mirror of
https://github.com/torvalds/linux.git
synced 2024-11-27 06:31:52 +00:00
b1d5488a25
The below is one path where race between page_ext and offline of the respective memory blocks will cause use-after-free on the access of page_ext structure. process1 process2 --------- --------- a)doing /proc/page_owner doing memory offline through offline_pages. b) PageBuddy check is failed thus proceed to get the page_owner information through page_ext access. page_ext = lookup_page_ext(page); migrate_pages(); ................. Since all pages are successfully migrated as part of the offline operation,send MEM_OFFLINE notification where for page_ext it calls: offline_page_ext()--> __free_page_ext()--> free_page_ext()--> vfree(ms->page_ext) mem_section->page_ext = NULL c) Check for the PAGE_EXT flags in the page_ext->flags access results into the use-after-free (leading to the translation faults). As mentioned above, there is really no synchronization between page_ext access and its freeing in the memory_offline. The memory offline steps(roughly) on a memory block is as below: 1) Isolate all the pages 2) while(1) try free the pages to buddy.(->free_list[MIGRATE_ISOLATE]) 3) delete the pages from this buddy list. 4) Then free page_ext.(Note: The struct page is still alive as it is freed only during hot remove of the memory which frees the memmap, which steps the user might not perform). This design leads to the state where struct page is alive but the struct page_ext is freed, where the later is ideally part of the former which just representing the page_flags (check [3] for why this design is chosen). The abovementioned race is just one example __but the problem persists in the other paths too involving page_ext->flags access(eg: page_is_idle())__. Fix all the paths where offline races with page_ext access by maintaining synchronization with rcu lock and is achieved in 3 steps: 1) Invalidate all the page_ext's of the sections of a memory block by storing a flag in the LSB of mem_section->page_ext. 2) Wait until all the existing readers to finish working with the ->page_ext's with synchronize_rcu(). Any parallel process that starts after this call will not get page_ext, through lookup_page_ext(), for the block parallel offline operation is being performed. 3) Now safely free all sections ->page_ext's of the block on which offline operation is being performed. Note: If synchronize_rcu() takes time then optimizations can be done in this path through call_rcu()[2]. Thanks to David Hildenbrand for his views/suggestions on the initial discussion[1] and Pavan kondeti for various inputs on this patch. [1] https://lore.kernel.org/linux-mm/59edde13-4167-8550-86f0-11fc67882107@quicinc.com/ [2] https://lore.kernel.org/all/a26ce299-aed1-b8ad-711e-a49e82bdd180@quicinc.com/T/#u [3] https://lore.kernel.org/all/6fa6b7aa-731e-891c-3efb-a03d6a700efa@redhat.com/ [quic_charante@quicinc.com: rename label `loop' to `ext_put_continue' per David] Link: https://lkml.kernel.org/r/1661496993-11473-1-git-send-email-quic_charante@quicinc.com Link: https://lkml.kernel.org/r/1660830600-9068-1-git-send-email-quic_charante@quicinc.com Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavan Kondeti <quic_pkondeti@quicinc.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
522 lines
13 KiB
C
522 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/mm.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/page_ext.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/page_owner.h>
|
|
#include <linux/page_idle.h>
|
|
#include <linux/page_table_check.h>
|
|
#include <linux/rcupdate.h>
|
|
|
|
/*
|
|
* struct page extension
|
|
*
|
|
* This is the feature to manage memory for extended data per page.
|
|
*
|
|
* Until now, we must modify struct page itself to store extra data per page.
|
|
* This requires rebuilding the kernel and it is really time consuming process.
|
|
* And, sometimes, rebuild is impossible due to third party module dependency.
|
|
* At last, enlarging struct page could cause un-wanted system behaviour change.
|
|
*
|
|
* This feature is intended to overcome above mentioned problems. This feature
|
|
* allocates memory for extended data per page in certain place rather than
|
|
* the struct page itself. This memory can be accessed by the accessor
|
|
* functions provided by this code. During the boot process, it checks whether
|
|
* allocation of huge chunk of memory is needed or not. If not, it avoids
|
|
* allocating memory at all. With this advantage, we can include this feature
|
|
* into the kernel in default and can avoid rebuild and solve related problems.
|
|
*
|
|
* To help these things to work well, there are two callbacks for clients. One
|
|
* is the need callback which is mandatory if user wants to avoid useless
|
|
* memory allocation at boot-time. The other is optional, init callback, which
|
|
* is used to do proper initialization after memory is allocated.
|
|
*
|
|
* The need callback is used to decide whether extended memory allocation is
|
|
* needed or not. Sometimes users want to deactivate some features in this
|
|
* boot and extra memory would be unnecessary. In this case, to avoid
|
|
* allocating huge chunk of memory, each clients represent their need of
|
|
* extra memory through the need callback. If one of the need callbacks
|
|
* returns true, it means that someone needs extra memory so that
|
|
* page extension core should allocates memory for page extension. If
|
|
* none of need callbacks return true, memory isn't needed at all in this boot
|
|
* and page extension core can skip to allocate memory. As result,
|
|
* none of memory is wasted.
|
|
*
|
|
* When need callback returns true, page_ext checks if there is a request for
|
|
* extra memory through size in struct page_ext_operations. If it is non-zero,
|
|
* extra space is allocated for each page_ext entry and offset is returned to
|
|
* user through offset in struct page_ext_operations.
|
|
*
|
|
* The init callback is used to do proper initialization after page extension
|
|
* is completely initialized. In sparse memory system, extra memory is
|
|
* allocated some time later than memmap is allocated. In other words, lifetime
|
|
* of memory for page extension isn't same with memmap for struct page.
|
|
* Therefore, clients can't store extra data until page extension is
|
|
* initialized, even if pages are allocated and used freely. This could
|
|
* cause inadequate state of extra data per page, so, to prevent it, client
|
|
* can utilize this callback to initialize the state of it correctly.
|
|
*/
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
#define PAGE_EXT_INVALID (0x1)
|
|
#endif
|
|
|
|
#if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
|
|
static bool need_page_idle(void)
|
|
{
|
|
return true;
|
|
}
|
|
static struct page_ext_operations page_idle_ops __initdata = {
|
|
.need = need_page_idle,
|
|
};
|
|
#endif
|
|
|
|
static struct page_ext_operations *page_ext_ops[] __initdata = {
|
|
#ifdef CONFIG_PAGE_OWNER
|
|
&page_owner_ops,
|
|
#endif
|
|
#if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
|
|
&page_idle_ops,
|
|
#endif
|
|
#ifdef CONFIG_PAGE_TABLE_CHECK
|
|
&page_table_check_ops,
|
|
#endif
|
|
};
|
|
|
|
unsigned long page_ext_size = sizeof(struct page_ext);
|
|
|
|
static unsigned long total_usage;
|
|
static struct page_ext *lookup_page_ext(const struct page *page);
|
|
|
|
static bool __init invoke_need_callbacks(void)
|
|
{
|
|
int i;
|
|
int entries = ARRAY_SIZE(page_ext_ops);
|
|
bool need = false;
|
|
|
|
for (i = 0; i < entries; i++) {
|
|
if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
|
|
page_ext_ops[i]->offset = page_ext_size;
|
|
page_ext_size += page_ext_ops[i]->size;
|
|
need = true;
|
|
}
|
|
}
|
|
|
|
return need;
|
|
}
|
|
|
|
static void __init invoke_init_callbacks(void)
|
|
{
|
|
int i;
|
|
int entries = ARRAY_SIZE(page_ext_ops);
|
|
|
|
for (i = 0; i < entries; i++) {
|
|
if (page_ext_ops[i]->init)
|
|
page_ext_ops[i]->init();
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_SPARSEMEM
|
|
void __init page_ext_init_flatmem_late(void)
|
|
{
|
|
invoke_init_callbacks();
|
|
}
|
|
#endif
|
|
|
|
static inline struct page_ext *get_entry(void *base, unsigned long index)
|
|
{
|
|
return base + page_ext_size * index;
|
|
}
|
|
|
|
/**
|
|
* page_ext_get() - Get the extended information for a page.
|
|
* @page: The page we're interested in.
|
|
*
|
|
* Ensures that the page_ext will remain valid until page_ext_put()
|
|
* is called.
|
|
*
|
|
* Return: NULL if no page_ext exists for this page.
|
|
* Context: Any context. Caller may not sleep until they have called
|
|
* page_ext_put().
|
|
*/
|
|
struct page_ext *page_ext_get(struct page *page)
|
|
{
|
|
struct page_ext *page_ext;
|
|
|
|
rcu_read_lock();
|
|
page_ext = lookup_page_ext(page);
|
|
if (!page_ext) {
|
|
rcu_read_unlock();
|
|
return NULL;
|
|
}
|
|
|
|
return page_ext;
|
|
}
|
|
|
|
/**
|
|
* page_ext_put() - Working with page extended information is done.
|
|
* @page_ext - Page extended information received from page_ext_get().
|
|
*
|
|
* The page extended information of the page may not be valid after this
|
|
* function is called.
|
|
*
|
|
* Return: None.
|
|
* Context: Any context with corresponding page_ext_get() is called.
|
|
*/
|
|
void page_ext_put(struct page_ext *page_ext)
|
|
{
|
|
if (unlikely(!page_ext))
|
|
return;
|
|
|
|
rcu_read_unlock();
|
|
}
|
|
#ifndef CONFIG_SPARSEMEM
|
|
|
|
|
|
void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
|
|
{
|
|
pgdat->node_page_ext = NULL;
|
|
}
|
|
|
|
static struct page_ext *lookup_page_ext(const struct page *page)
|
|
{
|
|
unsigned long pfn = page_to_pfn(page);
|
|
unsigned long index;
|
|
struct page_ext *base;
|
|
|
|
WARN_ON_ONCE(!rcu_read_lock_held());
|
|
base = NODE_DATA(page_to_nid(page))->node_page_ext;
|
|
/*
|
|
* The sanity checks the page allocator does upon freeing a
|
|
* page can reach here before the page_ext arrays are
|
|
* allocated when feeding a range of pages to the allocator
|
|
* for the first time during bootup or memory hotplug.
|
|
*/
|
|
if (unlikely(!base))
|
|
return NULL;
|
|
index = pfn - round_down(node_start_pfn(page_to_nid(page)),
|
|
MAX_ORDER_NR_PAGES);
|
|
return get_entry(base, index);
|
|
}
|
|
|
|
static int __init alloc_node_page_ext(int nid)
|
|
{
|
|
struct page_ext *base;
|
|
unsigned long table_size;
|
|
unsigned long nr_pages;
|
|
|
|
nr_pages = NODE_DATA(nid)->node_spanned_pages;
|
|
if (!nr_pages)
|
|
return 0;
|
|
|
|
/*
|
|
* Need extra space if node range is not aligned with
|
|
* MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
|
|
* checks buddy's status, range could be out of exact node range.
|
|
*/
|
|
if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
|
|
!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
|
|
nr_pages += MAX_ORDER_NR_PAGES;
|
|
|
|
table_size = page_ext_size * nr_pages;
|
|
|
|
base = memblock_alloc_try_nid(
|
|
table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
|
|
MEMBLOCK_ALLOC_ACCESSIBLE, nid);
|
|
if (!base)
|
|
return -ENOMEM;
|
|
NODE_DATA(nid)->node_page_ext = base;
|
|
total_usage += table_size;
|
|
return 0;
|
|
}
|
|
|
|
void __init page_ext_init_flatmem(void)
|
|
{
|
|
|
|
int nid, fail;
|
|
|
|
if (!invoke_need_callbacks())
|
|
return;
|
|
|
|
for_each_online_node(nid) {
|
|
fail = alloc_node_page_ext(nid);
|
|
if (fail)
|
|
goto fail;
|
|
}
|
|
pr_info("allocated %ld bytes of page_ext\n", total_usage);
|
|
return;
|
|
|
|
fail:
|
|
pr_crit("allocation of page_ext failed.\n");
|
|
panic("Out of memory");
|
|
}
|
|
|
|
#else /* CONFIG_SPARSEMEM */
|
|
static bool page_ext_invalid(struct page_ext *page_ext)
|
|
{
|
|
return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID);
|
|
}
|
|
|
|
static struct page_ext *lookup_page_ext(const struct page *page)
|
|
{
|
|
unsigned long pfn = page_to_pfn(page);
|
|
struct mem_section *section = __pfn_to_section(pfn);
|
|
struct page_ext *page_ext = READ_ONCE(section->page_ext);
|
|
|
|
WARN_ON_ONCE(!rcu_read_lock_held());
|
|
/*
|
|
* The sanity checks the page allocator does upon freeing a
|
|
* page can reach here before the page_ext arrays are
|
|
* allocated when feeding a range of pages to the allocator
|
|
* for the first time during bootup or memory hotplug.
|
|
*/
|
|
if (page_ext_invalid(page_ext))
|
|
return NULL;
|
|
return get_entry(page_ext, pfn);
|
|
}
|
|
|
|
static void *__meminit alloc_page_ext(size_t size, int nid)
|
|
{
|
|
gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
|
|
void *addr = NULL;
|
|
|
|
addr = alloc_pages_exact_nid(nid, size, flags);
|
|
if (addr) {
|
|
kmemleak_alloc(addr, size, 1, flags);
|
|
return addr;
|
|
}
|
|
|
|
addr = vzalloc_node(size, nid);
|
|
|
|
return addr;
|
|
}
|
|
|
|
static int __meminit init_section_page_ext(unsigned long pfn, int nid)
|
|
{
|
|
struct mem_section *section;
|
|
struct page_ext *base;
|
|
unsigned long table_size;
|
|
|
|
section = __pfn_to_section(pfn);
|
|
|
|
if (section->page_ext)
|
|
return 0;
|
|
|
|
table_size = page_ext_size * PAGES_PER_SECTION;
|
|
base = alloc_page_ext(table_size, nid);
|
|
|
|
/*
|
|
* The value stored in section->page_ext is (base - pfn)
|
|
* and it does not point to the memory block allocated above,
|
|
* causing kmemleak false positives.
|
|
*/
|
|
kmemleak_not_leak(base);
|
|
|
|
if (!base) {
|
|
pr_err("page ext allocation failure\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* The passed "pfn" may not be aligned to SECTION. For the calculation
|
|
* we need to apply a mask.
|
|
*/
|
|
pfn &= PAGE_SECTION_MASK;
|
|
section->page_ext = (void *)base - page_ext_size * pfn;
|
|
total_usage += table_size;
|
|
return 0;
|
|
}
|
|
|
|
static void free_page_ext(void *addr)
|
|
{
|
|
if (is_vmalloc_addr(addr)) {
|
|
vfree(addr);
|
|
} else {
|
|
struct page *page = virt_to_page(addr);
|
|
size_t table_size;
|
|
|
|
table_size = page_ext_size * PAGES_PER_SECTION;
|
|
|
|
BUG_ON(PageReserved(page));
|
|
kmemleak_free(addr);
|
|
free_pages_exact(addr, table_size);
|
|
}
|
|
}
|
|
|
|
static void __free_page_ext(unsigned long pfn)
|
|
{
|
|
struct mem_section *ms;
|
|
struct page_ext *base;
|
|
|
|
ms = __pfn_to_section(pfn);
|
|
if (!ms || !ms->page_ext)
|
|
return;
|
|
|
|
base = READ_ONCE(ms->page_ext);
|
|
/*
|
|
* page_ext here can be valid while doing the roll back
|
|
* operation in online_page_ext().
|
|
*/
|
|
if (page_ext_invalid(base))
|
|
base = (void *)base - PAGE_EXT_INVALID;
|
|
WRITE_ONCE(ms->page_ext, NULL);
|
|
|
|
base = get_entry(base, pfn);
|
|
free_page_ext(base);
|
|
}
|
|
|
|
static void __invalidate_page_ext(unsigned long pfn)
|
|
{
|
|
struct mem_section *ms;
|
|
void *val;
|
|
|
|
ms = __pfn_to_section(pfn);
|
|
if (!ms || !ms->page_ext)
|
|
return;
|
|
val = (void *)ms->page_ext + PAGE_EXT_INVALID;
|
|
WRITE_ONCE(ms->page_ext, val);
|
|
}
|
|
|
|
static int __meminit online_page_ext(unsigned long start_pfn,
|
|
unsigned long nr_pages,
|
|
int nid)
|
|
{
|
|
unsigned long start, end, pfn;
|
|
int fail = 0;
|
|
|
|
start = SECTION_ALIGN_DOWN(start_pfn);
|
|
end = SECTION_ALIGN_UP(start_pfn + nr_pages);
|
|
|
|
if (nid == NUMA_NO_NODE) {
|
|
/*
|
|
* In this case, "nid" already exists and contains valid memory.
|
|
* "start_pfn" passed to us is a pfn which is an arg for
|
|
* online__pages(), and start_pfn should exist.
|
|
*/
|
|
nid = pfn_to_nid(start_pfn);
|
|
VM_BUG_ON(!node_online(nid));
|
|
}
|
|
|
|
for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
|
|
fail = init_section_page_ext(pfn, nid);
|
|
if (!fail)
|
|
return 0;
|
|
|
|
/* rollback */
|
|
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
|
|
__free_page_ext(pfn);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int __meminit offline_page_ext(unsigned long start_pfn,
|
|
unsigned long nr_pages)
|
|
{
|
|
unsigned long start, end, pfn;
|
|
|
|
start = SECTION_ALIGN_DOWN(start_pfn);
|
|
end = SECTION_ALIGN_UP(start_pfn + nr_pages);
|
|
|
|
/*
|
|
* Freeing of page_ext is done in 3 steps to avoid
|
|
* use-after-free of it:
|
|
* 1) Traverse all the sections and mark their page_ext
|
|
* as invalid.
|
|
* 2) Wait for all the existing users of page_ext who
|
|
* started before invalidation to finish.
|
|
* 3) Free the page_ext.
|
|
*/
|
|
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
|
|
__invalidate_page_ext(pfn);
|
|
|
|
synchronize_rcu();
|
|
|
|
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
|
|
__free_page_ext(pfn);
|
|
return 0;
|
|
|
|
}
|
|
|
|
static int __meminit page_ext_callback(struct notifier_block *self,
|
|
unsigned long action, void *arg)
|
|
{
|
|
struct memory_notify *mn = arg;
|
|
int ret = 0;
|
|
|
|
switch (action) {
|
|
case MEM_GOING_ONLINE:
|
|
ret = online_page_ext(mn->start_pfn,
|
|
mn->nr_pages, mn->status_change_nid);
|
|
break;
|
|
case MEM_OFFLINE:
|
|
offline_page_ext(mn->start_pfn,
|
|
mn->nr_pages);
|
|
break;
|
|
case MEM_CANCEL_ONLINE:
|
|
offline_page_ext(mn->start_pfn,
|
|
mn->nr_pages);
|
|
break;
|
|
case MEM_GOING_OFFLINE:
|
|
break;
|
|
case MEM_ONLINE:
|
|
case MEM_CANCEL_OFFLINE:
|
|
break;
|
|
}
|
|
|
|
return notifier_from_errno(ret);
|
|
}
|
|
|
|
void __init page_ext_init(void)
|
|
{
|
|
unsigned long pfn;
|
|
int nid;
|
|
|
|
if (!invoke_need_callbacks())
|
|
return;
|
|
|
|
for_each_node_state(nid, N_MEMORY) {
|
|
unsigned long start_pfn, end_pfn;
|
|
|
|
start_pfn = node_start_pfn(nid);
|
|
end_pfn = node_end_pfn(nid);
|
|
/*
|
|
* start_pfn and end_pfn may not be aligned to SECTION and the
|
|
* page->flags of out of node pages are not initialized. So we
|
|
* scan [start_pfn, the biggest section's pfn < end_pfn) here.
|
|
*/
|
|
for (pfn = start_pfn; pfn < end_pfn;
|
|
pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
|
|
|
|
if (!pfn_valid(pfn))
|
|
continue;
|
|
/*
|
|
* Nodes's pfns can be overlapping.
|
|
* We know some arch can have a nodes layout such as
|
|
* -------------pfn-------------->
|
|
* N0 | N1 | N2 | N0 | N1 | N2|....
|
|
*/
|
|
if (pfn_to_nid(pfn) != nid)
|
|
continue;
|
|
if (init_section_page_ext(pfn, nid))
|
|
goto oom;
|
|
cond_resched();
|
|
}
|
|
}
|
|
hotplug_memory_notifier(page_ext_callback, 0);
|
|
pr_info("allocated %ld bytes of page_ext\n", total_usage);
|
|
invoke_init_callbacks();
|
|
return;
|
|
|
|
oom:
|
|
panic("Out of memory");
|
|
}
|
|
|
|
void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
|
|
{
|
|
}
|
|
|
|
#endif
|