mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 12:42:02 +00:00
A mirror of the official Linux kernel repository just in case
fd43cf600c
The blocks used for allocation btrees (bnobt and countbt) are technically considered free space. This is because as free space is used, allocbt blocks are removed and naturally become available for traditional allocation. However, this means that a significant portion of free space may consist of in-use btree blocks if free space is severely fragmented. On large filesystems with large perag reservations, this can lead to a rare but nasty condition where a significant amount of physical free space is available, but the majority of actual usable blocks consist of in-use allocbt blocks. We have a record of a (~12TB, 32 AG) filesystem with multiple AGs in a state with ~2.5GB or so free blocks tracked across ~300 total allocbt blocks, but effectively at 100% full because the the free space is entirely consumed by refcountbt perag reservation. Such a large perag reservation is by design on large filesystems. The problem is that because the free space is so fragmented, this AG contributes the 300 or so allocbt blocks to the global counters as free space. If this pattern repeats across enough AGs, the filesystem lands in a state where global block reservation can outrun physical block availability. For example, a streaming buffered write on the affected filesystem continues to allow delayed allocation beyond the point where writeback starts to fail due to physical block allocation failures. The expected behavior is for the delalloc block reservation to fail gracefully with -ENOSPC before physical block allocation failure is a possibility. To address this problem, set aside in-use allocbt blocks at reservation time and thus ensure they cannot be reserved until truly available for physical allocation. This allows alloc btree metadata to continue to reside in free space, but dynamically adjusts reservation availability based on internal state. Note that the logic requires that the allocbt counter is fully populated at reservation time before it is fully effective. We currently rely on the mount time AGF scan in the perag reservation initialization code for this dependency on filesystems where it's most important (i.e. with active perag reservations). Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
fs | ||
include | ||
init | ||
ipc | ||
kernel | ||
lib | ||
LICENSES | ||
mm | ||
net | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.