mirror of
https://github.com/torvalds/linux.git
synced 2024-12-12 14:12:51 +00:00
0e0ffa855d
The Energy Model framework supports not only CPU devices. Drop the CPU specific interface with cpumask and add struct device. Add also a return value, user might use it. This new interface provides easy way to create a simple Energy Model, which then might be used by e.g. thermal subsystem. Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lukasz Luba <lukasz.luba@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
606 lines
15 KiB
C
606 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Versatile Express SPC CPUFreq Interface driver
|
|
*
|
|
* Copyright (C) 2013 - 2019 ARM Ltd.
|
|
* Sudeep Holla <sudeep.holla@arm.com>
|
|
*
|
|
* Copyright (C) 2013 Linaro.
|
|
* Viresh Kumar <viresh.kumar@linaro.org>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/cpu_cooling.h>
|
|
#include <linux/device.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_opp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/types.h>
|
|
|
|
/* Currently we support only two clusters */
|
|
#define A15_CLUSTER 0
|
|
#define A7_CLUSTER 1
|
|
#define MAX_CLUSTERS 2
|
|
|
|
#ifdef CONFIG_BL_SWITCHER
|
|
#include <asm/bL_switcher.h>
|
|
static bool bL_switching_enabled;
|
|
#define is_bL_switching_enabled() bL_switching_enabled
|
|
#define set_switching_enabled(x) (bL_switching_enabled = (x))
|
|
#else
|
|
#define is_bL_switching_enabled() false
|
|
#define set_switching_enabled(x) do { } while (0)
|
|
#define bL_switch_request(...) do { } while (0)
|
|
#define bL_switcher_put_enabled() do { } while (0)
|
|
#define bL_switcher_get_enabled() do { } while (0)
|
|
#endif
|
|
|
|
#define ACTUAL_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq << 1 : freq)
|
|
#define VIRT_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq >> 1 : freq)
|
|
|
|
static struct thermal_cooling_device *cdev[MAX_CLUSTERS];
|
|
static struct clk *clk[MAX_CLUSTERS];
|
|
static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
|
|
static atomic_t cluster_usage[MAX_CLUSTERS + 1];
|
|
|
|
static unsigned int clk_big_min; /* (Big) clock frequencies */
|
|
static unsigned int clk_little_max; /* Maximum clock frequency (Little) */
|
|
|
|
static DEFINE_PER_CPU(unsigned int, physical_cluster);
|
|
static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq);
|
|
|
|
static struct mutex cluster_lock[MAX_CLUSTERS];
|
|
|
|
static inline int raw_cpu_to_cluster(int cpu)
|
|
{
|
|
return topology_physical_package_id(cpu);
|
|
}
|
|
|
|
static inline int cpu_to_cluster(int cpu)
|
|
{
|
|
return is_bL_switching_enabled() ?
|
|
MAX_CLUSTERS : raw_cpu_to_cluster(cpu);
|
|
}
|
|
|
|
static unsigned int find_cluster_maxfreq(int cluster)
|
|
{
|
|
int j;
|
|
u32 max_freq = 0, cpu_freq;
|
|
|
|
for_each_online_cpu(j) {
|
|
cpu_freq = per_cpu(cpu_last_req_freq, j);
|
|
|
|
if (cluster == per_cpu(physical_cluster, j) &&
|
|
max_freq < cpu_freq)
|
|
max_freq = cpu_freq;
|
|
}
|
|
|
|
return max_freq;
|
|
}
|
|
|
|
static unsigned int clk_get_cpu_rate(unsigned int cpu)
|
|
{
|
|
u32 cur_cluster = per_cpu(physical_cluster, cpu);
|
|
u32 rate = clk_get_rate(clk[cur_cluster]) / 1000;
|
|
|
|
/* For switcher we use virtual A7 clock rates */
|
|
if (is_bL_switching_enabled())
|
|
rate = VIRT_FREQ(cur_cluster, rate);
|
|
|
|
return rate;
|
|
}
|
|
|
|
static unsigned int ve_spc_cpufreq_get_rate(unsigned int cpu)
|
|
{
|
|
if (is_bL_switching_enabled())
|
|
return per_cpu(cpu_last_req_freq, cpu);
|
|
else
|
|
return clk_get_cpu_rate(cpu);
|
|
}
|
|
|
|
static unsigned int
|
|
ve_spc_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate)
|
|
{
|
|
u32 new_rate, prev_rate;
|
|
int ret;
|
|
bool bLs = is_bL_switching_enabled();
|
|
|
|
mutex_lock(&cluster_lock[new_cluster]);
|
|
|
|
if (bLs) {
|
|
prev_rate = per_cpu(cpu_last_req_freq, cpu);
|
|
per_cpu(cpu_last_req_freq, cpu) = rate;
|
|
per_cpu(physical_cluster, cpu) = new_cluster;
|
|
|
|
new_rate = find_cluster_maxfreq(new_cluster);
|
|
new_rate = ACTUAL_FREQ(new_cluster, new_rate);
|
|
} else {
|
|
new_rate = rate;
|
|
}
|
|
|
|
ret = clk_set_rate(clk[new_cluster], new_rate * 1000);
|
|
if (!ret) {
|
|
/*
|
|
* FIXME: clk_set_rate hasn't returned an error here however it
|
|
* may be that clk_change_rate failed due to hardware or
|
|
* firmware issues and wasn't able to report that due to the
|
|
* current design of the clk core layer. To work around this
|
|
* problem we will read back the clock rate and check it is
|
|
* correct. This needs to be removed once clk core is fixed.
|
|
*/
|
|
if (clk_get_rate(clk[new_cluster]) != new_rate * 1000)
|
|
ret = -EIO;
|
|
}
|
|
|
|
if (WARN_ON(ret)) {
|
|
if (bLs) {
|
|
per_cpu(cpu_last_req_freq, cpu) = prev_rate;
|
|
per_cpu(physical_cluster, cpu) = old_cluster;
|
|
}
|
|
|
|
mutex_unlock(&cluster_lock[new_cluster]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
mutex_unlock(&cluster_lock[new_cluster]);
|
|
|
|
/* Recalc freq for old cluster when switching clusters */
|
|
if (old_cluster != new_cluster) {
|
|
/* Switch cluster */
|
|
bL_switch_request(cpu, new_cluster);
|
|
|
|
mutex_lock(&cluster_lock[old_cluster]);
|
|
|
|
/* Set freq of old cluster if there are cpus left on it */
|
|
new_rate = find_cluster_maxfreq(old_cluster);
|
|
new_rate = ACTUAL_FREQ(old_cluster, new_rate);
|
|
|
|
if (new_rate &&
|
|
clk_set_rate(clk[old_cluster], new_rate * 1000)) {
|
|
pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n",
|
|
__func__, ret, old_cluster);
|
|
}
|
|
mutex_unlock(&cluster_lock[old_cluster]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Set clock frequency */
|
|
static int ve_spc_cpufreq_set_target(struct cpufreq_policy *policy,
|
|
unsigned int index)
|
|
{
|
|
u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster;
|
|
unsigned int freqs_new;
|
|
int ret;
|
|
|
|
cur_cluster = cpu_to_cluster(cpu);
|
|
new_cluster = actual_cluster = per_cpu(physical_cluster, cpu);
|
|
|
|
freqs_new = freq_table[cur_cluster][index].frequency;
|
|
|
|
if (is_bL_switching_enabled()) {
|
|
if (actual_cluster == A15_CLUSTER && freqs_new < clk_big_min)
|
|
new_cluster = A7_CLUSTER;
|
|
else if (actual_cluster == A7_CLUSTER &&
|
|
freqs_new > clk_little_max)
|
|
new_cluster = A15_CLUSTER;
|
|
}
|
|
|
|
ret = ve_spc_cpufreq_set_rate(cpu, actual_cluster, new_cluster,
|
|
freqs_new);
|
|
|
|
if (!ret) {
|
|
arch_set_freq_scale(policy->related_cpus, freqs_new,
|
|
policy->cpuinfo.max_freq);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline u32 get_table_count(struct cpufreq_frequency_table *table)
|
|
{
|
|
int count;
|
|
|
|
for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++)
|
|
;
|
|
|
|
return count;
|
|
}
|
|
|
|
/* get the minimum frequency in the cpufreq_frequency_table */
|
|
static inline u32 get_table_min(struct cpufreq_frequency_table *table)
|
|
{
|
|
struct cpufreq_frequency_table *pos;
|
|
u32 min_freq = ~0;
|
|
|
|
cpufreq_for_each_entry(pos, table)
|
|
if (pos->frequency < min_freq)
|
|
min_freq = pos->frequency;
|
|
return min_freq;
|
|
}
|
|
|
|
/* get the maximum frequency in the cpufreq_frequency_table */
|
|
static inline u32 get_table_max(struct cpufreq_frequency_table *table)
|
|
{
|
|
struct cpufreq_frequency_table *pos;
|
|
u32 max_freq = 0;
|
|
|
|
cpufreq_for_each_entry(pos, table)
|
|
if (pos->frequency > max_freq)
|
|
max_freq = pos->frequency;
|
|
return max_freq;
|
|
}
|
|
|
|
static bool search_frequency(struct cpufreq_frequency_table *table, int size,
|
|
unsigned int freq)
|
|
{
|
|
int count;
|
|
|
|
for (count = 0; count < size; count++) {
|
|
if (table[count].frequency == freq)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int merge_cluster_tables(void)
|
|
{
|
|
int i, j, k = 0, count = 1;
|
|
struct cpufreq_frequency_table *table;
|
|
|
|
for (i = 0; i < MAX_CLUSTERS; i++)
|
|
count += get_table_count(freq_table[i]);
|
|
|
|
table = kcalloc(count, sizeof(*table), GFP_KERNEL);
|
|
if (!table)
|
|
return -ENOMEM;
|
|
|
|
freq_table[MAX_CLUSTERS] = table;
|
|
|
|
/* Add in reverse order to get freqs in increasing order */
|
|
for (i = MAX_CLUSTERS - 1; i >= 0; i--, count = k) {
|
|
for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END;
|
|
j++) {
|
|
if (i == A15_CLUSTER &&
|
|
search_frequency(table, count, freq_table[i][j].frequency))
|
|
continue; /* skip duplicates */
|
|
table[k++].frequency =
|
|
VIRT_FREQ(i, freq_table[i][j].frequency);
|
|
}
|
|
}
|
|
|
|
table[k].driver_data = k;
|
|
table[k].frequency = CPUFREQ_TABLE_END;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void _put_cluster_clk_and_freq_table(struct device *cpu_dev,
|
|
const struct cpumask *cpumask)
|
|
{
|
|
u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
|
|
|
|
if (!freq_table[cluster])
|
|
return;
|
|
|
|
clk_put(clk[cluster]);
|
|
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
|
|
}
|
|
|
|
static void put_cluster_clk_and_freq_table(struct device *cpu_dev,
|
|
const struct cpumask *cpumask)
|
|
{
|
|
u32 cluster = cpu_to_cluster(cpu_dev->id);
|
|
int i;
|
|
|
|
if (atomic_dec_return(&cluster_usage[cluster]))
|
|
return;
|
|
|
|
if (cluster < MAX_CLUSTERS)
|
|
return _put_cluster_clk_and_freq_table(cpu_dev, cpumask);
|
|
|
|
for_each_present_cpu(i) {
|
|
struct device *cdev = get_cpu_device(i);
|
|
|
|
if (!cdev)
|
|
return;
|
|
|
|
_put_cluster_clk_and_freq_table(cdev, cpumask);
|
|
}
|
|
|
|
/* free virtual table */
|
|
kfree(freq_table[cluster]);
|
|
}
|
|
|
|
static int _get_cluster_clk_and_freq_table(struct device *cpu_dev,
|
|
const struct cpumask *cpumask)
|
|
{
|
|
u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
|
|
int ret;
|
|
|
|
if (freq_table[cluster])
|
|
return 0;
|
|
|
|
/*
|
|
* platform specific SPC code must initialise the opp table
|
|
* so just check if the OPP count is non-zero
|
|
*/
|
|
ret = dev_pm_opp_get_opp_count(cpu_dev) <= 0;
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]);
|
|
if (ret)
|
|
goto out;
|
|
|
|
clk[cluster] = clk_get(cpu_dev, NULL);
|
|
if (!IS_ERR(clk[cluster]))
|
|
return 0;
|
|
|
|
dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n",
|
|
__func__, cpu_dev->id, cluster);
|
|
ret = PTR_ERR(clk[cluster]);
|
|
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
|
|
|
|
out:
|
|
dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__,
|
|
cluster);
|
|
return ret;
|
|
}
|
|
|
|
static int get_cluster_clk_and_freq_table(struct device *cpu_dev,
|
|
const struct cpumask *cpumask)
|
|
{
|
|
u32 cluster = cpu_to_cluster(cpu_dev->id);
|
|
int i, ret;
|
|
|
|
if (atomic_inc_return(&cluster_usage[cluster]) != 1)
|
|
return 0;
|
|
|
|
if (cluster < MAX_CLUSTERS) {
|
|
ret = _get_cluster_clk_and_freq_table(cpu_dev, cpumask);
|
|
if (ret)
|
|
atomic_dec(&cluster_usage[cluster]);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Get data for all clusters and fill virtual cluster with a merge of
|
|
* both
|
|
*/
|
|
for_each_present_cpu(i) {
|
|
struct device *cdev = get_cpu_device(i);
|
|
|
|
if (!cdev)
|
|
return -ENODEV;
|
|
|
|
ret = _get_cluster_clk_and_freq_table(cdev, cpumask);
|
|
if (ret)
|
|
goto put_clusters;
|
|
}
|
|
|
|
ret = merge_cluster_tables();
|
|
if (ret)
|
|
goto put_clusters;
|
|
|
|
/* Assuming 2 cluster, set clk_big_min and clk_little_max */
|
|
clk_big_min = get_table_min(freq_table[A15_CLUSTER]);
|
|
clk_little_max = VIRT_FREQ(A7_CLUSTER,
|
|
get_table_max(freq_table[A7_CLUSTER]));
|
|
|
|
return 0;
|
|
|
|
put_clusters:
|
|
for_each_present_cpu(i) {
|
|
struct device *cdev = get_cpu_device(i);
|
|
|
|
if (!cdev)
|
|
return -ENODEV;
|
|
|
|
_put_cluster_clk_and_freq_table(cdev, cpumask);
|
|
}
|
|
|
|
atomic_dec(&cluster_usage[cluster]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Per-CPU initialization */
|
|
static int ve_spc_cpufreq_init(struct cpufreq_policy *policy)
|
|
{
|
|
u32 cur_cluster = cpu_to_cluster(policy->cpu);
|
|
struct device *cpu_dev;
|
|
int ret;
|
|
|
|
cpu_dev = get_cpu_device(policy->cpu);
|
|
if (!cpu_dev) {
|
|
pr_err("%s: failed to get cpu%d device\n", __func__,
|
|
policy->cpu);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (cur_cluster < MAX_CLUSTERS) {
|
|
int cpu;
|
|
|
|
dev_pm_opp_get_sharing_cpus(cpu_dev, policy->cpus);
|
|
|
|
for_each_cpu(cpu, policy->cpus)
|
|
per_cpu(physical_cluster, cpu) = cur_cluster;
|
|
} else {
|
|
/* Assumption: during init, we are always running on A15 */
|
|
per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER;
|
|
}
|
|
|
|
ret = get_cluster_clk_and_freq_table(cpu_dev, policy->cpus);
|
|
if (ret)
|
|
return ret;
|
|
|
|
policy->freq_table = freq_table[cur_cluster];
|
|
policy->cpuinfo.transition_latency = 1000000; /* 1 ms */
|
|
|
|
dev_pm_opp_of_register_em(cpu_dev, policy->cpus);
|
|
|
|
if (is_bL_switching_enabled())
|
|
per_cpu(cpu_last_req_freq, policy->cpu) =
|
|
clk_get_cpu_rate(policy->cpu);
|
|
|
|
dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu);
|
|
return 0;
|
|
}
|
|
|
|
static int ve_spc_cpufreq_exit(struct cpufreq_policy *policy)
|
|
{
|
|
struct device *cpu_dev;
|
|
int cur_cluster = cpu_to_cluster(policy->cpu);
|
|
|
|
if (cur_cluster < MAX_CLUSTERS) {
|
|
cpufreq_cooling_unregister(cdev[cur_cluster]);
|
|
cdev[cur_cluster] = NULL;
|
|
}
|
|
|
|
cpu_dev = get_cpu_device(policy->cpu);
|
|
if (!cpu_dev) {
|
|
pr_err("%s: failed to get cpu%d device\n", __func__,
|
|
policy->cpu);
|
|
return -ENODEV;
|
|
}
|
|
|
|
put_cluster_clk_and_freq_table(cpu_dev, policy->related_cpus);
|
|
return 0;
|
|
}
|
|
|
|
static void ve_spc_cpufreq_ready(struct cpufreq_policy *policy)
|
|
{
|
|
int cur_cluster = cpu_to_cluster(policy->cpu);
|
|
|
|
/* Do not register a cpu_cooling device if we are in IKS mode */
|
|
if (cur_cluster >= MAX_CLUSTERS)
|
|
return;
|
|
|
|
cdev[cur_cluster] = of_cpufreq_cooling_register(policy);
|
|
}
|
|
|
|
static struct cpufreq_driver ve_spc_cpufreq_driver = {
|
|
.name = "vexpress-spc",
|
|
.flags = CPUFREQ_STICKY |
|
|
CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
|
|
CPUFREQ_NEED_INITIAL_FREQ_CHECK,
|
|
.verify = cpufreq_generic_frequency_table_verify,
|
|
.target_index = ve_spc_cpufreq_set_target,
|
|
.get = ve_spc_cpufreq_get_rate,
|
|
.init = ve_spc_cpufreq_init,
|
|
.exit = ve_spc_cpufreq_exit,
|
|
.ready = ve_spc_cpufreq_ready,
|
|
.attr = cpufreq_generic_attr,
|
|
};
|
|
|
|
#ifdef CONFIG_BL_SWITCHER
|
|
static int bL_cpufreq_switcher_notifier(struct notifier_block *nfb,
|
|
unsigned long action, void *_arg)
|
|
{
|
|
pr_debug("%s: action: %ld\n", __func__, action);
|
|
|
|
switch (action) {
|
|
case BL_NOTIFY_PRE_ENABLE:
|
|
case BL_NOTIFY_PRE_DISABLE:
|
|
cpufreq_unregister_driver(&ve_spc_cpufreq_driver);
|
|
break;
|
|
|
|
case BL_NOTIFY_POST_ENABLE:
|
|
set_switching_enabled(true);
|
|
cpufreq_register_driver(&ve_spc_cpufreq_driver);
|
|
break;
|
|
|
|
case BL_NOTIFY_POST_DISABLE:
|
|
set_switching_enabled(false);
|
|
cpufreq_register_driver(&ve_spc_cpufreq_driver);
|
|
break;
|
|
|
|
default:
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block bL_switcher_notifier = {
|
|
.notifier_call = bL_cpufreq_switcher_notifier,
|
|
};
|
|
|
|
static int __bLs_register_notifier(void)
|
|
{
|
|
return bL_switcher_register_notifier(&bL_switcher_notifier);
|
|
}
|
|
|
|
static int __bLs_unregister_notifier(void)
|
|
{
|
|
return bL_switcher_unregister_notifier(&bL_switcher_notifier);
|
|
}
|
|
#else
|
|
static int __bLs_register_notifier(void) { return 0; }
|
|
static int __bLs_unregister_notifier(void) { return 0; }
|
|
#endif
|
|
|
|
static int ve_spc_cpufreq_probe(struct platform_device *pdev)
|
|
{
|
|
int ret, i;
|
|
|
|
set_switching_enabled(bL_switcher_get_enabled());
|
|
|
|
for (i = 0; i < MAX_CLUSTERS; i++)
|
|
mutex_init(&cluster_lock[i]);
|
|
|
|
ret = cpufreq_register_driver(&ve_spc_cpufreq_driver);
|
|
if (ret) {
|
|
pr_info("%s: Failed registering platform driver: %s, err: %d\n",
|
|
__func__, ve_spc_cpufreq_driver.name, ret);
|
|
} else {
|
|
ret = __bLs_register_notifier();
|
|
if (ret)
|
|
cpufreq_unregister_driver(&ve_spc_cpufreq_driver);
|
|
else
|
|
pr_info("%s: Registered platform driver: %s\n",
|
|
__func__, ve_spc_cpufreq_driver.name);
|
|
}
|
|
|
|
bL_switcher_put_enabled();
|
|
return ret;
|
|
}
|
|
|
|
static int ve_spc_cpufreq_remove(struct platform_device *pdev)
|
|
{
|
|
bL_switcher_get_enabled();
|
|
__bLs_unregister_notifier();
|
|
cpufreq_unregister_driver(&ve_spc_cpufreq_driver);
|
|
bL_switcher_put_enabled();
|
|
pr_info("%s: Un-registered platform driver: %s\n", __func__,
|
|
ve_spc_cpufreq_driver.name);
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver ve_spc_cpufreq_platdrv = {
|
|
.driver = {
|
|
.name = "vexpress-spc-cpufreq",
|
|
},
|
|
.probe = ve_spc_cpufreq_probe,
|
|
.remove = ve_spc_cpufreq_remove,
|
|
};
|
|
module_platform_driver(ve_spc_cpufreq_platdrv);
|
|
|
|
MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
|
|
MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
|
|
MODULE_DESCRIPTION("Vexpress SPC ARM big LITTLE cpufreq driver");
|
|
MODULE_LICENSE("GPL v2");
|