linux/arch/ia64/kernel/mca.c
hawkes@sgi.com ddf6d0a00c [IA64] another place to use for_each_cpu_mask() in arch/ia64
In arch/ia64 change the explicit use of a for-loop using NR_CPUS into the
general for_each_online_cpu() construct.  This widens the scope of potential
future optimizations of the general constructs, as well as takes advantage
of the existing optimizations of first_cpu() and next_cpu(), which is
advantageous when the true CPU count is much smaller than NR_CPUS.

Signed-off-by: John Hawkes <hawkes@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-10-25 15:12:05 -07:00

1654 lines
48 KiB
C

/*
* File: mca.c
* Purpose: Generic MCA handling layer
*
* Updated for latest kernel
* Copyright (C) 2003 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*
* Copyright (C) 2002 Dell Inc.
* Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
*
* Copyright (C) 2002 Intel
* Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
*
* Copyright (C) 2001 Intel
* Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
*
* Copyright (C) 2000 Intel
* Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
*
* Copyright (C) 1999, 2004 Silicon Graphics, Inc.
* Copyright (C) Vijay Chander(vijay@engr.sgi.com)
*
* 03/04/15 D. Mosberger Added INIT backtrace support.
* 02/03/25 M. Domsch GUID cleanups
*
* 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
* error flag, set SAL default return values, changed
* error record structure to linked list, added init call
* to sal_get_state_info_size().
*
* 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
* platform errors, completed code for logging of
* corrected & uncorrected machine check errors, and
* updated for conformance with Nov. 2000 revision of the
* SAL 3.0 spec.
* 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
* added min save state dump, added INIT handler.
*
* 2003-12-08 Keith Owens <kaos@sgi.com>
* smp_call_function() must not be called from interrupt context (can
* deadlock on tasklist_lock). Use keventd to call smp_call_function().
*
* 2004-02-01 Keith Owens <kaos@sgi.com>
* Avoid deadlock when using printk() for MCA and INIT records.
* Delete all record printing code, moved to salinfo_decode in user space.
* Mark variables and functions static where possible.
* Delete dead variables and functions.
* Reorder to remove the need for forward declarations and to consolidate
* related code.
*
* 2005-08-12 Keith Owens <kaos@sgi.com>
* Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
*/
#include <linux/config.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kallsyms.h>
#include <linux/smp_lock.h>
#include <linux/bootmem.h>
#include <linux/acpi.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/smp.h>
#include <linux/workqueue.h>
#include <asm/delay.h>
#include <asm/machvec.h>
#include <asm/meminit.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/system.h>
#include <asm/sal.h>
#include <asm/mca.h>
#include <asm/irq.h>
#include <asm/hw_irq.h>
#include "entry.h"
#if defined(IA64_MCA_DEBUG_INFO)
# define IA64_MCA_DEBUG(fmt...) printk(fmt)
#else
# define IA64_MCA_DEBUG(fmt...)
#endif
/* Used by mca_asm.S */
u32 ia64_mca_serialize;
DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
unsigned long __per_cpu_mca[NR_CPUS];
/* In mca_asm.S */
extern void ia64_os_init_dispatch_monarch (void);
extern void ia64_os_init_dispatch_slave (void);
static int monarch_cpu = -1;
static ia64_mc_info_t ia64_mc_info;
#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
#define CPE_HISTORY_LENGTH 5
#define CMC_HISTORY_LENGTH 5
static struct timer_list cpe_poll_timer;
static struct timer_list cmc_poll_timer;
/*
* This variable tells whether we are currently in polling mode.
* Start with this in the wrong state so we won't play w/ timers
* before the system is ready.
*/
static int cmc_polling_enabled = 1;
/*
* Clearing this variable prevents CPE polling from getting activated
* in mca_late_init. Use it if your system doesn't provide a CPEI,
* but encounters problems retrieving CPE logs. This should only be
* necessary for debugging.
*/
static int cpe_poll_enabled = 1;
extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
static int mca_init;
/*
* IA64_MCA log support
*/
#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
typedef struct ia64_state_log_s
{
spinlock_t isl_lock;
int isl_index;
unsigned long isl_count;
ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
} ia64_state_log_t;
static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
#define IA64_LOG_ALLOCATE(it, size) \
{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
(ia64_err_rec_t *)alloc_bootmem(size); \
ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
(ia64_err_rec_t *)alloc_bootmem(size);}
#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
#define IA64_LOG_INDEX_INC(it) \
{ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
ia64_state_log[it].isl_count++;}
#define IA64_LOG_INDEX_DEC(it) \
ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
/*
* ia64_log_init
* Reset the OS ia64 log buffer
* Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
* Outputs : None
*/
static void
ia64_log_init(int sal_info_type)
{
u64 max_size = 0;
IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
IA64_LOG_LOCK_INIT(sal_info_type);
// SAL will tell us the maximum size of any error record of this type
max_size = ia64_sal_get_state_info_size(sal_info_type);
if (!max_size)
/* alloc_bootmem() doesn't like zero-sized allocations! */
return;
// set up OS data structures to hold error info
IA64_LOG_ALLOCATE(sal_info_type, max_size);
memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
}
/*
* ia64_log_get
*
* Get the current MCA log from SAL and copy it into the OS log buffer.
*
* Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
* irq_safe whether you can use printk at this point
* Outputs : size (total record length)
* *buffer (ptr to error record)
*
*/
static u64
ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
{
sal_log_record_header_t *log_buffer;
u64 total_len = 0;
int s;
IA64_LOG_LOCK(sal_info_type);
/* Get the process state information */
log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
if (total_len) {
IA64_LOG_INDEX_INC(sal_info_type);
IA64_LOG_UNLOCK(sal_info_type);
if (irq_safe) {
IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
"Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
}
*buffer = (u8 *) log_buffer;
return total_len;
} else {
IA64_LOG_UNLOCK(sal_info_type);
return 0;
}
}
/*
* ia64_mca_log_sal_error_record
*
* This function retrieves a specified error record type from SAL
* and wakes up any processes waiting for error records.
*
* Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
* FIXME: remove MCA and irq_safe.
*/
static void
ia64_mca_log_sal_error_record(int sal_info_type)
{
u8 *buffer;
sal_log_record_header_t *rh;
u64 size;
int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
#ifdef IA64_MCA_DEBUG_INFO
static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
#endif
size = ia64_log_get(sal_info_type, &buffer, irq_safe);
if (!size)
return;
salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
if (irq_safe)
IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
smp_processor_id(),
sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
/* Clear logs from corrected errors in case there's no user-level logger */
rh = (sal_log_record_header_t *)buffer;
if (rh->severity == sal_log_severity_corrected)
ia64_sal_clear_state_info(sal_info_type);
}
/*
* platform dependent error handling
*/
#ifndef PLATFORM_MCA_HANDLERS
#ifdef CONFIG_ACPI
int cpe_vector = -1;
static irqreturn_t
ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
{
static unsigned long cpe_history[CPE_HISTORY_LENGTH];
static int index;
static DEFINE_SPINLOCK(cpe_history_lock);
IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
__FUNCTION__, cpe_irq, smp_processor_id());
/* SAL spec states this should run w/ interrupts enabled */
local_irq_enable();
/* Get the CPE error record and log it */
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
spin_lock(&cpe_history_lock);
if (!cpe_poll_enabled && cpe_vector >= 0) {
int i, count = 1; /* we know 1 happened now */
unsigned long now = jiffies;
for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
if (now - cpe_history[i] <= HZ)
count++;
}
IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
if (count >= CPE_HISTORY_LENGTH) {
cpe_poll_enabled = 1;
spin_unlock(&cpe_history_lock);
disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
/*
* Corrected errors will still be corrected, but
* make sure there's a log somewhere that indicates
* something is generating more than we can handle.
*/
printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
/* lock already released, get out now */
return IRQ_HANDLED;
} else {
cpe_history[index++] = now;
if (index == CPE_HISTORY_LENGTH)
index = 0;
}
}
spin_unlock(&cpe_history_lock);
return IRQ_HANDLED;
}
#endif /* CONFIG_ACPI */
#ifdef CONFIG_ACPI
/*
* ia64_mca_register_cpev
*
* Register the corrected platform error vector with SAL.
*
* Inputs
* cpev Corrected Platform Error Vector number
*
* Outputs
* None
*/
static void
ia64_mca_register_cpev (int cpev)
{
/* Register the CPE interrupt vector with SAL */
struct ia64_sal_retval isrv;
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
if (isrv.status) {
printk(KERN_ERR "Failed to register Corrected Platform "
"Error interrupt vector with SAL (status %ld)\n", isrv.status);
return;
}
IA64_MCA_DEBUG("%s: corrected platform error "
"vector %#x registered\n", __FUNCTION__, cpev);
}
#endif /* CONFIG_ACPI */
#endif /* PLATFORM_MCA_HANDLERS */
/*
* ia64_mca_cmc_vector_setup
*
* Setup the corrected machine check vector register in the processor.
* (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
* This function is invoked on a per-processor basis.
*
* Inputs
* None
*
* Outputs
* None
*/
void
ia64_mca_cmc_vector_setup (void)
{
cmcv_reg_t cmcv;
cmcv.cmcv_regval = 0;
cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
cmcv.cmcv_vector = IA64_CMC_VECTOR;
ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
IA64_MCA_DEBUG("%s: CPU %d corrected "
"machine check vector %#x registered.\n",
__FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
__FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
}
/*
* ia64_mca_cmc_vector_disable
*
* Mask the corrected machine check vector register in the processor.
* This function is invoked on a per-processor basis.
*
* Inputs
* dummy(unused)
*
* Outputs
* None
*/
static void
ia64_mca_cmc_vector_disable (void *dummy)
{
cmcv_reg_t cmcv;
cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
IA64_MCA_DEBUG("%s: CPU %d corrected "
"machine check vector %#x disabled.\n",
__FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
}
/*
* ia64_mca_cmc_vector_enable
*
* Unmask the corrected machine check vector register in the processor.
* This function is invoked on a per-processor basis.
*
* Inputs
* dummy(unused)
*
* Outputs
* None
*/
static void
ia64_mca_cmc_vector_enable (void *dummy)
{
cmcv_reg_t cmcv;
cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
IA64_MCA_DEBUG("%s: CPU %d corrected "
"machine check vector %#x enabled.\n",
__FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
}
/*
* ia64_mca_cmc_vector_disable_keventd
*
* Called via keventd (smp_call_function() is not safe in interrupt context) to
* disable the cmc interrupt vector.
*/
static void
ia64_mca_cmc_vector_disable_keventd(void *unused)
{
on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
}
/*
* ia64_mca_cmc_vector_enable_keventd
*
* Called via keventd (smp_call_function() is not safe in interrupt context) to
* enable the cmc interrupt vector.
*/
static void
ia64_mca_cmc_vector_enable_keventd(void *unused)
{
on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
}
/*
* ia64_mca_wakeup
*
* Send an inter-cpu interrupt to wake-up a particular cpu
* and mark that cpu to be out of rendez.
*
* Inputs : cpuid
* Outputs : None
*/
static void
ia64_mca_wakeup(int cpu)
{
platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
}
/*
* ia64_mca_wakeup_all
*
* Wakeup all the cpus which have rendez'ed previously.
*
* Inputs : None
* Outputs : None
*/
static void
ia64_mca_wakeup_all(void)
{
int cpu;
/* Clear the Rendez checkin flag for all cpus */
for_each_online_cpu(cpu) {
if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
ia64_mca_wakeup(cpu);
}
}
/*
* ia64_mca_rendez_interrupt_handler
*
* This is handler used to put slave processors into spinloop
* while the monarch processor does the mca handling and later
* wake each slave up once the monarch is done.
*
* Inputs : None
* Outputs : None
*/
static irqreturn_t
ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs)
{
unsigned long flags;
int cpu = smp_processor_id();
/* Mask all interrupts */
local_irq_save(flags);
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
/* Register with the SAL monarch that the slave has
* reached SAL
*/
ia64_sal_mc_rendez();
/* Wait for the monarch cpu to exit. */
while (monarch_cpu != -1)
cpu_relax(); /* spin until monarch leaves */
/* Enable all interrupts */
local_irq_restore(flags);
return IRQ_HANDLED;
}
/*
* ia64_mca_wakeup_int_handler
*
* The interrupt handler for processing the inter-cpu interrupt to the
* slave cpu which was spinning in the rendez loop.
* Since this spinning is done by turning off the interrupts and
* polling on the wakeup-interrupt bit in the IRR, there is
* nothing useful to be done in the handler.
*
* Inputs : wakeup_irq (Wakeup-interrupt bit)
* arg (Interrupt handler specific argument)
* ptregs (Exception frame at the time of the interrupt)
* Outputs : None
*
*/
static irqreturn_t
ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
{
return IRQ_HANDLED;
}
/* Function pointer for extra MCA recovery */
int (*ia64_mca_ucmc_extension)
(void*,struct ia64_sal_os_state*)
= NULL;
int
ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
{
if (ia64_mca_ucmc_extension)
return 1;
ia64_mca_ucmc_extension = fn;
return 0;
}
void
ia64_unreg_MCA_extension(void)
{
if (ia64_mca_ucmc_extension)
ia64_mca_ucmc_extension = NULL;
}
EXPORT_SYMBOL(ia64_reg_MCA_extension);
EXPORT_SYMBOL(ia64_unreg_MCA_extension);
static inline void
copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
{
u64 fslot, tslot, nat;
*tr = *fr;
fslot = ((unsigned long)fr >> 3) & 63;
tslot = ((unsigned long)tr >> 3) & 63;
*tnat &= ~(1UL << tslot);
nat = (fnat >> fslot) & 1;
*tnat |= (nat << tslot);
}
/* On entry to this routine, we are running on the per cpu stack, see
* mca_asm.h. The original stack has not been touched by this event. Some of
* the original stack's registers will be in the RBS on this stack. This stack
* also contains a partial pt_regs and switch_stack, the rest of the data is in
* PAL minstate.
*
* The first thing to do is modify the original stack to look like a blocked
* task so we can run backtrace on the original task. Also mark the per cpu
* stack as current to ensure that we use the correct task state, it also means
* that we can do backtrace on the MCA/INIT handler code itself.
*/
static task_t *
ia64_mca_modify_original_stack(struct pt_regs *regs,
const struct switch_stack *sw,
struct ia64_sal_os_state *sos,
const char *type)
{
char *p, comm[sizeof(current->comm)];
ia64_va va;
extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
const pal_min_state_area_t *ms = sos->pal_min_state;
task_t *previous_current;
struct pt_regs *old_regs;
struct switch_stack *old_sw;
unsigned size = sizeof(struct pt_regs) +
sizeof(struct switch_stack) + 16;
u64 *old_bspstore, *old_bsp;
u64 *new_bspstore, *new_bsp;
u64 old_unat, old_rnat, new_rnat, nat;
u64 slots, loadrs = regs->loadrs;
u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
u64 ar_bspstore = regs->ar_bspstore;
u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
const u64 *bank;
const char *msg;
int cpu = smp_processor_id();
previous_current = curr_task(cpu);
set_curr_task(cpu, current);
if ((p = strchr(current->comm, ' ')))
*p = '\0';
/* Best effort attempt to cope with MCA/INIT delivered while in
* physical mode.
*/
regs->cr_ipsr = ms->pmsa_ipsr;
if (ia64_psr(regs)->dt == 0) {
va.l = r12;
if (va.f.reg == 0) {
va.f.reg = 7;
r12 = va.l;
}
va.l = r13;
if (va.f.reg == 0) {
va.f.reg = 7;
r13 = va.l;
}
}
if (ia64_psr(regs)->rt == 0) {
va.l = ar_bspstore;
if (va.f.reg == 0) {
va.f.reg = 7;
ar_bspstore = va.l;
}
va.l = ar_bsp;
if (va.f.reg == 0) {
va.f.reg = 7;
ar_bsp = va.l;
}
}
/* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
* have been copied to the old stack, the old stack may fail the
* validation tests below. So ia64_old_stack() must restore the dirty
* registers from the new stack. The old and new bspstore probably
* have different alignments, so loadrs calculated on the old bsp
* cannot be used to restore from the new bsp. Calculate a suitable
* loadrs for the new stack and save it in the new pt_regs, where
* ia64_old_stack() can get it.
*/
old_bspstore = (u64 *)ar_bspstore;
old_bsp = (u64 *)ar_bsp;
slots = ia64_rse_num_regs(old_bspstore, old_bsp);
new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
/* Verify the previous stack state before we change it */
if (user_mode(regs)) {
msg = "occurred in user space";
goto no_mod;
}
if (r13 != sos->prev_IA64_KR_CURRENT) {
msg = "inconsistent previous current and r13";
goto no_mod;
}
if ((r12 - r13) >= KERNEL_STACK_SIZE) {
msg = "inconsistent r12 and r13";
goto no_mod;
}
if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
msg = "inconsistent ar.bspstore and r13";
goto no_mod;
}
va.p = old_bspstore;
if (va.f.reg < 5) {
msg = "old_bspstore is in the wrong region";
goto no_mod;
}
if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
msg = "inconsistent ar.bsp and r13";
goto no_mod;
}
size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
if (ar_bspstore + size > r12) {
msg = "no room for blocked state";
goto no_mod;
}
/* Change the comm field on the MCA/INT task to include the pid that
* was interrupted, it makes for easier debugging. If that pid was 0
* (swapper or nested MCA/INIT) then use the start of the previous comm
* field suffixed with its cpu.
*/
if (previous_current->pid)
snprintf(comm, sizeof(comm), "%s %d",
current->comm, previous_current->pid);
else {
int l;
if ((p = strchr(previous_current->comm, ' ')))
l = p - previous_current->comm;
else
l = strlen(previous_current->comm);
snprintf(comm, sizeof(comm), "%s %*s %d",
current->comm, l, previous_current->comm,
previous_current->thread_info->cpu);
}
memcpy(current->comm, comm, sizeof(current->comm));
/* Make the original task look blocked. First stack a struct pt_regs,
* describing the state at the time of interrupt. mca_asm.S built a
* partial pt_regs, copy it and fill in the blanks using minstate.
*/
p = (char *)r12 - sizeof(*regs);
old_regs = (struct pt_regs *)p;
memcpy(old_regs, regs, sizeof(*regs));
/* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
* pmsa_{xip,xpsr,xfs}
*/
if (ia64_psr(regs)->ic) {
old_regs->cr_iip = ms->pmsa_iip;
old_regs->cr_ipsr = ms->pmsa_ipsr;
old_regs->cr_ifs = ms->pmsa_ifs;
} else {
old_regs->cr_iip = ms->pmsa_xip;
old_regs->cr_ipsr = ms->pmsa_xpsr;
old_regs->cr_ifs = ms->pmsa_xfs;
}
old_regs->pr = ms->pmsa_pr;
old_regs->b0 = ms->pmsa_br0;
old_regs->loadrs = loadrs;
old_regs->ar_rsc = ms->pmsa_rsc;
old_unat = old_regs->ar_unat;
copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
if (ia64_psr(old_regs)->bn)
bank = ms->pmsa_bank1_gr;
else
bank = ms->pmsa_bank0_gr;
copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
/* Next stack a struct switch_stack. mca_asm.S built a partial
* switch_stack, copy it and fill in the blanks using pt_regs and
* minstate.
*
* In the synthesized switch_stack, b0 points to ia64_leave_kernel,
* ar.pfs is set to 0.
*
* unwind.c::unw_unwind() does special processing for interrupt frames.
* It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
* is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
* that this is documented, of course. Set PRED_NON_SYSCALL in the
* switch_stack on the original stack so it will unwind correctly when
* unwind.c reads pt_regs.
*
* thread.ksp is updated to point to the synthesized switch_stack.
*/
p -= sizeof(struct switch_stack);
old_sw = (struct switch_stack *)p;
memcpy(old_sw, sw, sizeof(*sw));
old_sw->caller_unat = old_unat;
old_sw->ar_fpsr = old_regs->ar_fpsr;
copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
old_sw->b0 = (u64)ia64_leave_kernel;
old_sw->b1 = ms->pmsa_br1;
old_sw->ar_pfs = 0;
old_sw->ar_unat = old_unat;
old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
previous_current->thread.ksp = (u64)p - 16;
/* Finally copy the original stack's registers back to its RBS.
* Registers from ar.bspstore through ar.bsp at the time of the event
* are in the current RBS, copy them back to the original stack. The
* copy must be done register by register because the original bspstore
* and the current one have different alignments, so the saved RNAT
* data occurs at different places.
*
* mca_asm does cover, so the old_bsp already includes all registers at
* the time of MCA/INIT. It also does flushrs, so all registers before
* this function have been written to backing store on the MCA/INIT
* stack.
*/
new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
old_rnat = regs->ar_rnat;
while (slots--) {
if (ia64_rse_is_rnat_slot(new_bspstore)) {
new_rnat = ia64_get_rnat(new_bspstore++);
}
if (ia64_rse_is_rnat_slot(old_bspstore)) {
*old_bspstore++ = old_rnat;
old_rnat = 0;
}
nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
*old_bspstore++ = *new_bspstore++;
}
old_sw->ar_bspstore = (unsigned long)old_bspstore;
old_sw->ar_rnat = old_rnat;
sos->prev_task = previous_current;
return previous_current;
no_mod:
printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
smp_processor_id(), type, msg);
return previous_current;
}
/* The monarch/slave interaction is based on monarch_cpu and requires that all
* slaves have entered rendezvous before the monarch leaves. If any cpu has
* not entered rendezvous yet then wait a bit. The assumption is that any
* slave that has not rendezvoused after a reasonable time is never going to do
* so. In this context, slave includes cpus that respond to the MCA rendezvous
* interrupt, as well as cpus that receive the INIT slave event.
*/
static void
ia64_wait_for_slaves(int monarch)
{
int c, wait = 0;
for_each_online_cpu(c) {
if (c == monarch)
continue;
if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
udelay(1000); /* short wait first */
wait = 1;
break;
}
}
if (!wait)
return;
for_each_online_cpu(c) {
if (c == monarch)
continue;
if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
break;
}
}
}
/*
* ia64_mca_handler
*
* This is uncorrectable machine check handler called from OS_MCA
* dispatch code which is in turn called from SAL_CHECK().
* This is the place where the core of OS MCA handling is done.
* Right now the logs are extracted and displayed in a well-defined
* format. This handler code is supposed to be run only on the
* monarch processor. Once the monarch is done with MCA handling
* further MCA logging is enabled by clearing logs.
* Monarch also has the duty of sending wakeup-IPIs to pull the
* slave processors out of rendezvous spinloop.
*/
void
ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
struct ia64_sal_os_state *sos)
{
pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
&sos->proc_state_param;
int recover, cpu = smp_processor_id();
task_t *previous_current;
oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
monarch_cpu = cpu;
ia64_wait_for_slaves(cpu);
/* Wakeup all the processors which are spinning in the rendezvous loop.
* They will leave SAL, then spin in the OS with interrupts disabled
* until this monarch cpu leaves the MCA handler. That gets control
* back to the OS so we can backtrace the other cpus, backtrace when
* spinning in SAL does not work.
*/
ia64_mca_wakeup_all();
/* Get the MCA error record and log it */
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
/* TLB error is only exist in this SAL error record */
recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
/* other error recovery */
|| (ia64_mca_ucmc_extension
&& ia64_mca_ucmc_extension(
IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
sos));
if (recover) {
sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
rh->severity = sal_log_severity_corrected;
ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
sos->os_status = IA64_MCA_CORRECTED;
}
set_curr_task(cpu, previous_current);
monarch_cpu = -1;
}
static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
/*
* ia64_mca_cmc_int_handler
*
* This is corrected machine check interrupt handler.
* Right now the logs are extracted and displayed in a well-defined
* format.
*
* Inputs
* interrupt number
* client data arg ptr
* saved registers ptr
*
* Outputs
* None
*/
static irqreturn_t
ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
{
static unsigned long cmc_history[CMC_HISTORY_LENGTH];
static int index;
static DEFINE_SPINLOCK(cmc_history_lock);
IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
__FUNCTION__, cmc_irq, smp_processor_id());
/* SAL spec states this should run w/ interrupts enabled */
local_irq_enable();
/* Get the CMC error record and log it */
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
spin_lock(&cmc_history_lock);
if (!cmc_polling_enabled) {
int i, count = 1; /* we know 1 happened now */
unsigned long now = jiffies;
for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
if (now - cmc_history[i] <= HZ)
count++;
}
IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
if (count >= CMC_HISTORY_LENGTH) {
cmc_polling_enabled = 1;
spin_unlock(&cmc_history_lock);
/* If we're being hit with CMC interrupts, we won't
* ever execute the schedule_work() below. Need to
* disable CMC interrupts on this processor now.
*/
ia64_mca_cmc_vector_disable(NULL);
schedule_work(&cmc_disable_work);
/*
* Corrected errors will still be corrected, but
* make sure there's a log somewhere that indicates
* something is generating more than we can handle.
*/
printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
/* lock already released, get out now */
return IRQ_HANDLED;
} else {
cmc_history[index++] = now;
if (index == CMC_HISTORY_LENGTH)
index = 0;
}
}
spin_unlock(&cmc_history_lock);
return IRQ_HANDLED;
}
/*
* ia64_mca_cmc_int_caller
*
* Triggered by sw interrupt from CMC polling routine. Calls
* real interrupt handler and either triggers a sw interrupt
* on the next cpu or does cleanup at the end.
*
* Inputs
* interrupt number
* client data arg ptr
* saved registers ptr
* Outputs
* handled
*/
static irqreturn_t
ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
{
static int start_count = -1;
unsigned int cpuid;
cpuid = smp_processor_id();
/* If first cpu, update count */
if (start_count == -1)
start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
if (cpuid < NR_CPUS) {
platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
} else {
/* If no log record, switch out of polling mode */
if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
schedule_work(&cmc_enable_work);
cmc_polling_enabled = 0;
} else {
mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
}
start_count = -1;
}
return IRQ_HANDLED;
}
/*
* ia64_mca_cmc_poll
*
* Poll for Corrected Machine Checks (CMCs)
*
* Inputs : dummy(unused)
* Outputs : None
*
*/
static void
ia64_mca_cmc_poll (unsigned long dummy)
{
/* Trigger a CMC interrupt cascade */
platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
}
/*
* ia64_mca_cpe_int_caller
*
* Triggered by sw interrupt from CPE polling routine. Calls
* real interrupt handler and either triggers a sw interrupt
* on the next cpu or does cleanup at the end.
*
* Inputs
* interrupt number
* client data arg ptr
* saved registers ptr
* Outputs
* handled
*/
#ifdef CONFIG_ACPI
static irqreturn_t
ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
{
static int start_count = -1;
static int poll_time = MIN_CPE_POLL_INTERVAL;
unsigned int cpuid;
cpuid = smp_processor_id();
/* If first cpu, update count */
if (start_count == -1)
start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
if (cpuid < NR_CPUS) {
platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
} else {
/*
* If a log was recorded, increase our polling frequency,
* otherwise, backoff or return to interrupt mode.
*/
if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
} else if (cpe_vector < 0) {
poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
} else {
poll_time = MIN_CPE_POLL_INTERVAL;
printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
cpe_poll_enabled = 0;
}
if (cpe_poll_enabled)
mod_timer(&cpe_poll_timer, jiffies + poll_time);
start_count = -1;
}
return IRQ_HANDLED;
}
/*
* ia64_mca_cpe_poll
*
* Poll for Corrected Platform Errors (CPEs), trigger interrupt
* on first cpu, from there it will trickle through all the cpus.
*
* Inputs : dummy(unused)
* Outputs : None
*
*/
static void
ia64_mca_cpe_poll (unsigned long dummy)
{
/* Trigger a CPE interrupt cascade */
platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
}
#endif /* CONFIG_ACPI */
/*
* C portion of the OS INIT handler
*
* Called from ia64_os_init_dispatch
*
* Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
* this event. This code is used for both monarch and slave INIT events, see
* sos->monarch.
*
* All INIT events switch to the INIT stack and change the previous process to
* blocked status. If one of the INIT events is the monarch then we are
* probably processing the nmi button/command. Use the monarch cpu to dump all
* the processes. The slave INIT events all spin until the monarch cpu
* returns. We can also get INIT slave events for MCA, in which case the MCA
* process is the monarch.
*/
void
ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
struct ia64_sal_os_state *sos)
{
static atomic_t slaves;
static atomic_t monarchs;
task_t *previous_current;
int cpu = smp_processor_id(), c;
struct task_struct *g, *t;
oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
console_loglevel = 15; /* make sure printks make it to console */
printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
sos->proc_state_param, cpu, sos->monarch);
salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
sos->os_status = IA64_INIT_RESUME;
/* FIXME: Workaround for broken proms that drive all INIT events as
* slaves. The last slave that enters is promoted to be a monarch.
* Remove this code in September 2006, that gives platforms a year to
* fix their proms and get their customers updated.
*/
if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
__FUNCTION__, cpu);
atomic_dec(&slaves);
sos->monarch = 1;
}
/* FIXME: Workaround for broken proms that drive all INIT events as
* monarchs. Second and subsequent monarchs are demoted to slaves.
* Remove this code in September 2006, that gives platforms a year to
* fix their proms and get their customers updated.
*/
if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
__FUNCTION__, cpu);
atomic_dec(&monarchs);
sos->monarch = 0;
}
if (!sos->monarch) {
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
while (monarch_cpu == -1)
cpu_relax(); /* spin until monarch enters */
while (monarch_cpu != -1)
cpu_relax(); /* spin until monarch leaves */
printk("Slave on cpu %d returning to normal service.\n", cpu);
set_curr_task(cpu, previous_current);
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
atomic_dec(&slaves);
return;
}
monarch_cpu = cpu;
/*
* Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
* generated via the BMC's command-line interface, but since the console is on the
* same serial line, the user will need some time to switch out of the BMC before
* the dump begins.
*/
printk("Delaying for 5 seconds...\n");
udelay(5*1000000);
ia64_wait_for_slaves(cpu);
printk(KERN_ERR "Processes interrupted by INIT -");
for_each_online_cpu(c) {
struct ia64_sal_os_state *s;
t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
g = s->prev_task;
if (g) {
if (g->pid)
printk(" %d", g->pid);
else
printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
}
}
printk("\n\n");
if (read_trylock(&tasklist_lock)) {
do_each_thread (g, t) {
printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
show_stack(t, NULL);
} while_each_thread (g, t);
read_unlock(&tasklist_lock);
}
printk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
atomic_dec(&monarchs);
set_curr_task(cpu, previous_current);
monarch_cpu = -1;
return;
}
static int __init
ia64_mca_disable_cpe_polling(char *str)
{
cpe_poll_enabled = 0;
return 1;
}
__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
static struct irqaction cmci_irqaction = {
.handler = ia64_mca_cmc_int_handler,
.flags = SA_INTERRUPT,
.name = "cmc_hndlr"
};
static struct irqaction cmcp_irqaction = {
.handler = ia64_mca_cmc_int_caller,
.flags = SA_INTERRUPT,
.name = "cmc_poll"
};
static struct irqaction mca_rdzv_irqaction = {
.handler = ia64_mca_rendez_int_handler,
.flags = SA_INTERRUPT,
.name = "mca_rdzv"
};
static struct irqaction mca_wkup_irqaction = {
.handler = ia64_mca_wakeup_int_handler,
.flags = SA_INTERRUPT,
.name = "mca_wkup"
};
#ifdef CONFIG_ACPI
static struct irqaction mca_cpe_irqaction = {
.handler = ia64_mca_cpe_int_handler,
.flags = SA_INTERRUPT,
.name = "cpe_hndlr"
};
static struct irqaction mca_cpep_irqaction = {
.handler = ia64_mca_cpe_int_caller,
.flags = SA_INTERRUPT,
.name = "cpe_poll"
};
#endif /* CONFIG_ACPI */
/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
* these stacks can never sleep, they cannot return from the kernel to user
* space, they do not appear in a normal ps listing. So there is no need to
* format most of the fields.
*/
static void
format_mca_init_stack(void *mca_data, unsigned long offset,
const char *type, int cpu)
{
struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
struct thread_info *ti;
memset(p, 0, KERNEL_STACK_SIZE);
ti = (struct thread_info *)((char *)p + IA64_TASK_SIZE);
ti->flags = _TIF_MCA_INIT;
ti->preempt_count = 1;
ti->task = p;
ti->cpu = cpu;
p->thread_info = ti;
p->state = TASK_UNINTERRUPTIBLE;
__set_bit(cpu, &p->cpus_allowed);
INIT_LIST_HEAD(&p->tasks);
p->parent = p->real_parent = p->group_leader = p;
INIT_LIST_HEAD(&p->children);
INIT_LIST_HEAD(&p->sibling);
strncpy(p->comm, type, sizeof(p->comm)-1);
}
/* Do per-CPU MCA-related initialization. */
void __devinit
ia64_mca_cpu_init(void *cpu_data)
{
void *pal_vaddr;
if (smp_processor_id() == 0) {
void *mca_data;
int cpu;
mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
* NR_CPUS + KERNEL_STACK_SIZE);
mca_data = (void *)(((unsigned long)mca_data +
KERNEL_STACK_SIZE - 1) &
(-KERNEL_STACK_SIZE));
for (cpu = 0; cpu < NR_CPUS; cpu++) {
format_mca_init_stack(mca_data,
offsetof(struct ia64_mca_cpu, mca_stack),
"MCA", cpu);
format_mca_init_stack(mca_data,
offsetof(struct ia64_mca_cpu, init_stack),
"INIT", cpu);
__per_cpu_mca[cpu] = __pa(mca_data);
mca_data += sizeof(struct ia64_mca_cpu);
}
}
/*
* The MCA info structure was allocated earlier and its
* physical address saved in __per_cpu_mca[cpu]. Copy that
* address * to ia64_mca_data so we can access it as a per-CPU
* variable.
*/
__get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
/*
* Stash away a copy of the PTE needed to map the per-CPU page.
* We may need it during MCA recovery.
*/
__get_cpu_var(ia64_mca_per_cpu_pte) =
pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
/*
* Also, stash away a copy of the PAL address and the PTE
* needed to map it.
*/
pal_vaddr = efi_get_pal_addr();
if (!pal_vaddr)
return;
__get_cpu_var(ia64_mca_pal_base) =
GRANULEROUNDDOWN((unsigned long) pal_vaddr);
__get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
PAGE_KERNEL));
}
/*
* ia64_mca_init
*
* Do all the system level mca specific initialization.
*
* 1. Register spinloop and wakeup request interrupt vectors
*
* 2. Register OS_MCA handler entry point
*
* 3. Register OS_INIT handler entry point
*
* 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
*
* Note that this initialization is done very early before some kernel
* services are available.
*
* Inputs : None
*
* Outputs : None
*/
void __init
ia64_mca_init(void)
{
ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
int i;
s64 rc;
struct ia64_sal_retval isrv;
u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
/* Clear the Rendez checkin flag for all cpus */
for(i = 0 ; i < NR_CPUS; i++)
ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
/*
* Register the rendezvous spinloop and wakeup mechanism with SAL
*/
/* Register the rendezvous interrupt vector with SAL */
while (1) {
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
SAL_MC_PARAM_MECHANISM_INT,
IA64_MCA_RENDEZ_VECTOR,
timeout,
SAL_MC_PARAM_RZ_ALWAYS);
rc = isrv.status;
if (rc == 0)
break;
if (rc == -2) {
printk(KERN_INFO "Increasing MCA rendezvous timeout from "
"%ld to %ld milliseconds\n", timeout, isrv.v0);
timeout = isrv.v0;
continue;
}
printk(KERN_ERR "Failed to register rendezvous interrupt "
"with SAL (status %ld)\n", rc);
return;
}
/* Register the wakeup interrupt vector with SAL */
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
SAL_MC_PARAM_MECHANISM_INT,
IA64_MCA_WAKEUP_VECTOR,
0, 0);
rc = isrv.status;
if (rc) {
printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
"(status %ld)\n", rc);
return;
}
IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
/*
* XXX - disable SAL checksum by setting size to 0; should be
* ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
*/
ia64_mc_info.imi_mca_handler_size = 0;
/* Register the os mca handler with SAL */
if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
ia64_mc_info.imi_mca_handler,
ia64_tpa(mca_hldlr_ptr->gp),
ia64_mc_info.imi_mca_handler_size,
0, 0, 0)))
{
printk(KERN_ERR "Failed to register OS MCA handler with SAL "
"(status %ld)\n", rc);
return;
}
IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
/*
* XXX - disable SAL checksum by setting size to 0, should be
* size of the actual init handler in mca_asm.S.
*/
ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
ia64_mc_info.imi_monarch_init_handler_size = 0;
ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
ia64_mc_info.imi_slave_init_handler_size = 0;
IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
ia64_mc_info.imi_monarch_init_handler);
/* Register the os init handler with SAL */
if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
ia64_mc_info.imi_monarch_init_handler,
ia64_tpa(ia64_getreg(_IA64_REG_GP)),
ia64_mc_info.imi_monarch_init_handler_size,
ia64_mc_info.imi_slave_init_handler,
ia64_tpa(ia64_getreg(_IA64_REG_GP)),
ia64_mc_info.imi_slave_init_handler_size)))
{
printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
"(status %ld)\n", rc);
return;
}
IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
/*
* Configure the CMCI/P vector and handler. Interrupts for CMC are
* per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
*/
register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
/* Setup the MCA rendezvous interrupt vector */
register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
/* Setup the MCA wakeup interrupt vector */
register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
#ifdef CONFIG_ACPI
/* Setup the CPEI/P handler */
register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
#endif
/* Initialize the areas set aside by the OS to buffer the
* platform/processor error states for MCA/INIT/CMC
* handling.
*/
ia64_log_init(SAL_INFO_TYPE_MCA);
ia64_log_init(SAL_INFO_TYPE_INIT);
ia64_log_init(SAL_INFO_TYPE_CMC);
ia64_log_init(SAL_INFO_TYPE_CPE);
mca_init = 1;
printk(KERN_INFO "MCA related initialization done\n");
}
/*
* ia64_mca_late_init
*
* Opportunity to setup things that require initialization later
* than ia64_mca_init. Setup a timer to poll for CPEs if the
* platform doesn't support an interrupt driven mechanism.
*
* Inputs : None
* Outputs : Status
*/
static int __init
ia64_mca_late_init(void)
{
if (!mca_init)
return 0;
/* Setup the CMCI/P vector and handler */
init_timer(&cmc_poll_timer);
cmc_poll_timer.function = ia64_mca_cmc_poll;
/* Unmask/enable the vector */
cmc_polling_enabled = 0;
schedule_work(&cmc_enable_work);
IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
#ifdef CONFIG_ACPI
/* Setup the CPEI/P vector and handler */
cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
init_timer(&cpe_poll_timer);
cpe_poll_timer.function = ia64_mca_cpe_poll;
{
irq_desc_t *desc;
unsigned int irq;
if (cpe_vector >= 0) {
/* If platform supports CPEI, enable the irq. */
cpe_poll_enabled = 0;
for (irq = 0; irq < NR_IRQS; ++irq)
if (irq_to_vector(irq) == cpe_vector) {
desc = irq_descp(irq);
desc->status |= IRQ_PER_CPU;
setup_irq(irq, &mca_cpe_irqaction);
}
ia64_mca_register_cpev(cpe_vector);
IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
} else {
/* If platform doesn't support CPEI, get the timer going. */
if (cpe_poll_enabled) {
ia64_mca_cpe_poll(0UL);
IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
}
}
}
#endif
return 0;
}
device_initcall(ia64_mca_late_init);