mirror of
https://github.com/torvalds/linux.git
synced 2024-11-24 13:11:40 +00:00
0f25f0e4ef
Making sure that struct fd instances are destroyed in the same scope where they'd been created, getting rid of reassignments and passing them by reference, converting to CLASS(fd{,_pos,_raw}). We are getting very close to having the memory safety of that stuff trivial to verify. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZzdikAAKCRBZ7Krx/gZQ 69nJAQCmbQHK3TGUbQhOw6MJXOK9ezpyEDN3FZb4jsu38vTIdgEA6OxAYDO2m2g9 CN18glYmD3wRyU6Bwl4vGODouSJvDgA= =gVH3 -----END PGP SIGNATURE----- Merge tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull 'struct fd' class updates from Al Viro: "The bulk of struct fd memory safety stuff Making sure that struct fd instances are destroyed in the same scope where they'd been created, getting rid of reassignments and passing them by reference, converting to CLASS(fd{,_pos,_raw}). We are getting very close to having the memory safety of that stuff trivial to verify" * tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (28 commits) deal with the last remaing boolean uses of fd_file() css_set_fork(): switch to CLASS(fd_raw, ...) memcg_write_event_control(): switch to CLASS(fd) assorted variants of irqfd setup: convert to CLASS(fd) do_pollfd(): convert to CLASS(fd) convert do_select() convert vfs_dedupe_file_range(). convert cifs_ioctl_copychunk() convert media_request_get_by_fd() convert spu_run(2) switch spufs_calls_{get,put}() to CLASS() use convert cachestat(2) convert do_preadv()/do_pwritev() fdget(), more trivial conversions fdget(), trivial conversions privcmd_ioeventfd_assign(): don't open-code eventfd_ctx_fdget() o2hb_region_dev_store(): avoid goto around fdget()/fdput() introduce "fd_pos" class, convert fdget_pos() users to it. fdget_raw() users: switch to CLASS(fd_raw) convert vmsplice() to CLASS(fd) ...
3100 lines
77 KiB
C
3100 lines
77 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/pagewalk.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/swap_cgroup.h>
|
|
#include <linux/eventfd.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/file.h>
|
|
#include <linux/seq_buf.h>
|
|
|
|
#include "internal.h"
|
|
#include "swap.h"
|
|
#include "memcontrol-v1.h"
|
|
|
|
/*
|
|
* Cgroups above their limits are maintained in a RB-Tree, independent of
|
|
* their hierarchy representation
|
|
*/
|
|
|
|
struct mem_cgroup_tree_per_node {
|
|
struct rb_root rb_root;
|
|
struct rb_node *rb_rightmost;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
struct mem_cgroup_tree {
|
|
struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
|
|
};
|
|
|
|
static struct mem_cgroup_tree soft_limit_tree __read_mostly;
|
|
|
|
/*
|
|
* Maximum loops in mem_cgroup_soft_reclaim(), used for soft
|
|
* limit reclaim to prevent infinite loops, if they ever occur.
|
|
*/
|
|
#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
|
|
#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
|
|
|
|
/* Stuffs for move charges at task migration. */
|
|
/*
|
|
* Types of charges to be moved.
|
|
*/
|
|
#define MOVE_ANON 0x1ULL
|
|
#define MOVE_FILE 0x2ULL
|
|
#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
|
|
|
|
/* "mc" and its members are protected by cgroup_mutex */
|
|
static struct move_charge_struct {
|
|
spinlock_t lock; /* for from, to */
|
|
struct mm_struct *mm;
|
|
struct mem_cgroup *from;
|
|
struct mem_cgroup *to;
|
|
unsigned long flags;
|
|
unsigned long precharge;
|
|
unsigned long moved_charge;
|
|
unsigned long moved_swap;
|
|
struct task_struct *moving_task; /* a task moving charges */
|
|
wait_queue_head_t waitq; /* a waitq for other context */
|
|
} mc = {
|
|
.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
|
|
.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
|
|
};
|
|
|
|
/* for OOM */
|
|
struct mem_cgroup_eventfd_list {
|
|
struct list_head list;
|
|
struct eventfd_ctx *eventfd;
|
|
};
|
|
|
|
/*
|
|
* cgroup_event represents events which userspace want to receive.
|
|
*/
|
|
struct mem_cgroup_event {
|
|
/*
|
|
* memcg which the event belongs to.
|
|
*/
|
|
struct mem_cgroup *memcg;
|
|
/*
|
|
* eventfd to signal userspace about the event.
|
|
*/
|
|
struct eventfd_ctx *eventfd;
|
|
/*
|
|
* Each of these stored in a list by the cgroup.
|
|
*/
|
|
struct list_head list;
|
|
/*
|
|
* register_event() callback will be used to add new userspace
|
|
* waiter for changes related to this event. Use eventfd_signal()
|
|
* on eventfd to send notification to userspace.
|
|
*/
|
|
int (*register_event)(struct mem_cgroup *memcg,
|
|
struct eventfd_ctx *eventfd, const char *args);
|
|
/*
|
|
* unregister_event() callback will be called when userspace closes
|
|
* the eventfd or on cgroup removing. This callback must be set,
|
|
* if you want provide notification functionality.
|
|
*/
|
|
void (*unregister_event)(struct mem_cgroup *memcg,
|
|
struct eventfd_ctx *eventfd);
|
|
/*
|
|
* All fields below needed to unregister event when
|
|
* userspace closes eventfd.
|
|
*/
|
|
poll_table pt;
|
|
wait_queue_head_t *wqh;
|
|
wait_queue_entry_t wait;
|
|
struct work_struct remove;
|
|
};
|
|
|
|
#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
|
|
#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
|
|
#define MEMFILE_ATTR(val) ((val) & 0xffff)
|
|
|
|
enum {
|
|
RES_USAGE,
|
|
RES_LIMIT,
|
|
RES_MAX_USAGE,
|
|
RES_FAILCNT,
|
|
RES_SOFT_LIMIT,
|
|
};
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
static struct lockdep_map memcg_oom_lock_dep_map = {
|
|
.name = "memcg_oom_lock",
|
|
};
|
|
#endif
|
|
|
|
DEFINE_SPINLOCK(memcg_oom_lock);
|
|
|
|
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
|
|
struct mem_cgroup_tree_per_node *mctz,
|
|
unsigned long new_usage_in_excess)
|
|
{
|
|
struct rb_node **p = &mctz->rb_root.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct mem_cgroup_per_node *mz_node;
|
|
bool rightmost = true;
|
|
|
|
if (mz->on_tree)
|
|
return;
|
|
|
|
mz->usage_in_excess = new_usage_in_excess;
|
|
if (!mz->usage_in_excess)
|
|
return;
|
|
while (*p) {
|
|
parent = *p;
|
|
mz_node = rb_entry(parent, struct mem_cgroup_per_node,
|
|
tree_node);
|
|
if (mz->usage_in_excess < mz_node->usage_in_excess) {
|
|
p = &(*p)->rb_left;
|
|
rightmost = false;
|
|
} else {
|
|
p = &(*p)->rb_right;
|
|
}
|
|
}
|
|
|
|
if (rightmost)
|
|
mctz->rb_rightmost = &mz->tree_node;
|
|
|
|
rb_link_node(&mz->tree_node, parent, p);
|
|
rb_insert_color(&mz->tree_node, &mctz->rb_root);
|
|
mz->on_tree = true;
|
|
}
|
|
|
|
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
|
|
struct mem_cgroup_tree_per_node *mctz)
|
|
{
|
|
if (!mz->on_tree)
|
|
return;
|
|
|
|
if (&mz->tree_node == mctz->rb_rightmost)
|
|
mctz->rb_rightmost = rb_prev(&mz->tree_node);
|
|
|
|
rb_erase(&mz->tree_node, &mctz->rb_root);
|
|
mz->on_tree = false;
|
|
}
|
|
|
|
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
|
|
struct mem_cgroup_tree_per_node *mctz)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mctz->lock, flags);
|
|
__mem_cgroup_remove_exceeded(mz, mctz);
|
|
spin_unlock_irqrestore(&mctz->lock, flags);
|
|
}
|
|
|
|
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
|
|
{
|
|
unsigned long nr_pages = page_counter_read(&memcg->memory);
|
|
unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
|
|
unsigned long excess = 0;
|
|
|
|
if (nr_pages > soft_limit)
|
|
excess = nr_pages - soft_limit;
|
|
|
|
return excess;
|
|
}
|
|
|
|
static void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
|
|
{
|
|
unsigned long excess;
|
|
struct mem_cgroup_per_node *mz;
|
|
struct mem_cgroup_tree_per_node *mctz;
|
|
|
|
if (lru_gen_enabled()) {
|
|
if (soft_limit_excess(memcg))
|
|
lru_gen_soft_reclaim(memcg, nid);
|
|
return;
|
|
}
|
|
|
|
mctz = soft_limit_tree.rb_tree_per_node[nid];
|
|
if (!mctz)
|
|
return;
|
|
/*
|
|
* Necessary to update all ancestors when hierarchy is used.
|
|
* because their event counter is not touched.
|
|
*/
|
|
for (; memcg; memcg = parent_mem_cgroup(memcg)) {
|
|
mz = memcg->nodeinfo[nid];
|
|
excess = soft_limit_excess(memcg);
|
|
/*
|
|
* We have to update the tree if mz is on RB-tree or
|
|
* mem is over its softlimit.
|
|
*/
|
|
if (excess || mz->on_tree) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mctz->lock, flags);
|
|
/* if on-tree, remove it */
|
|
if (mz->on_tree)
|
|
__mem_cgroup_remove_exceeded(mz, mctz);
|
|
/*
|
|
* Insert again. mz->usage_in_excess will be updated.
|
|
* If excess is 0, no tree ops.
|
|
*/
|
|
__mem_cgroup_insert_exceeded(mz, mctz, excess);
|
|
spin_unlock_irqrestore(&mctz->lock, flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
void memcg1_remove_from_trees(struct mem_cgroup *memcg)
|
|
{
|
|
struct mem_cgroup_tree_per_node *mctz;
|
|
struct mem_cgroup_per_node *mz;
|
|
int nid;
|
|
|
|
for_each_node(nid) {
|
|
mz = memcg->nodeinfo[nid];
|
|
mctz = soft_limit_tree.rb_tree_per_node[nid];
|
|
if (mctz)
|
|
mem_cgroup_remove_exceeded(mz, mctz);
|
|
}
|
|
}
|
|
|
|
static struct mem_cgroup_per_node *
|
|
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
|
|
{
|
|
struct mem_cgroup_per_node *mz;
|
|
|
|
retry:
|
|
mz = NULL;
|
|
if (!mctz->rb_rightmost)
|
|
goto done; /* Nothing to reclaim from */
|
|
|
|
mz = rb_entry(mctz->rb_rightmost,
|
|
struct mem_cgroup_per_node, tree_node);
|
|
/*
|
|
* Remove the node now but someone else can add it back,
|
|
* we will to add it back at the end of reclaim to its correct
|
|
* position in the tree.
|
|
*/
|
|
__mem_cgroup_remove_exceeded(mz, mctz);
|
|
if (!soft_limit_excess(mz->memcg) ||
|
|
!css_tryget(&mz->memcg->css))
|
|
goto retry;
|
|
done:
|
|
return mz;
|
|
}
|
|
|
|
static struct mem_cgroup_per_node *
|
|
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
|
|
{
|
|
struct mem_cgroup_per_node *mz;
|
|
|
|
spin_lock_irq(&mctz->lock);
|
|
mz = __mem_cgroup_largest_soft_limit_node(mctz);
|
|
spin_unlock_irq(&mctz->lock);
|
|
return mz;
|
|
}
|
|
|
|
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
|
|
pg_data_t *pgdat,
|
|
gfp_t gfp_mask,
|
|
unsigned long *total_scanned)
|
|
{
|
|
struct mem_cgroup *victim = NULL;
|
|
int total = 0;
|
|
int loop = 0;
|
|
unsigned long excess;
|
|
unsigned long nr_scanned;
|
|
struct mem_cgroup_reclaim_cookie reclaim = {
|
|
.pgdat = pgdat,
|
|
};
|
|
|
|
excess = soft_limit_excess(root_memcg);
|
|
|
|
while (1) {
|
|
victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
|
|
if (!victim) {
|
|
loop++;
|
|
if (loop >= 2) {
|
|
/*
|
|
* If we have not been able to reclaim
|
|
* anything, it might because there are
|
|
* no reclaimable pages under this hierarchy
|
|
*/
|
|
if (!total)
|
|
break;
|
|
/*
|
|
* We want to do more targeted reclaim.
|
|
* excess >> 2 is not to excessive so as to
|
|
* reclaim too much, nor too less that we keep
|
|
* coming back to reclaim from this cgroup
|
|
*/
|
|
if (total >= (excess >> 2) ||
|
|
(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
total += mem_cgroup_shrink_node(victim, gfp_mask, false,
|
|
pgdat, &nr_scanned);
|
|
*total_scanned += nr_scanned;
|
|
if (!soft_limit_excess(root_memcg))
|
|
break;
|
|
}
|
|
mem_cgroup_iter_break(root_memcg, victim);
|
|
return total;
|
|
}
|
|
|
|
unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
|
|
gfp_t gfp_mask,
|
|
unsigned long *total_scanned)
|
|
{
|
|
unsigned long nr_reclaimed = 0;
|
|
struct mem_cgroup_per_node *mz, *next_mz = NULL;
|
|
unsigned long reclaimed;
|
|
int loop = 0;
|
|
struct mem_cgroup_tree_per_node *mctz;
|
|
unsigned long excess;
|
|
|
|
if (lru_gen_enabled())
|
|
return 0;
|
|
|
|
if (order > 0)
|
|
return 0;
|
|
|
|
mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
|
|
|
|
/*
|
|
* Do not even bother to check the largest node if the root
|
|
* is empty. Do it lockless to prevent lock bouncing. Races
|
|
* are acceptable as soft limit is best effort anyway.
|
|
*/
|
|
if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
|
|
return 0;
|
|
|
|
/*
|
|
* This loop can run a while, specially if mem_cgroup's continuously
|
|
* keep exceeding their soft limit and putting the system under
|
|
* pressure
|
|
*/
|
|
do {
|
|
if (next_mz)
|
|
mz = next_mz;
|
|
else
|
|
mz = mem_cgroup_largest_soft_limit_node(mctz);
|
|
if (!mz)
|
|
break;
|
|
|
|
reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
|
|
gfp_mask, total_scanned);
|
|
nr_reclaimed += reclaimed;
|
|
spin_lock_irq(&mctz->lock);
|
|
|
|
/*
|
|
* If we failed to reclaim anything from this memory cgroup
|
|
* it is time to move on to the next cgroup
|
|
*/
|
|
next_mz = NULL;
|
|
if (!reclaimed)
|
|
next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
|
|
|
|
excess = soft_limit_excess(mz->memcg);
|
|
/*
|
|
* One school of thought says that we should not add
|
|
* back the node to the tree if reclaim returns 0.
|
|
* But our reclaim could return 0, simply because due
|
|
* to priority we are exposing a smaller subset of
|
|
* memory to reclaim from. Consider this as a longer
|
|
* term TODO.
|
|
*/
|
|
/* If excess == 0, no tree ops */
|
|
__mem_cgroup_insert_exceeded(mz, mctz, excess);
|
|
spin_unlock_irq(&mctz->lock);
|
|
css_put(&mz->memcg->css);
|
|
loop++;
|
|
/*
|
|
* Could not reclaim anything and there are no more
|
|
* mem cgroups to try or we seem to be looping without
|
|
* reclaiming anything.
|
|
*/
|
|
if (!nr_reclaimed &&
|
|
(next_mz == NULL ||
|
|
loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
|
|
break;
|
|
} while (!nr_reclaimed);
|
|
if (next_mz)
|
|
css_put(&next_mz->memcg->css);
|
|
return nr_reclaimed;
|
|
}
|
|
|
|
/*
|
|
* A routine for checking "mem" is under move_account() or not.
|
|
*
|
|
* Checking a cgroup is mc.from or mc.to or under hierarchy of
|
|
* moving cgroups. This is for waiting at high-memory pressure
|
|
* caused by "move".
|
|
*/
|
|
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
|
|
{
|
|
struct mem_cgroup *from;
|
|
struct mem_cgroup *to;
|
|
bool ret = false;
|
|
/*
|
|
* Unlike task_move routines, we access mc.to, mc.from not under
|
|
* mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
|
|
*/
|
|
spin_lock(&mc.lock);
|
|
from = mc.from;
|
|
to = mc.to;
|
|
if (!from)
|
|
goto unlock;
|
|
|
|
ret = mem_cgroup_is_descendant(from, memcg) ||
|
|
mem_cgroup_is_descendant(to, memcg);
|
|
unlock:
|
|
spin_unlock(&mc.lock);
|
|
return ret;
|
|
}
|
|
|
|
bool memcg1_wait_acct_move(struct mem_cgroup *memcg)
|
|
{
|
|
if (mc.moving_task && current != mc.moving_task) {
|
|
if (mem_cgroup_under_move(memcg)) {
|
|
DEFINE_WAIT(wait);
|
|
prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
|
|
/* moving charge context might have finished. */
|
|
if (mc.moving_task)
|
|
schedule();
|
|
finish_wait(&mc.waitq, &wait);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* folio_memcg_lock - Bind a folio to its memcg.
|
|
* @folio: The folio.
|
|
*
|
|
* This function prevents unlocked LRU folios from being moved to
|
|
* another cgroup.
|
|
*
|
|
* It ensures lifetime of the bound memcg. The caller is responsible
|
|
* for the lifetime of the folio.
|
|
*/
|
|
void folio_memcg_lock(struct folio *folio)
|
|
{
|
|
struct mem_cgroup *memcg;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* The RCU lock is held throughout the transaction. The fast
|
|
* path can get away without acquiring the memcg->move_lock
|
|
* because page moving starts with an RCU grace period.
|
|
*/
|
|
rcu_read_lock();
|
|
|
|
if (mem_cgroup_disabled())
|
|
return;
|
|
again:
|
|
memcg = folio_memcg(folio);
|
|
if (unlikely(!memcg))
|
|
return;
|
|
|
|
#ifdef CONFIG_PROVE_LOCKING
|
|
local_irq_save(flags);
|
|
might_lock(&memcg->move_lock);
|
|
local_irq_restore(flags);
|
|
#endif
|
|
|
|
if (atomic_read(&memcg->moving_account) <= 0)
|
|
return;
|
|
|
|
spin_lock_irqsave(&memcg->move_lock, flags);
|
|
if (memcg != folio_memcg(folio)) {
|
|
spin_unlock_irqrestore(&memcg->move_lock, flags);
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* When charge migration first begins, we can have multiple
|
|
* critical sections holding the fast-path RCU lock and one
|
|
* holding the slowpath move_lock. Track the task who has the
|
|
* move_lock for folio_memcg_unlock().
|
|
*/
|
|
memcg->move_lock_task = current;
|
|
memcg->move_lock_flags = flags;
|
|
}
|
|
|
|
static void __folio_memcg_unlock(struct mem_cgroup *memcg)
|
|
{
|
|
if (memcg && memcg->move_lock_task == current) {
|
|
unsigned long flags = memcg->move_lock_flags;
|
|
|
|
memcg->move_lock_task = NULL;
|
|
memcg->move_lock_flags = 0;
|
|
|
|
spin_unlock_irqrestore(&memcg->move_lock, flags);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/**
|
|
* folio_memcg_unlock - Release the binding between a folio and its memcg.
|
|
* @folio: The folio.
|
|
*
|
|
* This releases the binding created by folio_memcg_lock(). This does
|
|
* not change the accounting of this folio to its memcg, but it does
|
|
* permit others to change it.
|
|
*/
|
|
void folio_memcg_unlock(struct folio *folio)
|
|
{
|
|
__folio_memcg_unlock(folio_memcg(folio));
|
|
}
|
|
|
|
#ifdef CONFIG_SWAP
|
|
/**
|
|
* mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
|
|
* @entry: swap entry to be moved
|
|
* @from: mem_cgroup which the entry is moved from
|
|
* @to: mem_cgroup which the entry is moved to
|
|
*
|
|
* It succeeds only when the swap_cgroup's record for this entry is the same
|
|
* as the mem_cgroup's id of @from.
|
|
*
|
|
* Returns 0 on success, -EINVAL on failure.
|
|
*
|
|
* The caller must have charged to @to, IOW, called page_counter_charge() about
|
|
* both res and memsw, and called css_get().
|
|
*/
|
|
static int mem_cgroup_move_swap_account(swp_entry_t entry,
|
|
struct mem_cgroup *from, struct mem_cgroup *to)
|
|
{
|
|
unsigned short old_id, new_id;
|
|
|
|
old_id = mem_cgroup_id(from);
|
|
new_id = mem_cgroup_id(to);
|
|
|
|
if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
|
|
mod_memcg_state(from, MEMCG_SWAP, -1);
|
|
mod_memcg_state(to, MEMCG_SWAP, 1);
|
|
return 0;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
#else
|
|
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
|
|
struct mem_cgroup *from, struct mem_cgroup *to)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
|
|
struct cftype *cft)
|
|
{
|
|
return mem_cgroup_from_css(css)->move_charge_at_immigrate;
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
|
|
struct cftype *cft, u64 val)
|
|
{
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
|
|
|
|
pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
|
|
"Please report your usecase to linux-mm@kvack.org if you "
|
|
"depend on this functionality.\n");
|
|
|
|
if (val & ~MOVE_MASK)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* No kind of locking is needed in here, because ->can_attach() will
|
|
* check this value once in the beginning of the process, and then carry
|
|
* on with stale data. This means that changes to this value will only
|
|
* affect task migrations starting after the change.
|
|
*/
|
|
memcg->move_charge_at_immigrate = val;
|
|
return 0;
|
|
}
|
|
#else
|
|
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
|
|
struct cftype *cft, u64 val)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MMU
|
|
/* Handlers for move charge at task migration. */
|
|
static int mem_cgroup_do_precharge(unsigned long count)
|
|
{
|
|
int ret;
|
|
|
|
/* Try a single bulk charge without reclaim first, kswapd may wake */
|
|
ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
|
|
if (!ret) {
|
|
mc.precharge += count;
|
|
return ret;
|
|
}
|
|
|
|
/* Try charges one by one with reclaim, but do not retry */
|
|
while (count--) {
|
|
ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
|
|
if (ret)
|
|
return ret;
|
|
mc.precharge++;
|
|
cond_resched();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
union mc_target {
|
|
struct folio *folio;
|
|
swp_entry_t ent;
|
|
};
|
|
|
|
enum mc_target_type {
|
|
MC_TARGET_NONE = 0,
|
|
MC_TARGET_PAGE,
|
|
MC_TARGET_SWAP,
|
|
MC_TARGET_DEVICE,
|
|
};
|
|
|
|
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t ptent)
|
|
{
|
|
struct page *page = vm_normal_page(vma, addr, ptent);
|
|
|
|
if (!page)
|
|
return NULL;
|
|
if (PageAnon(page)) {
|
|
if (!(mc.flags & MOVE_ANON))
|
|
return NULL;
|
|
} else {
|
|
if (!(mc.flags & MOVE_FILE))
|
|
return NULL;
|
|
}
|
|
get_page(page);
|
|
|
|
return page;
|
|
}
|
|
|
|
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
|
|
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
|
|
pte_t ptent, swp_entry_t *entry)
|
|
{
|
|
struct page *page = NULL;
|
|
swp_entry_t ent = pte_to_swp_entry(ptent);
|
|
|
|
if (!(mc.flags & MOVE_ANON))
|
|
return NULL;
|
|
|
|
/*
|
|
* Handle device private pages that are not accessible by the CPU, but
|
|
* stored as special swap entries in the page table.
|
|
*/
|
|
if (is_device_private_entry(ent)) {
|
|
page = pfn_swap_entry_to_page(ent);
|
|
if (!get_page_unless_zero(page))
|
|
return NULL;
|
|
return page;
|
|
}
|
|
|
|
if (non_swap_entry(ent))
|
|
return NULL;
|
|
|
|
/*
|
|
* Because swap_cache_get_folio() updates some statistics counter,
|
|
* we call find_get_page() with swapper_space directly.
|
|
*/
|
|
page = find_get_page(swap_address_space(ent), swap_cache_index(ent));
|
|
entry->val = ent.val;
|
|
|
|
return page;
|
|
}
|
|
#else
|
|
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
|
|
pte_t ptent, swp_entry_t *entry)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t ptent)
|
|
{
|
|
unsigned long index;
|
|
struct folio *folio;
|
|
|
|
if (!vma->vm_file) /* anonymous vma */
|
|
return NULL;
|
|
if (!(mc.flags & MOVE_FILE))
|
|
return NULL;
|
|
|
|
/* folio is moved even if it's not RSS of this task(page-faulted). */
|
|
/* shmem/tmpfs may report page out on swap: account for that too. */
|
|
index = linear_page_index(vma, addr);
|
|
folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
|
|
if (IS_ERR(folio))
|
|
return NULL;
|
|
return folio_file_page(folio, index);
|
|
}
|
|
|
|
static void memcg1_check_events(struct mem_cgroup *memcg, int nid);
|
|
static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages);
|
|
|
|
/**
|
|
* mem_cgroup_move_account - move account of the folio
|
|
* @folio: The folio.
|
|
* @compound: charge the page as compound or small page
|
|
* @from: mem_cgroup which the folio is moved from.
|
|
* @to: mem_cgroup which the folio is moved to. @from != @to.
|
|
*
|
|
* The folio must be locked and not on the LRU.
|
|
*
|
|
* This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
|
|
* from old cgroup.
|
|
*/
|
|
static int mem_cgroup_move_account(struct folio *folio,
|
|
bool compound,
|
|
struct mem_cgroup *from,
|
|
struct mem_cgroup *to)
|
|
{
|
|
struct lruvec *from_vec, *to_vec;
|
|
struct pglist_data *pgdat;
|
|
unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
|
|
int nid, ret;
|
|
|
|
VM_BUG_ON(from == to);
|
|
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
|
|
VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
|
|
VM_BUG_ON(compound && !folio_test_large(folio));
|
|
|
|
ret = -EINVAL;
|
|
if (folio_memcg(folio) != from)
|
|
goto out;
|
|
|
|
pgdat = folio_pgdat(folio);
|
|
from_vec = mem_cgroup_lruvec(from, pgdat);
|
|
to_vec = mem_cgroup_lruvec(to, pgdat);
|
|
|
|
folio_memcg_lock(folio);
|
|
|
|
if (folio_test_anon(folio)) {
|
|
if (folio_mapped(folio)) {
|
|
__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
|
|
__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
|
|
if (folio_test_pmd_mappable(folio)) {
|
|
__mod_lruvec_state(from_vec, NR_ANON_THPS,
|
|
-nr_pages);
|
|
__mod_lruvec_state(to_vec, NR_ANON_THPS,
|
|
nr_pages);
|
|
}
|
|
}
|
|
} else {
|
|
__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
|
|
__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
|
|
|
|
if (folio_test_swapbacked(folio)) {
|
|
__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
|
|
__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
|
|
}
|
|
|
|
if (folio_mapped(folio)) {
|
|
__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
|
|
__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
|
|
}
|
|
|
|
if (folio_test_dirty(folio)) {
|
|
struct address_space *mapping = folio_mapping(folio);
|
|
|
|
if (mapping_can_writeback(mapping)) {
|
|
__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
|
|
-nr_pages);
|
|
__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
|
|
nr_pages);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SWAP
|
|
if (folio_test_swapcache(folio)) {
|
|
__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
|
|
__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
|
|
}
|
|
#endif
|
|
if (folio_test_writeback(folio)) {
|
|
__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
|
|
__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
|
|
}
|
|
|
|
/*
|
|
* All state has been migrated, let's switch to the new memcg.
|
|
*
|
|
* It is safe to change page's memcg here because the page
|
|
* is referenced, charged, isolated, and locked: we can't race
|
|
* with (un)charging, migration, LRU putback, or anything else
|
|
* that would rely on a stable page's memory cgroup.
|
|
*
|
|
* Note that folio_memcg_lock is a memcg lock, not a page lock,
|
|
* to save space. As soon as we switch page's memory cgroup to a
|
|
* new memcg that isn't locked, the above state can change
|
|
* concurrently again. Make sure we're truly done with it.
|
|
*/
|
|
smp_mb();
|
|
|
|
css_get(&to->css);
|
|
css_put(&from->css);
|
|
|
|
/* Warning should never happen, so don't worry about refcount non-0 */
|
|
WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
|
|
folio->memcg_data = (unsigned long)to;
|
|
|
|
__folio_memcg_unlock(from);
|
|
|
|
ret = 0;
|
|
nid = folio_nid(folio);
|
|
|
|
local_irq_disable();
|
|
memcg1_charge_statistics(to, nr_pages);
|
|
memcg1_check_events(to, nid);
|
|
memcg1_charge_statistics(from, -nr_pages);
|
|
memcg1_check_events(from, nid);
|
|
local_irq_enable();
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* get_mctgt_type - get target type of moving charge
|
|
* @vma: the vma the pte to be checked belongs
|
|
* @addr: the address corresponding to the pte to be checked
|
|
* @ptent: the pte to be checked
|
|
* @target: the pointer the target page or swap ent will be stored(can be NULL)
|
|
*
|
|
* Context: Called with pte lock held.
|
|
* Return:
|
|
* * MC_TARGET_NONE - If the pte is not a target for move charge.
|
|
* * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
|
|
* move charge. If @target is not NULL, the folio is stored in target->folio
|
|
* with extra refcnt taken (Caller should release it).
|
|
* * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
|
|
* target for charge migration. If @target is not NULL, the entry is
|
|
* stored in target->ent.
|
|
* * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
|
|
* thus not on the lru. For now such page is charged like a regular page
|
|
* would be as it is just special memory taking the place of a regular page.
|
|
* See Documentations/vm/hmm.txt and include/linux/hmm.h
|
|
*/
|
|
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t ptent, union mc_target *target)
|
|
{
|
|
struct page *page = NULL;
|
|
struct folio *folio;
|
|
enum mc_target_type ret = MC_TARGET_NONE;
|
|
swp_entry_t ent = { .val = 0 };
|
|
|
|
if (pte_present(ptent))
|
|
page = mc_handle_present_pte(vma, addr, ptent);
|
|
else if (pte_none_mostly(ptent))
|
|
/*
|
|
* PTE markers should be treated as a none pte here, separated
|
|
* from other swap handling below.
|
|
*/
|
|
page = mc_handle_file_pte(vma, addr, ptent);
|
|
else if (is_swap_pte(ptent))
|
|
page = mc_handle_swap_pte(vma, ptent, &ent);
|
|
|
|
if (page)
|
|
folio = page_folio(page);
|
|
if (target && page) {
|
|
if (!folio_trylock(folio)) {
|
|
folio_put(folio);
|
|
return ret;
|
|
}
|
|
/*
|
|
* page_mapped() must be stable during the move. This
|
|
* pte is locked, so if it's present, the page cannot
|
|
* become unmapped. If it isn't, we have only partial
|
|
* control over the mapped state: the page lock will
|
|
* prevent new faults against pagecache and swapcache,
|
|
* so an unmapped page cannot become mapped. However,
|
|
* if the page is already mapped elsewhere, it can
|
|
* unmap, and there is nothing we can do about it.
|
|
* Alas, skip moving the page in this case.
|
|
*/
|
|
if (!pte_present(ptent) && page_mapped(page)) {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (!page && !ent.val)
|
|
return ret;
|
|
if (page) {
|
|
/*
|
|
* Do only loose check w/o serialization.
|
|
* mem_cgroup_move_account() checks the page is valid or
|
|
* not under LRU exclusion.
|
|
*/
|
|
if (folio_memcg(folio) == mc.from) {
|
|
ret = MC_TARGET_PAGE;
|
|
if (folio_is_device_private(folio) ||
|
|
folio_is_device_coherent(folio))
|
|
ret = MC_TARGET_DEVICE;
|
|
if (target)
|
|
target->folio = folio;
|
|
}
|
|
if (!ret || !target) {
|
|
if (target)
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
}
|
|
/*
|
|
* There is a swap entry and a page doesn't exist or isn't charged.
|
|
* But we cannot move a tail-page in a THP.
|
|
*/
|
|
if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
|
|
mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
|
|
ret = MC_TARGET_SWAP;
|
|
if (target)
|
|
target->ent = ent;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
/*
|
|
* We don't consider PMD mapped swapping or file mapped pages because THP does
|
|
* not support them for now.
|
|
* Caller should make sure that pmd_trans_huge(pmd) is true.
|
|
*/
|
|
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t pmd, union mc_target *target)
|
|
{
|
|
struct page *page = NULL;
|
|
struct folio *folio;
|
|
enum mc_target_type ret = MC_TARGET_NONE;
|
|
|
|
if (unlikely(is_swap_pmd(pmd))) {
|
|
VM_BUG_ON(thp_migration_supported() &&
|
|
!is_pmd_migration_entry(pmd));
|
|
return ret;
|
|
}
|
|
page = pmd_page(pmd);
|
|
VM_BUG_ON_PAGE(!page || !PageHead(page), page);
|
|
folio = page_folio(page);
|
|
if (!(mc.flags & MOVE_ANON))
|
|
return ret;
|
|
if (folio_memcg(folio) == mc.from) {
|
|
ret = MC_TARGET_PAGE;
|
|
if (target) {
|
|
folio_get(folio);
|
|
if (!folio_trylock(folio)) {
|
|
folio_put(folio);
|
|
return MC_TARGET_NONE;
|
|
}
|
|
target->folio = folio;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
#else
|
|
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t pmd, union mc_target *target)
|
|
{
|
|
return MC_TARGET_NONE;
|
|
}
|
|
#endif
|
|
|
|
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
|
|
unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct vm_area_struct *vma = walk->vma;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
|
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
|
if (ptl) {
|
|
/*
|
|
* Note their can not be MC_TARGET_DEVICE for now as we do not
|
|
* support transparent huge page with MEMORY_DEVICE_PRIVATE but
|
|
* this might change.
|
|
*/
|
|
if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
|
|
mc.precharge += HPAGE_PMD_NR;
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
|
|
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
|
if (!pte)
|
|
return 0;
|
|
for (; addr != end; pte++, addr += PAGE_SIZE)
|
|
if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
|
|
mc.precharge++; /* increment precharge temporarily */
|
|
pte_unmap_unlock(pte - 1, ptl);
|
|
cond_resched();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mm_walk_ops precharge_walk_ops = {
|
|
.pmd_entry = mem_cgroup_count_precharge_pte_range,
|
|
.walk_lock = PGWALK_RDLOCK,
|
|
};
|
|
|
|
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
|
|
{
|
|
unsigned long precharge;
|
|
|
|
mmap_read_lock(mm);
|
|
walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
|
|
mmap_read_unlock(mm);
|
|
|
|
precharge = mc.precharge;
|
|
mc.precharge = 0;
|
|
|
|
return precharge;
|
|
}
|
|
|
|
static int mem_cgroup_precharge_mc(struct mm_struct *mm)
|
|
{
|
|
unsigned long precharge = mem_cgroup_count_precharge(mm);
|
|
|
|
VM_BUG_ON(mc.moving_task);
|
|
mc.moving_task = current;
|
|
return mem_cgroup_do_precharge(precharge);
|
|
}
|
|
|
|
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
|
|
static void __mem_cgroup_clear_mc(void)
|
|
{
|
|
struct mem_cgroup *from = mc.from;
|
|
struct mem_cgroup *to = mc.to;
|
|
|
|
/* we must uncharge all the leftover precharges from mc.to */
|
|
if (mc.precharge) {
|
|
mem_cgroup_cancel_charge(mc.to, mc.precharge);
|
|
mc.precharge = 0;
|
|
}
|
|
/*
|
|
* we didn't uncharge from mc.from at mem_cgroup_move_account(), so
|
|
* we must uncharge here.
|
|
*/
|
|
if (mc.moved_charge) {
|
|
mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
|
|
mc.moved_charge = 0;
|
|
}
|
|
/* we must fixup refcnts and charges */
|
|
if (mc.moved_swap) {
|
|
/* uncharge swap account from the old cgroup */
|
|
if (!mem_cgroup_is_root(mc.from))
|
|
page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
|
|
|
|
mem_cgroup_id_put_many(mc.from, mc.moved_swap);
|
|
|
|
/*
|
|
* we charged both to->memory and to->memsw, so we
|
|
* should uncharge to->memory.
|
|
*/
|
|
if (!mem_cgroup_is_root(mc.to))
|
|
page_counter_uncharge(&mc.to->memory, mc.moved_swap);
|
|
|
|
mc.moved_swap = 0;
|
|
}
|
|
memcg1_oom_recover(from);
|
|
memcg1_oom_recover(to);
|
|
wake_up_all(&mc.waitq);
|
|
}
|
|
|
|
static void mem_cgroup_clear_mc(void)
|
|
{
|
|
struct mm_struct *mm = mc.mm;
|
|
|
|
/*
|
|
* we must clear moving_task before waking up waiters at the end of
|
|
* task migration.
|
|
*/
|
|
mc.moving_task = NULL;
|
|
__mem_cgroup_clear_mc();
|
|
spin_lock(&mc.lock);
|
|
mc.from = NULL;
|
|
mc.to = NULL;
|
|
mc.mm = NULL;
|
|
spin_unlock(&mc.lock);
|
|
|
|
mmput(mm);
|
|
}
|
|
|
|
int memcg1_can_attach(struct cgroup_taskset *tset)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
|
|
struct mem_cgroup *from;
|
|
struct task_struct *leader, *p;
|
|
struct mm_struct *mm;
|
|
unsigned long move_flags;
|
|
int ret = 0;
|
|
|
|
/* charge immigration isn't supported on the default hierarchy */
|
|
if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
|
|
return 0;
|
|
|
|
/*
|
|
* Multi-process migrations only happen on the default hierarchy
|
|
* where charge immigration is not used. Perform charge
|
|
* immigration if @tset contains a leader and whine if there are
|
|
* multiple.
|
|
*/
|
|
p = NULL;
|
|
cgroup_taskset_for_each_leader(leader, css, tset) {
|
|
WARN_ON_ONCE(p);
|
|
p = leader;
|
|
memcg = mem_cgroup_from_css(css);
|
|
}
|
|
if (!p)
|
|
return 0;
|
|
|
|
/*
|
|
* We are now committed to this value whatever it is. Changes in this
|
|
* tunable will only affect upcoming migrations, not the current one.
|
|
* So we need to save it, and keep it going.
|
|
*/
|
|
move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
|
|
if (!move_flags)
|
|
return 0;
|
|
|
|
from = mem_cgroup_from_task(p);
|
|
|
|
VM_BUG_ON(from == memcg);
|
|
|
|
mm = get_task_mm(p);
|
|
if (!mm)
|
|
return 0;
|
|
/* We move charges only when we move a owner of the mm */
|
|
if (mm->owner == p) {
|
|
VM_BUG_ON(mc.from);
|
|
VM_BUG_ON(mc.to);
|
|
VM_BUG_ON(mc.precharge);
|
|
VM_BUG_ON(mc.moved_charge);
|
|
VM_BUG_ON(mc.moved_swap);
|
|
|
|
spin_lock(&mc.lock);
|
|
mc.mm = mm;
|
|
mc.from = from;
|
|
mc.to = memcg;
|
|
mc.flags = move_flags;
|
|
spin_unlock(&mc.lock);
|
|
/* We set mc.moving_task later */
|
|
|
|
ret = mem_cgroup_precharge_mc(mm);
|
|
if (ret)
|
|
mem_cgroup_clear_mc();
|
|
} else {
|
|
mmput(mm);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void memcg1_cancel_attach(struct cgroup_taskset *tset)
|
|
{
|
|
if (mc.to)
|
|
mem_cgroup_clear_mc();
|
|
}
|
|
|
|
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
|
|
unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
int ret = 0;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
enum mc_target_type target_type;
|
|
union mc_target target;
|
|
struct folio *folio;
|
|
bool tried_split_before = false;
|
|
|
|
retry_pmd:
|
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
|
if (ptl) {
|
|
if (mc.precharge < HPAGE_PMD_NR) {
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
|
|
if (target_type == MC_TARGET_PAGE) {
|
|
folio = target.folio;
|
|
/*
|
|
* Deferred split queue locking depends on memcg,
|
|
* and unqueue is unsafe unless folio refcount is 0:
|
|
* split or skip if on the queue? first try to split.
|
|
*/
|
|
if (!list_empty(&folio->_deferred_list)) {
|
|
spin_unlock(ptl);
|
|
if (!tried_split_before)
|
|
split_folio(folio);
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
if (tried_split_before)
|
|
return 0;
|
|
tried_split_before = true;
|
|
goto retry_pmd;
|
|
}
|
|
/*
|
|
* So long as that pmd lock is held, the folio cannot
|
|
* be racily added to the _deferred_list, because
|
|
* __folio_remove_rmap() will find !partially_mapped.
|
|
*/
|
|
if (folio_isolate_lru(folio)) {
|
|
if (!mem_cgroup_move_account(folio, true,
|
|
mc.from, mc.to)) {
|
|
mc.precharge -= HPAGE_PMD_NR;
|
|
mc.moved_charge += HPAGE_PMD_NR;
|
|
}
|
|
folio_putback_lru(folio);
|
|
}
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
} else if (target_type == MC_TARGET_DEVICE) {
|
|
folio = target.folio;
|
|
if (!mem_cgroup_move_account(folio, true,
|
|
mc.from, mc.to)) {
|
|
mc.precharge -= HPAGE_PMD_NR;
|
|
mc.moved_charge += HPAGE_PMD_NR;
|
|
}
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
|
|
retry:
|
|
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
|
if (!pte)
|
|
return 0;
|
|
for (; addr != end; addr += PAGE_SIZE) {
|
|
pte_t ptent = ptep_get(pte++);
|
|
bool device = false;
|
|
swp_entry_t ent;
|
|
|
|
if (!mc.precharge)
|
|
break;
|
|
|
|
switch (get_mctgt_type(vma, addr, ptent, &target)) {
|
|
case MC_TARGET_DEVICE:
|
|
device = true;
|
|
fallthrough;
|
|
case MC_TARGET_PAGE:
|
|
folio = target.folio;
|
|
/*
|
|
* We can have a part of the split pmd here. Moving it
|
|
* can be done but it would be too convoluted so simply
|
|
* ignore such a partial THP and keep it in original
|
|
* memcg. There should be somebody mapping the head.
|
|
*/
|
|
if (folio_test_large(folio))
|
|
goto put;
|
|
if (!device && !folio_isolate_lru(folio))
|
|
goto put;
|
|
if (!mem_cgroup_move_account(folio, false,
|
|
mc.from, mc.to)) {
|
|
mc.precharge--;
|
|
/* we uncharge from mc.from later. */
|
|
mc.moved_charge++;
|
|
}
|
|
if (!device)
|
|
folio_putback_lru(folio);
|
|
put: /* get_mctgt_type() gets & locks the page */
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
break;
|
|
case MC_TARGET_SWAP:
|
|
ent = target.ent;
|
|
if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
|
|
mc.precharge--;
|
|
mem_cgroup_id_get_many(mc.to, 1);
|
|
/* we fixup other refcnts and charges later. */
|
|
mc.moved_swap++;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
pte_unmap_unlock(pte - 1, ptl);
|
|
cond_resched();
|
|
|
|
if (addr != end) {
|
|
/*
|
|
* We have consumed all precharges we got in can_attach().
|
|
* We try charge one by one, but don't do any additional
|
|
* charges to mc.to if we have failed in charge once in attach()
|
|
* phase.
|
|
*/
|
|
ret = mem_cgroup_do_precharge(1);
|
|
if (!ret)
|
|
goto retry;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct mm_walk_ops charge_walk_ops = {
|
|
.pmd_entry = mem_cgroup_move_charge_pte_range,
|
|
.walk_lock = PGWALK_RDLOCK,
|
|
};
|
|
|
|
static void mem_cgroup_move_charge(void)
|
|
{
|
|
lru_add_drain_all();
|
|
/*
|
|
* Signal folio_memcg_lock() to take the memcg's move_lock
|
|
* while we're moving its pages to another memcg. Then wait
|
|
* for already started RCU-only updates to finish.
|
|
*/
|
|
atomic_inc(&mc.from->moving_account);
|
|
synchronize_rcu();
|
|
retry:
|
|
if (unlikely(!mmap_read_trylock(mc.mm))) {
|
|
/*
|
|
* Someone who are holding the mmap_lock might be waiting in
|
|
* waitq. So we cancel all extra charges, wake up all waiters,
|
|
* and retry. Because we cancel precharges, we might not be able
|
|
* to move enough charges, but moving charge is a best-effort
|
|
* feature anyway, so it wouldn't be a big problem.
|
|
*/
|
|
__mem_cgroup_clear_mc();
|
|
cond_resched();
|
|
goto retry;
|
|
}
|
|
/*
|
|
* When we have consumed all precharges and failed in doing
|
|
* additional charge, the page walk just aborts.
|
|
*/
|
|
walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
|
|
mmap_read_unlock(mc.mm);
|
|
atomic_dec(&mc.from->moving_account);
|
|
}
|
|
|
|
void memcg1_move_task(void)
|
|
{
|
|
if (mc.to) {
|
|
mem_cgroup_move_charge();
|
|
mem_cgroup_clear_mc();
|
|
}
|
|
}
|
|
|
|
#else /* !CONFIG_MMU */
|
|
int memcg1_can_attach(struct cgroup_taskset *tset)
|
|
{
|
|
return 0;
|
|
}
|
|
void memcg1_cancel_attach(struct cgroup_taskset *tset)
|
|
{
|
|
}
|
|
void memcg1_move_task(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
|
|
{
|
|
struct mem_cgroup_threshold_ary *t;
|
|
unsigned long usage;
|
|
int i;
|
|
|
|
rcu_read_lock();
|
|
if (!swap)
|
|
t = rcu_dereference(memcg->thresholds.primary);
|
|
else
|
|
t = rcu_dereference(memcg->memsw_thresholds.primary);
|
|
|
|
if (!t)
|
|
goto unlock;
|
|
|
|
usage = mem_cgroup_usage(memcg, swap);
|
|
|
|
/*
|
|
* current_threshold points to threshold just below or equal to usage.
|
|
* If it's not true, a threshold was crossed after last
|
|
* call of __mem_cgroup_threshold().
|
|
*/
|
|
i = t->current_threshold;
|
|
|
|
/*
|
|
* Iterate backward over array of thresholds starting from
|
|
* current_threshold and check if a threshold is crossed.
|
|
* If none of thresholds below usage is crossed, we read
|
|
* only one element of the array here.
|
|
*/
|
|
for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
|
|
eventfd_signal(t->entries[i].eventfd);
|
|
|
|
/* i = current_threshold + 1 */
|
|
i++;
|
|
|
|
/*
|
|
* Iterate forward over array of thresholds starting from
|
|
* current_threshold+1 and check if a threshold is crossed.
|
|
* If none of thresholds above usage is crossed, we read
|
|
* only one element of the array here.
|
|
*/
|
|
for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
|
|
eventfd_signal(t->entries[i].eventfd);
|
|
|
|
/* Update current_threshold */
|
|
t->current_threshold = i - 1;
|
|
unlock:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void mem_cgroup_threshold(struct mem_cgroup *memcg)
|
|
{
|
|
while (memcg) {
|
|
__mem_cgroup_threshold(memcg, false);
|
|
if (do_memsw_account())
|
|
__mem_cgroup_threshold(memcg, true);
|
|
|
|
memcg = parent_mem_cgroup(memcg);
|
|
}
|
|
}
|
|
|
|
/* Cgroup1: threshold notifications & softlimit tree updates */
|
|
struct memcg1_events_percpu {
|
|
unsigned long nr_page_events;
|
|
unsigned long targets[MEM_CGROUP_NTARGETS];
|
|
};
|
|
|
|
static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages)
|
|
{
|
|
/* pagein of a big page is an event. So, ignore page size */
|
|
if (nr_pages > 0)
|
|
__count_memcg_events(memcg, PGPGIN, 1);
|
|
else {
|
|
__count_memcg_events(memcg, PGPGOUT, 1);
|
|
nr_pages = -nr_pages; /* for event */
|
|
}
|
|
|
|
__this_cpu_add(memcg->events_percpu->nr_page_events, nr_pages);
|
|
}
|
|
|
|
#define THRESHOLDS_EVENTS_TARGET 128
|
|
#define SOFTLIMIT_EVENTS_TARGET 1024
|
|
|
|
static bool memcg1_event_ratelimit(struct mem_cgroup *memcg,
|
|
enum mem_cgroup_events_target target)
|
|
{
|
|
unsigned long val, next;
|
|
|
|
val = __this_cpu_read(memcg->events_percpu->nr_page_events);
|
|
next = __this_cpu_read(memcg->events_percpu->targets[target]);
|
|
/* from time_after() in jiffies.h */
|
|
if ((long)(next - val) < 0) {
|
|
switch (target) {
|
|
case MEM_CGROUP_TARGET_THRESH:
|
|
next = val + THRESHOLDS_EVENTS_TARGET;
|
|
break;
|
|
case MEM_CGROUP_TARGET_SOFTLIMIT:
|
|
next = val + SOFTLIMIT_EVENTS_TARGET;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
__this_cpu_write(memcg->events_percpu->targets[target], next);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Check events in order.
|
|
*
|
|
*/
|
|
static void memcg1_check_events(struct mem_cgroup *memcg, int nid)
|
|
{
|
|
if (IS_ENABLED(CONFIG_PREEMPT_RT))
|
|
return;
|
|
|
|
/* threshold event is triggered in finer grain than soft limit */
|
|
if (unlikely(memcg1_event_ratelimit(memcg,
|
|
MEM_CGROUP_TARGET_THRESH))) {
|
|
bool do_softlimit;
|
|
|
|
do_softlimit = memcg1_event_ratelimit(memcg,
|
|
MEM_CGROUP_TARGET_SOFTLIMIT);
|
|
mem_cgroup_threshold(memcg);
|
|
if (unlikely(do_softlimit))
|
|
memcg1_update_tree(memcg, nid);
|
|
}
|
|
}
|
|
|
|
void memcg1_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
memcg1_charge_statistics(memcg, folio_nr_pages(folio));
|
|
memcg1_check_events(memcg, folio_nid(folio));
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void memcg1_swapout(struct folio *folio, struct mem_cgroup *memcg)
|
|
{
|
|
/*
|
|
* Interrupts should be disabled here because the caller holds the
|
|
* i_pages lock which is taken with interrupts-off. It is
|
|
* important here to have the interrupts disabled because it is the
|
|
* only synchronisation we have for updating the per-CPU variables.
|
|
*/
|
|
preempt_disable_nested();
|
|
VM_WARN_ON_IRQS_ENABLED();
|
|
memcg1_charge_statistics(memcg, -folio_nr_pages(folio));
|
|
preempt_enable_nested();
|
|
memcg1_check_events(memcg, folio_nid(folio));
|
|
}
|
|
|
|
void memcg1_uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
|
|
unsigned long nr_memory, int nid)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__count_memcg_events(memcg, PGPGOUT, pgpgout);
|
|
__this_cpu_add(memcg->events_percpu->nr_page_events, nr_memory);
|
|
memcg1_check_events(memcg, nid);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static int compare_thresholds(const void *a, const void *b)
|
|
{
|
|
const struct mem_cgroup_threshold *_a = a;
|
|
const struct mem_cgroup_threshold *_b = b;
|
|
|
|
if (_a->threshold > _b->threshold)
|
|
return 1;
|
|
|
|
if (_a->threshold < _b->threshold)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
|
|
{
|
|
struct mem_cgroup_eventfd_list *ev;
|
|
|
|
spin_lock(&memcg_oom_lock);
|
|
|
|
list_for_each_entry(ev, &memcg->oom_notify, list)
|
|
eventfd_signal(ev->eventfd);
|
|
|
|
spin_unlock(&memcg_oom_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
|
|
{
|
|
struct mem_cgroup *iter;
|
|
|
|
for_each_mem_cgroup_tree(iter, memcg)
|
|
mem_cgroup_oom_notify_cb(iter);
|
|
}
|
|
|
|
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
|
|
struct eventfd_ctx *eventfd, const char *args, enum res_type type)
|
|
{
|
|
struct mem_cgroup_thresholds *thresholds;
|
|
struct mem_cgroup_threshold_ary *new;
|
|
unsigned long threshold;
|
|
unsigned long usage;
|
|
int i, size, ret;
|
|
|
|
ret = page_counter_memparse(args, "-1", &threshold);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&memcg->thresholds_lock);
|
|
|
|
if (type == _MEM) {
|
|
thresholds = &memcg->thresholds;
|
|
usage = mem_cgroup_usage(memcg, false);
|
|
} else if (type == _MEMSWAP) {
|
|
thresholds = &memcg->memsw_thresholds;
|
|
usage = mem_cgroup_usage(memcg, true);
|
|
} else
|
|
BUG();
|
|
|
|
/* Check if a threshold crossed before adding a new one */
|
|
if (thresholds->primary)
|
|
__mem_cgroup_threshold(memcg, type == _MEMSWAP);
|
|
|
|
size = thresholds->primary ? thresholds->primary->size + 1 : 1;
|
|
|
|
/* Allocate memory for new array of thresholds */
|
|
new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
|
|
if (!new) {
|
|
ret = -ENOMEM;
|
|
goto unlock;
|
|
}
|
|
new->size = size;
|
|
|
|
/* Copy thresholds (if any) to new array */
|
|
if (thresholds->primary)
|
|
memcpy(new->entries, thresholds->primary->entries,
|
|
flex_array_size(new, entries, size - 1));
|
|
|
|
/* Add new threshold */
|
|
new->entries[size - 1].eventfd = eventfd;
|
|
new->entries[size - 1].threshold = threshold;
|
|
|
|
/* Sort thresholds. Registering of new threshold isn't time-critical */
|
|
sort(new->entries, size, sizeof(*new->entries),
|
|
compare_thresholds, NULL);
|
|
|
|
/* Find current threshold */
|
|
new->current_threshold = -1;
|
|
for (i = 0; i < size; i++) {
|
|
if (new->entries[i].threshold <= usage) {
|
|
/*
|
|
* new->current_threshold will not be used until
|
|
* rcu_assign_pointer(), so it's safe to increment
|
|
* it here.
|
|
*/
|
|
++new->current_threshold;
|
|
} else
|
|
break;
|
|
}
|
|
|
|
/* Free old spare buffer and save old primary buffer as spare */
|
|
kfree(thresholds->spare);
|
|
thresholds->spare = thresholds->primary;
|
|
|
|
rcu_assign_pointer(thresholds->primary, new);
|
|
|
|
/* To be sure that nobody uses thresholds */
|
|
synchronize_rcu();
|
|
|
|
unlock:
|
|
mutex_unlock(&memcg->thresholds_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
|
|
struct eventfd_ctx *eventfd, const char *args)
|
|
{
|
|
return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
|
|
}
|
|
|
|
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
|
|
struct eventfd_ctx *eventfd, const char *args)
|
|
{
|
|
return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
|
|
}
|
|
|
|
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
|
|
struct eventfd_ctx *eventfd, enum res_type type)
|
|
{
|
|
struct mem_cgroup_thresholds *thresholds;
|
|
struct mem_cgroup_threshold_ary *new;
|
|
unsigned long usage;
|
|
int i, j, size, entries;
|
|
|
|
mutex_lock(&memcg->thresholds_lock);
|
|
|
|
if (type == _MEM) {
|
|
thresholds = &memcg->thresholds;
|
|
usage = mem_cgroup_usage(memcg, false);
|
|
} else if (type == _MEMSWAP) {
|
|
thresholds = &memcg->memsw_thresholds;
|
|
usage = mem_cgroup_usage(memcg, true);
|
|
} else
|
|
BUG();
|
|
|
|
if (!thresholds->primary)
|
|
goto unlock;
|
|
|
|
/* Check if a threshold crossed before removing */
|
|
__mem_cgroup_threshold(memcg, type == _MEMSWAP);
|
|
|
|
/* Calculate new number of threshold */
|
|
size = entries = 0;
|
|
for (i = 0; i < thresholds->primary->size; i++) {
|
|
if (thresholds->primary->entries[i].eventfd != eventfd)
|
|
size++;
|
|
else
|
|
entries++;
|
|
}
|
|
|
|
new = thresholds->spare;
|
|
|
|
/* If no items related to eventfd have been cleared, nothing to do */
|
|
if (!entries)
|
|
goto unlock;
|
|
|
|
/* Set thresholds array to NULL if we don't have thresholds */
|
|
if (!size) {
|
|
kfree(new);
|
|
new = NULL;
|
|
goto swap_buffers;
|
|
}
|
|
|
|
new->size = size;
|
|
|
|
/* Copy thresholds and find current threshold */
|
|
new->current_threshold = -1;
|
|
for (i = 0, j = 0; i < thresholds->primary->size; i++) {
|
|
if (thresholds->primary->entries[i].eventfd == eventfd)
|
|
continue;
|
|
|
|
new->entries[j] = thresholds->primary->entries[i];
|
|
if (new->entries[j].threshold <= usage) {
|
|
/*
|
|
* new->current_threshold will not be used
|
|
* until rcu_assign_pointer(), so it's safe to increment
|
|
* it here.
|
|
*/
|
|
++new->current_threshold;
|
|
}
|
|
j++;
|
|
}
|
|
|
|
swap_buffers:
|
|
/* Swap primary and spare array */
|
|
thresholds->spare = thresholds->primary;
|
|
|
|
rcu_assign_pointer(thresholds->primary, new);
|
|
|
|
/* To be sure that nobody uses thresholds */
|
|
synchronize_rcu();
|
|
|
|
/* If all events are unregistered, free the spare array */
|
|
if (!new) {
|
|
kfree(thresholds->spare);
|
|
thresholds->spare = NULL;
|
|
}
|
|
unlock:
|
|
mutex_unlock(&memcg->thresholds_lock);
|
|
}
|
|
|
|
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
|
|
struct eventfd_ctx *eventfd)
|
|
{
|
|
return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
|
|
}
|
|
|
|
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
|
|
struct eventfd_ctx *eventfd)
|
|
{
|
|
return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
|
|
}
|
|
|
|
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
|
|
struct eventfd_ctx *eventfd, const char *args)
|
|
{
|
|
struct mem_cgroup_eventfd_list *event;
|
|
|
|
event = kmalloc(sizeof(*event), GFP_KERNEL);
|
|
if (!event)
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&memcg_oom_lock);
|
|
|
|
event->eventfd = eventfd;
|
|
list_add(&event->list, &memcg->oom_notify);
|
|
|
|
/* already in OOM ? */
|
|
if (memcg->under_oom)
|
|
eventfd_signal(eventfd);
|
|
spin_unlock(&memcg_oom_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
|
|
struct eventfd_ctx *eventfd)
|
|
{
|
|
struct mem_cgroup_eventfd_list *ev, *tmp;
|
|
|
|
spin_lock(&memcg_oom_lock);
|
|
|
|
list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
|
|
if (ev->eventfd == eventfd) {
|
|
list_del(&ev->list);
|
|
kfree(ev);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&memcg_oom_lock);
|
|
}
|
|
|
|
/*
|
|
* DO NOT USE IN NEW FILES.
|
|
*
|
|
* "cgroup.event_control" implementation.
|
|
*
|
|
* This is way over-engineered. It tries to support fully configurable
|
|
* events for each user. Such level of flexibility is completely
|
|
* unnecessary especially in the light of the planned unified hierarchy.
|
|
*
|
|
* Please deprecate this and replace with something simpler if at all
|
|
* possible.
|
|
*/
|
|
|
|
/*
|
|
* Unregister event and free resources.
|
|
*
|
|
* Gets called from workqueue.
|
|
*/
|
|
static void memcg_event_remove(struct work_struct *work)
|
|
{
|
|
struct mem_cgroup_event *event =
|
|
container_of(work, struct mem_cgroup_event, remove);
|
|
struct mem_cgroup *memcg = event->memcg;
|
|
|
|
remove_wait_queue(event->wqh, &event->wait);
|
|
|
|
event->unregister_event(memcg, event->eventfd);
|
|
|
|
/* Notify userspace the event is going away. */
|
|
eventfd_signal(event->eventfd);
|
|
|
|
eventfd_ctx_put(event->eventfd);
|
|
kfree(event);
|
|
css_put(&memcg->css);
|
|
}
|
|
|
|
/*
|
|
* Gets called on EPOLLHUP on eventfd when user closes it.
|
|
*
|
|
* Called with wqh->lock held and interrupts disabled.
|
|
*/
|
|
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
|
|
int sync, void *key)
|
|
{
|
|
struct mem_cgroup_event *event =
|
|
container_of(wait, struct mem_cgroup_event, wait);
|
|
struct mem_cgroup *memcg = event->memcg;
|
|
__poll_t flags = key_to_poll(key);
|
|
|
|
if (flags & EPOLLHUP) {
|
|
/*
|
|
* If the event has been detached at cgroup removal, we
|
|
* can simply return knowing the other side will cleanup
|
|
* for us.
|
|
*
|
|
* We can't race against event freeing since the other
|
|
* side will require wqh->lock via remove_wait_queue(),
|
|
* which we hold.
|
|
*/
|
|
spin_lock(&memcg->event_list_lock);
|
|
if (!list_empty(&event->list)) {
|
|
list_del_init(&event->list);
|
|
/*
|
|
* We are in atomic context, but cgroup_event_remove()
|
|
* may sleep, so we have to call it in workqueue.
|
|
*/
|
|
schedule_work(&event->remove);
|
|
}
|
|
spin_unlock(&memcg->event_list_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void memcg_event_ptable_queue_proc(struct file *file,
|
|
wait_queue_head_t *wqh, poll_table *pt)
|
|
{
|
|
struct mem_cgroup_event *event =
|
|
container_of(pt, struct mem_cgroup_event, pt);
|
|
|
|
event->wqh = wqh;
|
|
add_wait_queue(wqh, &event->wait);
|
|
}
|
|
|
|
/*
|
|
* DO NOT USE IN NEW FILES.
|
|
*
|
|
* Parse input and register new cgroup event handler.
|
|
*
|
|
* Input must be in format '<event_fd> <control_fd> <args>'.
|
|
* Interpretation of args is defined by control file implementation.
|
|
*/
|
|
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off)
|
|
{
|
|
struct cgroup_subsys_state *css = of_css(of);
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
|
|
struct mem_cgroup_event *event;
|
|
struct cgroup_subsys_state *cfile_css;
|
|
unsigned int efd, cfd;
|
|
struct dentry *cdentry;
|
|
const char *name;
|
|
char *endp;
|
|
int ret;
|
|
|
|
if (IS_ENABLED(CONFIG_PREEMPT_RT))
|
|
return -EOPNOTSUPP;
|
|
|
|
buf = strstrip(buf);
|
|
|
|
efd = simple_strtoul(buf, &endp, 10);
|
|
if (*endp != ' ')
|
|
return -EINVAL;
|
|
buf = endp + 1;
|
|
|
|
cfd = simple_strtoul(buf, &endp, 10);
|
|
if (*endp == '\0')
|
|
buf = endp;
|
|
else if (*endp == ' ')
|
|
buf = endp + 1;
|
|
else
|
|
return -EINVAL;
|
|
|
|
CLASS(fd, efile)(efd);
|
|
if (fd_empty(efile))
|
|
return -EBADF;
|
|
|
|
CLASS(fd, cfile)(cfd);
|
|
|
|
event = kzalloc(sizeof(*event), GFP_KERNEL);
|
|
if (!event)
|
|
return -ENOMEM;
|
|
|
|
event->memcg = memcg;
|
|
INIT_LIST_HEAD(&event->list);
|
|
init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
|
|
init_waitqueue_func_entry(&event->wait, memcg_event_wake);
|
|
INIT_WORK(&event->remove, memcg_event_remove);
|
|
|
|
event->eventfd = eventfd_ctx_fileget(fd_file(efile));
|
|
if (IS_ERR(event->eventfd)) {
|
|
ret = PTR_ERR(event->eventfd);
|
|
goto out_kfree;
|
|
}
|
|
|
|
if (fd_empty(cfile)) {
|
|
ret = -EBADF;
|
|
goto out_put_eventfd;
|
|
}
|
|
|
|
/* the process need read permission on control file */
|
|
/* AV: shouldn't we check that it's been opened for read instead? */
|
|
ret = file_permission(fd_file(cfile), MAY_READ);
|
|
if (ret < 0)
|
|
goto out_put_eventfd;
|
|
|
|
/*
|
|
* The control file must be a regular cgroup1 file. As a regular cgroup
|
|
* file can't be renamed, it's safe to access its name afterwards.
|
|
*/
|
|
cdentry = fd_file(cfile)->f_path.dentry;
|
|
if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
|
|
ret = -EINVAL;
|
|
goto out_put_eventfd;
|
|
}
|
|
|
|
/*
|
|
* Determine the event callbacks and set them in @event. This used
|
|
* to be done via struct cftype but cgroup core no longer knows
|
|
* about these events. The following is crude but the whole thing
|
|
* is for compatibility anyway.
|
|
*
|
|
* DO NOT ADD NEW FILES.
|
|
*/
|
|
name = cdentry->d_name.name;
|
|
|
|
if (!strcmp(name, "memory.usage_in_bytes")) {
|
|
event->register_event = mem_cgroup_usage_register_event;
|
|
event->unregister_event = mem_cgroup_usage_unregister_event;
|
|
} else if (!strcmp(name, "memory.oom_control")) {
|
|
pr_warn_once("oom_control is deprecated and will be removed. "
|
|
"Please report your usecase to linux-mm-@kvack.org"
|
|
" if you depend on this functionality. \n");
|
|
event->register_event = mem_cgroup_oom_register_event;
|
|
event->unregister_event = mem_cgroup_oom_unregister_event;
|
|
} else if (!strcmp(name, "memory.pressure_level")) {
|
|
pr_warn_once("pressure_level is deprecated and will be removed. "
|
|
"Please report your usecase to linux-mm-@kvack.org "
|
|
"if you depend on this functionality. \n");
|
|
event->register_event = vmpressure_register_event;
|
|
event->unregister_event = vmpressure_unregister_event;
|
|
} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
|
|
event->register_event = memsw_cgroup_usage_register_event;
|
|
event->unregister_event = memsw_cgroup_usage_unregister_event;
|
|
} else {
|
|
ret = -EINVAL;
|
|
goto out_put_eventfd;
|
|
}
|
|
|
|
/*
|
|
* Verify @cfile should belong to @css. Also, remaining events are
|
|
* automatically removed on cgroup destruction but the removal is
|
|
* asynchronous, so take an extra ref on @css.
|
|
*/
|
|
cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
|
|
&memory_cgrp_subsys);
|
|
ret = -EINVAL;
|
|
if (IS_ERR(cfile_css))
|
|
goto out_put_eventfd;
|
|
if (cfile_css != css)
|
|
goto out_put_css;
|
|
|
|
ret = event->register_event(memcg, event->eventfd, buf);
|
|
if (ret)
|
|
goto out_put_css;
|
|
|
|
vfs_poll(fd_file(efile), &event->pt);
|
|
|
|
spin_lock_irq(&memcg->event_list_lock);
|
|
list_add(&event->list, &memcg->event_list);
|
|
spin_unlock_irq(&memcg->event_list_lock);
|
|
return nbytes;
|
|
|
|
out_put_css:
|
|
css_put(cfile_css);
|
|
out_put_eventfd:
|
|
eventfd_ctx_put(event->eventfd);
|
|
out_kfree:
|
|
kfree(event);
|
|
return ret;
|
|
}
|
|
|
|
void memcg1_memcg_init(struct mem_cgroup *memcg)
|
|
{
|
|
INIT_LIST_HEAD(&memcg->oom_notify);
|
|
mutex_init(&memcg->thresholds_lock);
|
|
spin_lock_init(&memcg->move_lock);
|
|
INIT_LIST_HEAD(&memcg->event_list);
|
|
spin_lock_init(&memcg->event_list_lock);
|
|
}
|
|
|
|
void memcg1_css_offline(struct mem_cgroup *memcg)
|
|
{
|
|
struct mem_cgroup_event *event, *tmp;
|
|
|
|
/*
|
|
* Unregister events and notify userspace.
|
|
* Notify userspace about cgroup removing only after rmdir of cgroup
|
|
* directory to avoid race between userspace and kernelspace.
|
|
*/
|
|
spin_lock_irq(&memcg->event_list_lock);
|
|
list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
|
|
list_del_init(&event->list);
|
|
schedule_work(&event->remove);
|
|
}
|
|
spin_unlock_irq(&memcg->event_list_lock);
|
|
}
|
|
|
|
/*
|
|
* Check OOM-Killer is already running under our hierarchy.
|
|
* If someone is running, return false.
|
|
*/
|
|
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
|
|
{
|
|
struct mem_cgroup *iter, *failed = NULL;
|
|
|
|
spin_lock(&memcg_oom_lock);
|
|
|
|
for_each_mem_cgroup_tree(iter, memcg) {
|
|
if (iter->oom_lock) {
|
|
/*
|
|
* this subtree of our hierarchy is already locked
|
|
* so we cannot give a lock.
|
|
*/
|
|
failed = iter;
|
|
mem_cgroup_iter_break(memcg, iter);
|
|
break;
|
|
} else
|
|
iter->oom_lock = true;
|
|
}
|
|
|
|
if (failed) {
|
|
/*
|
|
* OK, we failed to lock the whole subtree so we have
|
|
* to clean up what we set up to the failing subtree
|
|
*/
|
|
for_each_mem_cgroup_tree(iter, memcg) {
|
|
if (iter == failed) {
|
|
mem_cgroup_iter_break(memcg, iter);
|
|
break;
|
|
}
|
|
iter->oom_lock = false;
|
|
}
|
|
} else
|
|
mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
|
|
|
|
spin_unlock(&memcg_oom_lock);
|
|
|
|
return !failed;
|
|
}
|
|
|
|
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
|
|
{
|
|
struct mem_cgroup *iter;
|
|
|
|
spin_lock(&memcg_oom_lock);
|
|
mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
|
|
for_each_mem_cgroup_tree(iter, memcg)
|
|
iter->oom_lock = false;
|
|
spin_unlock(&memcg_oom_lock);
|
|
}
|
|
|
|
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
|
|
{
|
|
struct mem_cgroup *iter;
|
|
|
|
spin_lock(&memcg_oom_lock);
|
|
for_each_mem_cgroup_tree(iter, memcg)
|
|
iter->under_oom++;
|
|
spin_unlock(&memcg_oom_lock);
|
|
}
|
|
|
|
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
|
|
{
|
|
struct mem_cgroup *iter;
|
|
|
|
/*
|
|
* Be careful about under_oom underflows because a child memcg
|
|
* could have been added after mem_cgroup_mark_under_oom.
|
|
*/
|
|
spin_lock(&memcg_oom_lock);
|
|
for_each_mem_cgroup_tree(iter, memcg)
|
|
if (iter->under_oom > 0)
|
|
iter->under_oom--;
|
|
spin_unlock(&memcg_oom_lock);
|
|
}
|
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
|
|
|
|
struct oom_wait_info {
|
|
struct mem_cgroup *memcg;
|
|
wait_queue_entry_t wait;
|
|
};
|
|
|
|
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
|
|
unsigned mode, int sync, void *arg)
|
|
{
|
|
struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
|
|
struct mem_cgroup *oom_wait_memcg;
|
|
struct oom_wait_info *oom_wait_info;
|
|
|
|
oom_wait_info = container_of(wait, struct oom_wait_info, wait);
|
|
oom_wait_memcg = oom_wait_info->memcg;
|
|
|
|
if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
|
|
!mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
|
|
return 0;
|
|
return autoremove_wake_function(wait, mode, sync, arg);
|
|
}
|
|
|
|
void memcg1_oom_recover(struct mem_cgroup *memcg)
|
|
{
|
|
/*
|
|
* For the following lockless ->under_oom test, the only required
|
|
* guarantee is that it must see the state asserted by an OOM when
|
|
* this function is called as a result of userland actions
|
|
* triggered by the notification of the OOM. This is trivially
|
|
* achieved by invoking mem_cgroup_mark_under_oom() before
|
|
* triggering notification.
|
|
*/
|
|
if (memcg && memcg->under_oom)
|
|
__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
|
|
}
|
|
|
|
/**
|
|
* mem_cgroup_oom_synchronize - complete memcg OOM handling
|
|
* @handle: actually kill/wait or just clean up the OOM state
|
|
*
|
|
* This has to be called at the end of a page fault if the memcg OOM
|
|
* handler was enabled.
|
|
*
|
|
* Memcg supports userspace OOM handling where failed allocations must
|
|
* sleep on a waitqueue until the userspace task resolves the
|
|
* situation. Sleeping directly in the charge context with all kinds
|
|
* of locks held is not a good idea, instead we remember an OOM state
|
|
* in the task and mem_cgroup_oom_synchronize() has to be called at
|
|
* the end of the page fault to complete the OOM handling.
|
|
*
|
|
* Returns %true if an ongoing memcg OOM situation was detected and
|
|
* completed, %false otherwise.
|
|
*/
|
|
bool mem_cgroup_oom_synchronize(bool handle)
|
|
{
|
|
struct mem_cgroup *memcg = current->memcg_in_oom;
|
|
struct oom_wait_info owait;
|
|
bool locked;
|
|
|
|
/* OOM is global, do not handle */
|
|
if (!memcg)
|
|
return false;
|
|
|
|
if (!handle)
|
|
goto cleanup;
|
|
|
|
owait.memcg = memcg;
|
|
owait.wait.flags = 0;
|
|
owait.wait.func = memcg_oom_wake_function;
|
|
owait.wait.private = current;
|
|
INIT_LIST_HEAD(&owait.wait.entry);
|
|
|
|
prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
|
|
mem_cgroup_mark_under_oom(memcg);
|
|
|
|
locked = mem_cgroup_oom_trylock(memcg);
|
|
|
|
if (locked)
|
|
mem_cgroup_oom_notify(memcg);
|
|
|
|
schedule();
|
|
mem_cgroup_unmark_under_oom(memcg);
|
|
finish_wait(&memcg_oom_waitq, &owait.wait);
|
|
|
|
if (locked)
|
|
mem_cgroup_oom_unlock(memcg);
|
|
cleanup:
|
|
current->memcg_in_oom = NULL;
|
|
css_put(&memcg->css);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked)
|
|
{
|
|
/*
|
|
* We are in the middle of the charge context here, so we
|
|
* don't want to block when potentially sitting on a callstack
|
|
* that holds all kinds of filesystem and mm locks.
|
|
*
|
|
* cgroup1 allows disabling the OOM killer and waiting for outside
|
|
* handling until the charge can succeed; remember the context and put
|
|
* the task to sleep at the end of the page fault when all locks are
|
|
* released.
|
|
*
|
|
* On the other hand, in-kernel OOM killer allows for an async victim
|
|
* memory reclaim (oom_reaper) and that means that we are not solely
|
|
* relying on the oom victim to make a forward progress and we can
|
|
* invoke the oom killer here.
|
|
*
|
|
* Please note that mem_cgroup_out_of_memory might fail to find a
|
|
* victim and then we have to bail out from the charge path.
|
|
*/
|
|
if (READ_ONCE(memcg->oom_kill_disable)) {
|
|
if (current->in_user_fault) {
|
|
css_get(&memcg->css);
|
|
current->memcg_in_oom = memcg;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
mem_cgroup_mark_under_oom(memcg);
|
|
|
|
*locked = mem_cgroup_oom_trylock(memcg);
|
|
|
|
if (*locked)
|
|
mem_cgroup_oom_notify(memcg);
|
|
|
|
mem_cgroup_unmark_under_oom(memcg);
|
|
|
|
return true;
|
|
}
|
|
|
|
void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked)
|
|
{
|
|
if (locked)
|
|
mem_cgroup_oom_unlock(memcg);
|
|
}
|
|
|
|
static DEFINE_MUTEX(memcg_max_mutex);
|
|
|
|
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
|
|
unsigned long max, bool memsw)
|
|
{
|
|
bool enlarge = false;
|
|
bool drained = false;
|
|
int ret;
|
|
bool limits_invariant;
|
|
struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
|
|
|
|
do {
|
|
if (signal_pending(current)) {
|
|
ret = -EINTR;
|
|
break;
|
|
}
|
|
|
|
mutex_lock(&memcg_max_mutex);
|
|
/*
|
|
* Make sure that the new limit (memsw or memory limit) doesn't
|
|
* break our basic invariant rule memory.max <= memsw.max.
|
|
*/
|
|
limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
|
|
max <= memcg->memsw.max;
|
|
if (!limits_invariant) {
|
|
mutex_unlock(&memcg_max_mutex);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
if (max > counter->max)
|
|
enlarge = true;
|
|
ret = page_counter_set_max(counter, max);
|
|
mutex_unlock(&memcg_max_mutex);
|
|
|
|
if (!ret)
|
|
break;
|
|
|
|
if (!drained) {
|
|
drain_all_stock(memcg);
|
|
drained = true;
|
|
continue;
|
|
}
|
|
|
|
if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
|
|
memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) {
|
|
ret = -EBUSY;
|
|
break;
|
|
}
|
|
} while (true);
|
|
|
|
if (!ret && enlarge)
|
|
memcg1_oom_recover(memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Reclaims as many pages from the given memcg as possible.
|
|
*
|
|
* Caller is responsible for holding css reference for memcg.
|
|
*/
|
|
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
|
|
{
|
|
int nr_retries = MAX_RECLAIM_RETRIES;
|
|
|
|
/* we call try-to-free pages for make this cgroup empty */
|
|
lru_add_drain_all();
|
|
|
|
drain_all_stock(memcg);
|
|
|
|
/* try to free all pages in this cgroup */
|
|
while (nr_retries && page_counter_read(&memcg->memory)) {
|
|
if (signal_pending(current))
|
|
return -EINTR;
|
|
|
|
if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
|
|
MEMCG_RECLAIM_MAY_SWAP, NULL))
|
|
nr_retries--;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes,
|
|
loff_t off)
|
|
{
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
|
|
|
|
if (mem_cgroup_is_root(memcg))
|
|
return -EINVAL;
|
|
return mem_cgroup_force_empty(memcg) ?: nbytes;
|
|
}
|
|
|
|
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
|
|
struct cftype *cft)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
|
|
struct cftype *cft, u64 val)
|
|
{
|
|
if (val == 1)
|
|
return 0;
|
|
|
|
pr_warn_once("Non-hierarchical mode is deprecated. "
|
|
"Please report your usecase to linux-mm@kvack.org if you "
|
|
"depend on this functionality.\n");
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
|
|
struct cftype *cft)
|
|
{
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
|
|
struct page_counter *counter;
|
|
|
|
switch (MEMFILE_TYPE(cft->private)) {
|
|
case _MEM:
|
|
counter = &memcg->memory;
|
|
break;
|
|
case _MEMSWAP:
|
|
counter = &memcg->memsw;
|
|
break;
|
|
case _KMEM:
|
|
counter = &memcg->kmem;
|
|
break;
|
|
case _TCP:
|
|
counter = &memcg->tcpmem;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
switch (MEMFILE_ATTR(cft->private)) {
|
|
case RES_USAGE:
|
|
if (counter == &memcg->memory)
|
|
return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
|
|
if (counter == &memcg->memsw)
|
|
return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
|
|
return (u64)page_counter_read(counter) * PAGE_SIZE;
|
|
case RES_LIMIT:
|
|
return (u64)counter->max * PAGE_SIZE;
|
|
case RES_MAX_USAGE:
|
|
return (u64)counter->watermark * PAGE_SIZE;
|
|
case RES_FAILCNT:
|
|
return counter->failcnt;
|
|
case RES_SOFT_LIMIT:
|
|
return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function doesn't do anything useful. Its only job is to provide a read
|
|
* handler for a file so that cgroup_file_mode() will add read permissions.
|
|
*/
|
|
static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
|
|
__always_unused void *v)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&memcg_max_mutex);
|
|
|
|
ret = page_counter_set_max(&memcg->tcpmem, max);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (!memcg->tcpmem_active) {
|
|
/*
|
|
* The active flag needs to be written after the static_key
|
|
* update. This is what guarantees that the socket activation
|
|
* function is the last one to run. See mem_cgroup_sk_alloc()
|
|
* for details, and note that we don't mark any socket as
|
|
* belonging to this memcg until that flag is up.
|
|
*
|
|
* We need to do this, because static_keys will span multiple
|
|
* sites, but we can't control their order. If we mark a socket
|
|
* as accounted, but the accounting functions are not patched in
|
|
* yet, we'll lose accounting.
|
|
*
|
|
* We never race with the readers in mem_cgroup_sk_alloc(),
|
|
* because when this value change, the code to process it is not
|
|
* patched in yet.
|
|
*/
|
|
static_branch_inc(&memcg_sockets_enabled_key);
|
|
memcg->tcpmem_active = true;
|
|
}
|
|
out:
|
|
mutex_unlock(&memcg_max_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The user of this function is...
|
|
* RES_LIMIT.
|
|
*/
|
|
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off)
|
|
{
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
|
|
unsigned long nr_pages;
|
|
int ret;
|
|
|
|
buf = strstrip(buf);
|
|
ret = page_counter_memparse(buf, "-1", &nr_pages);
|
|
if (ret)
|
|
return ret;
|
|
|
|
switch (MEMFILE_ATTR(of_cft(of)->private)) {
|
|
case RES_LIMIT:
|
|
if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
switch (MEMFILE_TYPE(of_cft(of)->private)) {
|
|
case _MEM:
|
|
ret = mem_cgroup_resize_max(memcg, nr_pages, false);
|
|
break;
|
|
case _MEMSWAP:
|
|
ret = mem_cgroup_resize_max(memcg, nr_pages, true);
|
|
break;
|
|
case _KMEM:
|
|
pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
|
|
"Writing any value to this file has no effect. "
|
|
"Please report your usecase to linux-mm@kvack.org if you "
|
|
"depend on this functionality.\n");
|
|
ret = 0;
|
|
break;
|
|
case _TCP:
|
|
pr_warn_once("kmem.tcp.limit_in_bytes is deprecated and will be removed. "
|
|
"Please report your usecase to linux-mm@kvack.org if you "
|
|
"depend on this functionality.\n");
|
|
ret = memcg_update_tcp_max(memcg, nr_pages);
|
|
break;
|
|
}
|
|
break;
|
|
case RES_SOFT_LIMIT:
|
|
if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
|
|
ret = -EOPNOTSUPP;
|
|
} else {
|
|
pr_warn_once("soft_limit_in_bytes is deprecated and will be removed. "
|
|
"Please report your usecase to linux-mm@kvack.org if you "
|
|
"depend on this functionality.\n");
|
|
WRITE_ONCE(memcg->soft_limit, nr_pages);
|
|
ret = 0;
|
|
}
|
|
break;
|
|
}
|
|
return ret ?: nbytes;
|
|
}
|
|
|
|
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
|
|
size_t nbytes, loff_t off)
|
|
{
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
|
|
struct page_counter *counter;
|
|
|
|
switch (MEMFILE_TYPE(of_cft(of)->private)) {
|
|
case _MEM:
|
|
counter = &memcg->memory;
|
|
break;
|
|
case _MEMSWAP:
|
|
counter = &memcg->memsw;
|
|
break;
|
|
case _KMEM:
|
|
counter = &memcg->kmem;
|
|
break;
|
|
case _TCP:
|
|
counter = &memcg->tcpmem;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
switch (MEMFILE_ATTR(of_cft(of)->private)) {
|
|
case RES_MAX_USAGE:
|
|
page_counter_reset_watermark(counter);
|
|
break;
|
|
case RES_FAILCNT:
|
|
counter->failcnt = 0;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
|
|
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
|
|
#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
|
|
|
|
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
|
|
int nid, unsigned int lru_mask, bool tree)
|
|
{
|
|
struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
|
|
unsigned long nr = 0;
|
|
enum lru_list lru;
|
|
|
|
VM_BUG_ON((unsigned)nid >= nr_node_ids);
|
|
|
|
for_each_lru(lru) {
|
|
if (!(BIT(lru) & lru_mask))
|
|
continue;
|
|
if (tree)
|
|
nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
|
|
else
|
|
nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
|
|
}
|
|
return nr;
|
|
}
|
|
|
|
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
|
|
unsigned int lru_mask,
|
|
bool tree)
|
|
{
|
|
unsigned long nr = 0;
|
|
enum lru_list lru;
|
|
|
|
for_each_lru(lru) {
|
|
if (!(BIT(lru) & lru_mask))
|
|
continue;
|
|
if (tree)
|
|
nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
|
|
else
|
|
nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
|
|
}
|
|
return nr;
|
|
}
|
|
|
|
static int memcg_numa_stat_show(struct seq_file *m, void *v)
|
|
{
|
|
struct numa_stat {
|
|
const char *name;
|
|
unsigned int lru_mask;
|
|
};
|
|
|
|
static const struct numa_stat stats[] = {
|
|
{ "total", LRU_ALL },
|
|
{ "file", LRU_ALL_FILE },
|
|
{ "anon", LRU_ALL_ANON },
|
|
{ "unevictable", BIT(LRU_UNEVICTABLE) },
|
|
};
|
|
const struct numa_stat *stat;
|
|
int nid;
|
|
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
|
|
|
|
mem_cgroup_flush_stats(memcg);
|
|
|
|
for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
|
|
seq_printf(m, "%s=%lu", stat->name,
|
|
mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
|
|
false));
|
|
for_each_node_state(nid, N_MEMORY)
|
|
seq_printf(m, " N%d=%lu", nid,
|
|
mem_cgroup_node_nr_lru_pages(memcg, nid,
|
|
stat->lru_mask, false));
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
|
|
|
|
seq_printf(m, "hierarchical_%s=%lu", stat->name,
|
|
mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
|
|
true));
|
|
for_each_node_state(nid, N_MEMORY)
|
|
seq_printf(m, " N%d=%lu", nid,
|
|
mem_cgroup_node_nr_lru_pages(memcg, nid,
|
|
stat->lru_mask, true));
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
static const unsigned int memcg1_stats[] = {
|
|
NR_FILE_PAGES,
|
|
NR_ANON_MAPPED,
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
NR_ANON_THPS,
|
|
#endif
|
|
NR_SHMEM,
|
|
NR_FILE_MAPPED,
|
|
NR_FILE_DIRTY,
|
|
NR_WRITEBACK,
|
|
WORKINGSET_REFAULT_ANON,
|
|
WORKINGSET_REFAULT_FILE,
|
|
#ifdef CONFIG_SWAP
|
|
MEMCG_SWAP,
|
|
NR_SWAPCACHE,
|
|
#endif
|
|
};
|
|
|
|
static const char *const memcg1_stat_names[] = {
|
|
"cache",
|
|
"rss",
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
"rss_huge",
|
|
#endif
|
|
"shmem",
|
|
"mapped_file",
|
|
"dirty",
|
|
"writeback",
|
|
"workingset_refault_anon",
|
|
"workingset_refault_file",
|
|
#ifdef CONFIG_SWAP
|
|
"swap",
|
|
"swapcached",
|
|
#endif
|
|
};
|
|
|
|
/* Universal VM events cgroup1 shows, original sort order */
|
|
static const unsigned int memcg1_events[] = {
|
|
PGPGIN,
|
|
PGPGOUT,
|
|
PGFAULT,
|
|
PGMAJFAULT,
|
|
};
|
|
|
|
void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
|
|
{
|
|
unsigned long memory, memsw;
|
|
struct mem_cgroup *mi;
|
|
unsigned int i;
|
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
|
|
|
|
mem_cgroup_flush_stats(memcg);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
|
|
unsigned long nr;
|
|
|
|
nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
|
|
seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
|
|
seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
|
|
memcg_events_local(memcg, memcg1_events[i]));
|
|
|
|
for (i = 0; i < NR_LRU_LISTS; i++)
|
|
seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
|
|
memcg_page_state_local(memcg, NR_LRU_BASE + i) *
|
|
PAGE_SIZE);
|
|
|
|
/* Hierarchical information */
|
|
memory = memsw = PAGE_COUNTER_MAX;
|
|
for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
|
|
memory = min(memory, READ_ONCE(mi->memory.max));
|
|
memsw = min(memsw, READ_ONCE(mi->memsw.max));
|
|
}
|
|
seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
|
|
(u64)memory * PAGE_SIZE);
|
|
seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
|
|
(u64)memsw * PAGE_SIZE);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
|
|
unsigned long nr;
|
|
|
|
nr = memcg_page_state_output(memcg, memcg1_stats[i]);
|
|
seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
|
|
(u64)nr);
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
|
|
seq_buf_printf(s, "total_%s %llu\n",
|
|
vm_event_name(memcg1_events[i]),
|
|
(u64)memcg_events(memcg, memcg1_events[i]));
|
|
|
|
for (i = 0; i < NR_LRU_LISTS; i++)
|
|
seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
|
|
(u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
|
|
PAGE_SIZE);
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
{
|
|
pg_data_t *pgdat;
|
|
struct mem_cgroup_per_node *mz;
|
|
unsigned long anon_cost = 0;
|
|
unsigned long file_cost = 0;
|
|
|
|
for_each_online_pgdat(pgdat) {
|
|
mz = memcg->nodeinfo[pgdat->node_id];
|
|
|
|
anon_cost += mz->lruvec.anon_cost;
|
|
file_cost += mz->lruvec.file_cost;
|
|
}
|
|
seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
|
|
seq_buf_printf(s, "file_cost %lu\n", file_cost);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
|
|
struct cftype *cft)
|
|
{
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
|
|
|
|
return mem_cgroup_swappiness(memcg);
|
|
}
|
|
|
|
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
|
|
struct cftype *cft, u64 val)
|
|
{
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
|
|
|
|
if (val > MAX_SWAPPINESS)
|
|
return -EINVAL;
|
|
|
|
if (!mem_cgroup_is_root(memcg))
|
|
WRITE_ONCE(memcg->swappiness, val);
|
|
else
|
|
WRITE_ONCE(vm_swappiness, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
|
|
{
|
|
struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
|
|
|
|
seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
|
|
seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
|
|
seq_printf(sf, "oom_kill %lu\n",
|
|
atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
|
|
return 0;
|
|
}
|
|
|
|
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
|
|
struct cftype *cft, u64 val)
|
|
{
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
|
|
|
|
pr_warn_once("oom_control is deprecated and will be removed. "
|
|
"Please report your usecase to linux-mm-@kvack.org if you "
|
|
"depend on this functionality. \n");
|
|
|
|
/* cannot set to root cgroup and only 0 and 1 are allowed */
|
|
if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
|
|
return -EINVAL;
|
|
|
|
WRITE_ONCE(memcg->oom_kill_disable, val);
|
|
if (!val)
|
|
memcg1_oom_recover(memcg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SLUB_DEBUG
|
|
static int mem_cgroup_slab_show(struct seq_file *m, void *p)
|
|
{
|
|
/*
|
|
* Deprecated.
|
|
* Please, take a look at tools/cgroup/memcg_slabinfo.py .
|
|
*/
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
struct cftype mem_cgroup_legacy_files[] = {
|
|
{
|
|
.name = "usage_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{
|
|
.name = "max_usage_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
|
|
.write = mem_cgroup_reset,
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{
|
|
.name = "limit_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
|
|
.write = mem_cgroup_write,
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{
|
|
.name = "soft_limit_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
|
|
.write = mem_cgroup_write,
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{
|
|
.name = "failcnt",
|
|
.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
|
|
.write = mem_cgroup_reset,
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{
|
|
.name = "stat",
|
|
.seq_show = memory_stat_show,
|
|
},
|
|
{
|
|
.name = "force_empty",
|
|
.write = mem_cgroup_force_empty_write,
|
|
},
|
|
{
|
|
.name = "use_hierarchy",
|
|
.write_u64 = mem_cgroup_hierarchy_write,
|
|
.read_u64 = mem_cgroup_hierarchy_read,
|
|
},
|
|
{
|
|
.name = "cgroup.event_control", /* XXX: for compat */
|
|
.write = memcg_write_event_control,
|
|
.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
|
|
},
|
|
{
|
|
.name = "swappiness",
|
|
.read_u64 = mem_cgroup_swappiness_read,
|
|
.write_u64 = mem_cgroup_swappiness_write,
|
|
},
|
|
{
|
|
.name = "move_charge_at_immigrate",
|
|
.read_u64 = mem_cgroup_move_charge_read,
|
|
.write_u64 = mem_cgroup_move_charge_write,
|
|
},
|
|
{
|
|
.name = "oom_control",
|
|
.seq_show = mem_cgroup_oom_control_read,
|
|
.write_u64 = mem_cgroup_oom_control_write,
|
|
},
|
|
{
|
|
.name = "pressure_level",
|
|
.seq_show = mem_cgroup_dummy_seq_show,
|
|
},
|
|
#ifdef CONFIG_NUMA
|
|
{
|
|
.name = "numa_stat",
|
|
.seq_show = memcg_numa_stat_show,
|
|
},
|
|
#endif
|
|
{
|
|
.name = "kmem.limit_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
|
|
.write = mem_cgroup_write,
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{
|
|
.name = "kmem.usage_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{
|
|
.name = "kmem.failcnt",
|
|
.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
|
|
.write = mem_cgroup_reset,
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{
|
|
.name = "kmem.max_usage_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
|
|
.write = mem_cgroup_reset,
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
#ifdef CONFIG_SLUB_DEBUG
|
|
{
|
|
.name = "kmem.slabinfo",
|
|
.seq_show = mem_cgroup_slab_show,
|
|
},
|
|
#endif
|
|
{
|
|
.name = "kmem.tcp.limit_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
|
|
.write = mem_cgroup_write,
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{
|
|
.name = "kmem.tcp.usage_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{
|
|
.name = "kmem.tcp.failcnt",
|
|
.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
|
|
.write = mem_cgroup_reset,
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{
|
|
.name = "kmem.tcp.max_usage_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
|
|
.write = mem_cgroup_reset,
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{ }, /* terminate */
|
|
};
|
|
|
|
struct cftype memsw_files[] = {
|
|
{
|
|
.name = "memsw.usage_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{
|
|
.name = "memsw.max_usage_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
|
|
.write = mem_cgroup_reset,
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{
|
|
.name = "memsw.limit_in_bytes",
|
|
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
|
|
.write = mem_cgroup_write,
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{
|
|
.name = "memsw.failcnt",
|
|
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
|
|
.write = mem_cgroup_reset,
|
|
.read_u64 = mem_cgroup_read_u64,
|
|
},
|
|
{ }, /* terminate */
|
|
};
|
|
|
|
void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages)
|
|
{
|
|
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
|
|
if (nr_pages > 0)
|
|
page_counter_charge(&memcg->kmem, nr_pages);
|
|
else
|
|
page_counter_uncharge(&memcg->kmem, -nr_pages);
|
|
}
|
|
}
|
|
|
|
bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct page_counter *fail;
|
|
|
|
if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
|
|
memcg->tcpmem_pressure = 0;
|
|
return true;
|
|
}
|
|
memcg->tcpmem_pressure = 1;
|
|
if (gfp_mask & __GFP_NOFAIL) {
|
|
page_counter_charge(&memcg->tcpmem, nr_pages);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool memcg1_alloc_events(struct mem_cgroup *memcg)
|
|
{
|
|
memcg->events_percpu = alloc_percpu_gfp(struct memcg1_events_percpu,
|
|
GFP_KERNEL_ACCOUNT);
|
|
return !!memcg->events_percpu;
|
|
}
|
|
|
|
void memcg1_free_events(struct mem_cgroup *memcg)
|
|
{
|
|
if (memcg->events_percpu)
|
|
free_percpu(memcg->events_percpu);
|
|
}
|
|
|
|
static int __init memcg1_init(void)
|
|
{
|
|
int node;
|
|
|
|
for_each_node(node) {
|
|
struct mem_cgroup_tree_per_node *rtpn;
|
|
|
|
rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
|
|
|
|
rtpn->rb_root = RB_ROOT;
|
|
rtpn->rb_rightmost = NULL;
|
|
spin_lock_init(&rtpn->lock);
|
|
soft_limit_tree.rb_tree_per_node[node] = rtpn;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
subsys_initcall(memcg1_init);
|