = prom_n_addr_cells(memory);
|
|
return rc;
|
|
}
|
|
|
|
static int __init get_mem_size_cells(void)
|
|
{
|
|
struct device_node *memory = NULL;
|
|
int rc;
|
|
|
|
memory = of_find_node_by_type(memory, "memory");
|
|
if (!memory)
|
|
return 0; /* it won't matter */
|
|
rc = prom_n_size_cells(memory);
|
|
return rc;
|
|
}
|
|
|
|
static unsigned long read_n_cells(int n, unsigned int **buf)
|
|
{
|
|
unsigned long result = 0;
|
|
|
|
while (n--) {
|
|
result = (result << 32) | **buf;
|
|
(*buf)++;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Figure out to which domain a cpu belongs and stick it there.
|
|
* Return the id of the domain used.
|
|
*/
|
|
static int numa_setup_cpu(unsigned long lcpu)
|
|
{
|
|
int numa_domain = 0;
|
|
struct device_node *cpu = find_cpu_node(lcpu);
|
|
|
|
if (!cpu) {
|
|
WARN_ON(1);
|
|
goto out;
|
|
}
|
|
|
|
numa_domain = of_node_numa_domain(cpu);
|
|
|
|
if (numa_domain >= num_online_nodes()) {
|
|
/*
|
|
* POWER4 LPAR uses 0xffff as invalid node,
|
|
* dont warn in this case.
|
|
*/
|
|
if (numa_domain != 0xffff)
|
|
printk(KERN_ERR "WARNING: cpu %ld "
|
|
"maps to invalid NUMA node %d\n",
|
|
lcpu, numa_domain);
|
|
numa_domain = 0;
|
|
}
|
|
out:
|
|
node_set_online(numa_domain);
|
|
|
|
map_cpu_to_node(lcpu, numa_domain);
|
|
|
|
of_node_put(cpu);
|
|
|
|
return numa_domain;
|
|
}
|
|
|
|
static int cpu_numa_callback(struct notifier_block *nfb,
|
|
unsigned long action,
|
|
void *hcpu)
|
|
{
|
|
unsigned long lcpu = (unsigned long)hcpu;
|
|
int ret = NOTIFY_DONE;
|
|
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
if (min_common_depth == -1 || !numa_enabled)
|
|
map_cpu_to_node(lcpu, 0);
|
|
else
|
|
numa_setup_cpu(lcpu);
|
|
ret = NOTIFY_OK;
|
|
break;
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
case CPU_DEAD:
|
|
case CPU_UP_CANCELED:
|
|
unmap_cpu_from_node(lcpu);
|
|
break;
|
|
ret = NOTIFY_OK;
|
|
#endif
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check and possibly modify a memory region to enforce the memory limit.
|
|
*
|
|
* Returns the size the region should have to enforce the memory limit.
|
|
* This will either be the original value of size, a truncated value,
|
|
* or zero. If the returned value of size is 0 the region should be
|
|
* discarded as it lies wholy above the memory limit.
|
|
*/
|
|
static unsigned long __init numa_enforce_memory_limit(unsigned long start, unsigned long size)
|
|
{
|
|
/*
|
|
* We use lmb_end_of_DRAM() in here instead of memory_limit because
|
|
* we've already adjusted it for the limit and it takes care of
|
|
* having memory holes below the limit.
|
|
*/
|
|
extern unsigned long memory_limit;
|
|
|
|
if (! memory_limit)
|
|
return size;
|
|
|
|
if (start + size <= lmb_end_of_DRAM())
|
|
return size;
|
|
|
|
if (start >= lmb_end_of_DRAM())
|
|
return 0;
|
|
|
|
return lmb_end_of_DRAM() - start;
|
|
}
|
|
|
|
static int __init parse_numa_properties(void)
|
|
{
|
|
struct device_node *cpu = NULL;
|
|
struct device_node *memory = NULL;
|
|
int addr_cells, size_cells;
|
|
int max_domain = 0;
|
|
long entries = lmb_end_of_DRAM() >> MEMORY_INCREMENT_SHIFT;
|
|
unsigned long i;
|
|
|
|
if (numa_enabled == 0) {
|
|
printk(KERN_WARNING "NUMA disabled by user\n");
|
|
return -1;
|
|
}
|
|
|
|
numa_memory_lookup_table =
|
|
(char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1));
|
|
memset(numa_memory_lookup_table, 0, entries * sizeof(char));
|
|
|
|
for (i = 0; i < entries ; i++)
|
|
numa_memory_lookup_table[i] = ARRAY_INITIALISER;
|
|
|
|
min_common_depth = find_min_common_depth();
|
|
|
|
dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
|
|
if (min_common_depth < 0)
|
|
return min_common_depth;
|
|
|
|
max_domain = numa_setup_cpu(boot_cpuid);
|
|
|
|
/*
|
|
* Even though we connect cpus to numa domains later in SMP init,
|
|
* we need to know the maximum node id now. This is because each
|
|
* node id must have NODE_DATA etc backing it.
|
|
* As a result of hotplug we could still have cpus appear later on
|
|
* with larger node ids. In that case we force the cpu into node 0.
|
|
*/
|
|
for_each_cpu(i) {
|
|
int numa_domain;
|
|
|
|
cpu = find_cpu_node(i);
|
|
|
|
if (cpu) {
|
|
numa_domain = of_node_numa_domain(cpu);
|
|
of_node_put(cpu);
|
|
|
|
if (numa_domain < MAX_NUMNODES &&
|
|
max_domain < numa_domain)
|
|
max_domain = numa_domain;
|
|
}
|
|
}
|
|
|
|
addr_cells = get_mem_addr_cells();
|
|
size_cells = get_mem_size_cells();
|
|
memory = NULL;
|
|
while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
|
|
unsigned long start;
|
|
unsigned long size;
|
|
int numa_domain;
|
|
int ranges;
|
|
unsigned int *memcell_buf;
|
|
unsigned int len;
|
|
|
|
memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
|
|
if (!memcell_buf || len <= 0)
|
|
continue;
|
|
|
|
ranges = memory->n_addrs;
|
|
new_range:
|
|
/* these are order-sensitive, and modify the buffer pointer */
|
|
start = read_n_cells(addr_cells, &memcell_buf);
|
|
size = read_n_cells(size_cells, &memcell_buf);
|
|
|
|
start = _ALIGN_DOWN(start, MEMORY_INCREMENT);
|
|
size = _ALIGN_UP(size, MEMORY_INCREMENT);
|
|
|
|
numa_domain = of_node_numa_domain(memory);
|
|
|
|
if (numa_domain >= MAX_NUMNODES) {
|
|
if (numa_domain != 0xffff)
|
|
printk(KERN_ERR "WARNING: memory at %lx maps "
|
|
"to invalid NUMA node %d\n", start,
|
|
numa_domain);
|
|
numa_domain = 0;
|
|
}
|
|
|
|
if (max_domain < numa_domain)
|
|
max_domain = numa_domain;
|
|
|
|
if (! (size = numa_enforce_memory_limit(start, size))) {
|
|
if (--ranges)
|
|
goto new_range;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Initialize new node struct, or add to an existing one.
|
|
*/
|
|
if (init_node_data[numa_domain].node_end_pfn) {
|
|
if ((start / PAGE_SIZE) <
|
|
init_node_data[numa_domain].node_start_pfn)
|
|
init_node_data[numa_domain].node_start_pfn =
|
|
start / PAGE_SIZE;
|
|
if (((start / PAGE_SIZE) + (size / PAGE_SIZE)) >
|
|
init_node_data[numa_domain].node_end_pfn)
|
|
init_node_data[numa_domain].node_end_pfn =
|
|
(start / PAGE_SIZE) +
|
|
(size / PAGE_SIZE);
|
|
|
|
init_node_data[numa_domain].node_present_pages +=
|
|
size / PAGE_SIZE;
|
|
} else {
|
|
node_set_online(numa_domain);
|
|
|
|
init_node_data[numa_domain].node_start_pfn =
|
|
start / PAGE_SIZE;
|
|
init_node_data[numa_domain].node_end_pfn =
|
|
init_node_data[numa_domain].node_start_pfn +
|
|
size / PAGE_SIZE;
|
|
init_node_data[numa_domain].node_present_pages =
|
|
size / PAGE_SIZE;
|
|
}
|
|
|
|
for (i = start ; i < (start+size); i += MEMORY_INCREMENT)
|
|
numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] =
|
|
numa_domain;
|
|
|
|
if (--ranges)
|
|
goto new_range;
|
|
}
|
|
|
|
for (i = 0; i <= max_domain; i++)
|
|
node_set_online(i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init setup_nonnuma(void)
|
|
{
|
|
unsigned long top_of_ram = lmb_end_of_DRAM();
|
|
unsigned long total_ram = lmb_phys_mem_size();
|
|
unsigned long i;
|
|
|
|
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
|
|
top_of_ram, total_ram);
|
|
printk(KERN_INFO "Memory hole size: %ldMB\n",
|
|
(top_of_ram - total_ram) >> 20);
|
|
|
|
if (!numa_memory_lookup_table) {
|
|
long entries = top_of_ram >> MEMORY_INCREMENT_SHIFT;
|
|
numa_memory_lookup_table =
|
|
(char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1));
|
|
memset(numa_memory_lookup_table, 0, entries * sizeof(char));
|
|
for (i = 0; i < entries ; i++)
|
|
numa_memory_lookup_table[i] = ARRAY_INITIALISER;
|
|
}
|
|
|
|
map_cpu_to_node(boot_cpuid, 0);
|
|
|
|
node_set_online(0);
|
|
|
|
init_node_data[0].node_start_pfn = 0;
|
|
init_node_data[0].node_end_pfn = lmb_end_of_DRAM() / PAGE_SIZE;
|
|
init_node_data[0].node_present_pages = total_ram / PAGE_SIZE;
|
|
|
|
for (i = 0 ; i < top_of_ram; i += MEMORY_INCREMENT)
|
|
numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = 0;
|
|
}
|
|
|
|
static void __init dump_numa_topology(void)
|
|
{
|
|
unsigned int node;
|
|
unsigned int count;
|
|
|
|
if (min_common_depth == -1 || !numa_enabled)
|
|
return;
|
|
|
|
for_each_online_node(node) {
|
|
unsigned long i;
|
|
|
|
printk(KERN_INFO "Node %d Memory:", node);
|
|
|
|
count = 0;
|
|
|
|
for (i = 0; i < lmb_end_of_DRAM(); i += MEMORY_INCREMENT) {
|
|
if (numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] == node) {
|
|
if (count == 0)
|
|
printk(" 0x%lx", i);
|
|
++count;
|
|
} else {
|
|
if (count > 0)
|
|
printk("-0x%lx", i);
|
|
count = 0;
|
|
}
|
|
}
|
|
|
|
if (count > 0)
|
|
printk("-0x%lx", i);
|
|
printk("\n");
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Allocate some memory, satisfying the lmb or bootmem allocator where
|
|
* required. nid is the preferred node and end is the physical address of
|
|
* the highest address in the node.
|
|
*
|
|
* Returns the physical address of the memory.
|
|
*/
|
|
static unsigned long careful_allocation(int nid, unsigned long size,
|
|
unsigned long align, unsigned long end)
|
|
{
|
|
unsigned long ret = lmb_alloc_base(size, align, end);
|
|
|
|
/* retry over all memory */
|
|
if (!ret)
|
|
ret = lmb_alloc_base(size, align, lmb_end_of_DRAM());
|
|
|
|
if (!ret)
|
|
panic("numa.c: cannot allocate %lu bytes on node %d",
|
|
size, nid);
|
|
|
|
/*
|
|
* If the memory came from a previously allocated node, we must
|
|
* retry with the bootmem allocator.
|
|
*/
|
|
if (pa_to_nid(ret) < nid) {
|
|
nid = pa_to_nid(ret);
|
|
ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(nid),
|
|
size, align, 0);
|
|
|
|
if (!ret)
|
|
panic("numa.c: cannot allocate %lu bytes on node %d",
|
|
size, nid);
|
|
|
|
ret = virt_to_abs(ret);
|
|
|
|
dbg("alloc_bootmem %lx %lx\n", ret, size);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void __init do_init_bootmem(void)
|
|
{
|
|
int nid;
|
|
int addr_cells, size_cells;
|
|
struct device_node *memory = NULL;
|
|
static struct notifier_block ppc64_numa_nb = {
|
|
.notifier_call = cpu_numa_callback,
|
|
.priority = 1 /* Must run before sched domains notifier. */
|
|
};
|
|
|
|
min_low_pfn = 0;
|
|
max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
|
|
max_pfn = max_low_pfn;
|
|
|
|
if (parse_numa_properties())
|
|
setup_nonnuma();
|
|
else
|
|
dump_numa_topology();
|
|
|
|
register_cpu_notifier(&ppc64_numa_nb);
|
|
|
|
for_each_online_node(nid) {
|
|
unsigned long start_paddr, end_paddr;
|
|
int i;
|
|
unsigned long bootmem_paddr;
|
|
unsigned long bootmap_pages;
|
|
|
|
start_paddr = init_node_data[nid].node_start_pfn * PAGE_SIZE;
|
|
end_paddr = init_node_data[nid].node_end_pfn * PAGE_SIZE;
|
|
|
|
/* Allocate the node structure node local if possible */
|
|
NODE_DATA(nid) = (struct pglist_data *)careful_allocation(nid,
|
|
sizeof(struct pglist_data),
|
|
SMP_CACHE_BYTES, end_paddr);
|
|
NODE_DATA(nid) = abs_to_virt(NODE_DATA(nid));
|
|
memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
|
|
|
|
dbg("node %d\n", nid);
|
|
dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
|
|
|
|
NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
|
|
NODE_DATA(nid)->node_start_pfn =
|
|
init_node_data[nid].node_start_pfn;
|
|
NODE_DATA(nid)->node_spanned_pages =
|
|
end_paddr - start_paddr;
|
|
|
|
if (NODE_DATA(nid)->node_spanned_pages == 0)
|
|
continue;
|
|
|
|
dbg("start_paddr = %lx\n", start_paddr);
|
|
dbg("end_paddr = %lx\n", end_paddr);
|
|
|
|
bootmap_pages = bootmem_bootmap_pages((end_paddr - start_paddr) >> PAGE_SHIFT);
|
|
|
|
bootmem_paddr = careful_allocation(nid,
|
|
bootmap_pages << PAGE_SHIFT,
|
|
PAGE_SIZE, end_paddr);
|
|
memset(abs_to_virt(bootmem_paddr), 0,
|
|
bootmap_pages << PAGE_SHIFT);
|
|
dbg("bootmap_paddr = %lx\n", bootmem_paddr);
|
|
|
|
init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
|
|
start_paddr >> PAGE_SHIFT,
|
|
end_paddr >> PAGE_SHIFT);
|
|
|
|
/*
|
|
* We need to do another scan of all memory sections to
|
|
* associate memory with the correct node.
|
|
*/
|
|
addr_cells = get_mem_addr_cells();
|
|
size_cells = get_mem_size_cells();
|
|
memory = NULL;
|
|
while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
|
|
unsigned long mem_start, mem_size;
|
|
int numa_domain, ranges;
|
|
unsigned int *memcell_buf;
|
|
unsigned int len;
|
|
|
|
memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
|
|
if (!memcell_buf || len <= 0)
|
|
continue;
|
|
|
|
ranges = memory->n_addrs; /* ranges in cell */
|
|
new_range:
|
|
mem_start = read_n_cells(addr_cells, &memcell_buf);
|
|
mem_size = read_n_cells(size_cells, &memcell_buf);
|
|
if (numa_enabled) {
|
|
numa_domain = of_node_numa_domain(memory);
|
|
if (numa_domain >= MAX_NUMNODES)
|
|
numa_domain = 0;
|
|
} else
|
|
numa_domain = 0;
|
|
|
|
if (numa_domain != nid)
|
|
continue;
|
|
|
|
mem_size = numa_enforce_memory_limit(mem_start, mem_size);
|
|
if (mem_size) {
|
|
dbg("free_bootmem %lx %lx\n", mem_start, mem_size);
|
|
free_bootmem_node(NODE_DATA(nid), mem_start, mem_size);
|
|
}
|
|
|
|
if (--ranges) /* process all ranges in cell */
|
|
goto new_range;
|
|
}
|
|
|
|
/*
|
|
* Mark reserved regions on this node
|
|
*/
|
|
for (i = 0; i < lmb.reserved.cnt; i++) {
|
|
unsigned long physbase = lmb.reserved.region[i].base;
|
|
unsigned long size = lmb.reserved.region[i].size;
|
|
|
|
if (pa_to_nid(physbase) != nid &&
|
|
pa_to_nid(physbase+size-1) != nid)
|
|
continue;
|
|
|
|
if (physbase < end_paddr &&
|
|
(physbase+size) > start_paddr) {
|
|
/* overlaps */
|
|
if (physbase < start_paddr) {
|
|
size -= start_paddr - physbase;
|
|
physbase = start_paddr;
|
|
}
|
|
|
|
if (size > end_paddr - physbase)
|
|
size = end_paddr - physbase;
|
|
|
|
dbg("reserve_bootmem %lx %lx\n", physbase,
|
|
size);
|
|
reserve_bootmem_node(NODE_DATA(nid), physbase,
|
|
size);
|
|
}
|
|
}
|
|
/*
|
|
* This loop may look famaliar, but we have to do it again
|
|
* after marking our reserved memory to mark memory present
|
|
* for sparsemem.
|
|
*/
|
|
addr_cells = get_mem_addr_cells();
|
|
size_cells = get_mem_size_cells();
|
|
memory = NULL;
|
|
while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
|
|
unsigned long mem_start, mem_size;
|
|
int numa_domain, ranges;
|
|
unsigned int *memcell_buf;
|
|
unsigned int len;
|
|
|
|
memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
|
|
if (!memcell_buf || len <= 0)
|
|
continue;
|
|
|
|
ranges = memory->n_addrs; /* ranges in cell */
|
|
new_range2:
|
|
mem_start = read_n_cells(addr_cells, &memcell_buf);
|
|
mem_size = read_n_cells(size_cells, &memcell_buf);
|
|
if (numa_enabled) {
|
|
numa_domain = of_node_numa_domain(memory);
|
|
if (numa_domain >= MAX_NUMNODES)
|
|
numa_domain = 0;
|
|
} else
|
|
numa_domain = 0;
|
|
|
|
if (numa_domain != nid)
|
|
continue;
|
|
|
|
mem_size = numa_enforce_memory_limit(mem_start, mem_size);
|
|
memory_present(numa_domain, mem_start >> PAGE_SHIFT,
|
|
(mem_start + mem_size) >> PAGE_SHIFT);
|
|
|
|
if (--ranges) /* process all ranges in cell */
|
|
goto new_range2;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
void __init paging_init(void)
|
|
{
|
|
unsigned long zones_size[MAX_NR_ZONES];
|
|
unsigned long zholes_size[MAX_NR_ZONES];
|
|
int nid;
|
|
|
|
memset(zones_size, 0, sizeof(zones_size));
|
|
memset(zholes_size, 0, sizeof(zholes_size));
|
|
|
|
for_each_online_node(nid) {
|
|
unsigned long start_pfn;
|
|
unsigned long end_pfn;
|
|
|
|
start_pfn = init_node_data[nid].node_start_pfn;
|
|
end_pfn = init_node_data[nid].node_end_pfn;
|
|
|
|
zones_size[ZONE_DMA] = end_pfn - start_pfn;
|
|
zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] -
|
|
init_node_data[nid].node_present_pages;
|
|
|
|
dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid,
|
|
zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]);
|
|
|
|
free_area_init_node(nid, NODE_DATA(nid), zones_size,
|
|
start_pfn, zholes_size);
|
|
}
|
|
}
|
|
|
|
static int __init early_numa(char *p)
|
|
{
|
|
if (!p)
|
|
return 0;
|
|
|
|
if (strstr(p, "off"))
|
|
numa_enabled = 0;
|
|
|
|
if (strstr(p, "debug"))
|
|
numa_debug = 1;
|
|
|
|
return 0;
|
|
}
|
|
early_param("numa", early_numa);
|