mirror of
https://github.com/torvalds/linux.git
synced 2024-12-26 12:52:30 +00:00
fac2650276
This test fails routinely in our prod testing environment, and I can reproduce it locally as well. The test allocates dcache inside a cgroup, then drops the memory limit and checks that usage drops correspondingly. The reason it fails is because dentries are freed with an RCU delay - a debugging sleep shows that usage drops as expected shortly after. Insert a 1s sleep after dropping the limit. This should be good enough, assuming that machines running those tests are otherwise not very busy. Link: https://lkml.kernel.org/r/20230801135632.1768830-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Paul E. McKenney <paulmck@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
461 lines
9.7 KiB
C
461 lines
9.7 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#define _GNU_SOURCE
|
|
|
|
#include <linux/limits.h>
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
#include <sys/wait.h>
|
|
#include <errno.h>
|
|
#include <sys/sysinfo.h>
|
|
#include <pthread.h>
|
|
|
|
#include "../kselftest.h"
|
|
#include "cgroup_util.h"
|
|
|
|
|
|
/*
|
|
* Memory cgroup charging is performed using percpu batches 64 pages
|
|
* big (look at MEMCG_CHARGE_BATCH), whereas memory.stat is exact. So
|
|
* the maximum discrepancy between charge and vmstat entries is number
|
|
* of cpus multiplied by 64 pages.
|
|
*/
|
|
#define MAX_VMSTAT_ERROR (4096 * 64 * get_nprocs())
|
|
|
|
|
|
static int alloc_dcache(const char *cgroup, void *arg)
|
|
{
|
|
unsigned long i;
|
|
struct stat st;
|
|
char buf[128];
|
|
|
|
for (i = 0; i < (unsigned long)arg; i++) {
|
|
snprintf(buf, sizeof(buf),
|
|
"/something-non-existent-with-a-long-name-%64lu-%d",
|
|
i, getpid());
|
|
stat(buf, &st);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This test allocates 100000 of negative dentries with long names.
|
|
* Then it checks that "slab" in memory.stat is larger than 1M.
|
|
* Then it sets memory.high to 1M and checks that at least 1/2
|
|
* of slab memory has been reclaimed.
|
|
*/
|
|
static int test_kmem_basic(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *cg = NULL;
|
|
long slab0, slab1, current;
|
|
|
|
cg = cg_name(root, "kmem_basic_test");
|
|
if (!cg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(cg))
|
|
goto cleanup;
|
|
|
|
if (cg_run(cg, alloc_dcache, (void *)100000))
|
|
goto cleanup;
|
|
|
|
slab0 = cg_read_key_long(cg, "memory.stat", "slab ");
|
|
if (slab0 < (1 << 20))
|
|
goto cleanup;
|
|
|
|
cg_write(cg, "memory.high", "1M");
|
|
|
|
/* wait for RCU freeing */
|
|
sleep(1);
|
|
|
|
slab1 = cg_read_key_long(cg, "memory.stat", "slab ");
|
|
if (slab1 <= 0)
|
|
goto cleanup;
|
|
|
|
current = cg_read_long(cg, "memory.current");
|
|
if (current <= 0)
|
|
goto cleanup;
|
|
|
|
if (slab1 < slab0 / 2 && current < slab0 / 2)
|
|
ret = KSFT_PASS;
|
|
cleanup:
|
|
cg_destroy(cg);
|
|
free(cg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void *alloc_kmem_fn(void *arg)
|
|
{
|
|
alloc_dcache(NULL, (void *)100);
|
|
return NULL;
|
|
}
|
|
|
|
static int alloc_kmem_smp(const char *cgroup, void *arg)
|
|
{
|
|
int nr_threads = 2 * get_nprocs();
|
|
pthread_t *tinfo;
|
|
unsigned long i;
|
|
int ret = -1;
|
|
|
|
tinfo = calloc(nr_threads, sizeof(pthread_t));
|
|
if (tinfo == NULL)
|
|
return -1;
|
|
|
|
for (i = 0; i < nr_threads; i++) {
|
|
if (pthread_create(&tinfo[i], NULL, &alloc_kmem_fn,
|
|
(void *)i)) {
|
|
free(tinfo);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < nr_threads; i++) {
|
|
ret = pthread_join(tinfo[i], NULL);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
free(tinfo);
|
|
return ret;
|
|
}
|
|
|
|
static int cg_run_in_subcgroups(const char *parent,
|
|
int (*fn)(const char *cgroup, void *arg),
|
|
void *arg, int times)
|
|
{
|
|
char *child;
|
|
int i;
|
|
|
|
for (i = 0; i < times; i++) {
|
|
child = cg_name_indexed(parent, "child", i);
|
|
if (!child)
|
|
return -1;
|
|
|
|
if (cg_create(child)) {
|
|
cg_destroy(child);
|
|
free(child);
|
|
return -1;
|
|
}
|
|
|
|
if (cg_run(child, fn, NULL)) {
|
|
cg_destroy(child);
|
|
free(child);
|
|
return -1;
|
|
}
|
|
|
|
cg_destroy(child);
|
|
free(child);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The test creates and destroys a large number of cgroups. In each cgroup it
|
|
* allocates some slab memory (mostly negative dentries) using 2 * NR_CPUS
|
|
* threads. Then it checks the sanity of numbers on the parent level:
|
|
* the total size of the cgroups should be roughly equal to
|
|
* anon + file + slab + kernel_stack.
|
|
*/
|
|
static int test_kmem_memcg_deletion(const char *root)
|
|
{
|
|
long current, slab, anon, file, kernel_stack, pagetables, percpu, sock, sum;
|
|
int ret = KSFT_FAIL;
|
|
char *parent;
|
|
|
|
parent = cg_name(root, "kmem_memcg_deletion_test");
|
|
if (!parent)
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent, "cgroup.subtree_control", "+memory"))
|
|
goto cleanup;
|
|
|
|
if (cg_run_in_subcgroups(parent, alloc_kmem_smp, NULL, 100))
|
|
goto cleanup;
|
|
|
|
current = cg_read_long(parent, "memory.current");
|
|
slab = cg_read_key_long(parent, "memory.stat", "slab ");
|
|
anon = cg_read_key_long(parent, "memory.stat", "anon ");
|
|
file = cg_read_key_long(parent, "memory.stat", "file ");
|
|
kernel_stack = cg_read_key_long(parent, "memory.stat", "kernel_stack ");
|
|
pagetables = cg_read_key_long(parent, "memory.stat", "pagetables ");
|
|
percpu = cg_read_key_long(parent, "memory.stat", "percpu ");
|
|
sock = cg_read_key_long(parent, "memory.stat", "sock ");
|
|
if (current < 0 || slab < 0 || anon < 0 || file < 0 ||
|
|
kernel_stack < 0 || pagetables < 0 || percpu < 0 || sock < 0)
|
|
goto cleanup;
|
|
|
|
sum = slab + anon + file + kernel_stack + pagetables + percpu + sock;
|
|
if (abs(sum - current) < MAX_VMSTAT_ERROR) {
|
|
ret = KSFT_PASS;
|
|
} else {
|
|
printf("memory.current = %ld\n", current);
|
|
printf("slab + anon + file + kernel_stack = %ld\n", sum);
|
|
printf("slab = %ld\n", slab);
|
|
printf("anon = %ld\n", anon);
|
|
printf("file = %ld\n", file);
|
|
printf("kernel_stack = %ld\n", kernel_stack);
|
|
printf("pagetables = %ld\n", pagetables);
|
|
printf("percpu = %ld\n", percpu);
|
|
printf("sock = %ld\n", sock);
|
|
}
|
|
|
|
cleanup:
|
|
cg_destroy(parent);
|
|
free(parent);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The test reads the entire /proc/kpagecgroup. If the operation went
|
|
* successfully (and the kernel didn't panic), the test is treated as passed.
|
|
*/
|
|
static int test_kmem_proc_kpagecgroup(const char *root)
|
|
{
|
|
unsigned long buf[128];
|
|
int ret = KSFT_FAIL;
|
|
ssize_t len;
|
|
int fd;
|
|
|
|
fd = open("/proc/kpagecgroup", O_RDONLY);
|
|
if (fd < 0)
|
|
return ret;
|
|
|
|
do {
|
|
len = read(fd, buf, sizeof(buf));
|
|
} while (len > 0);
|
|
|
|
if (len == 0)
|
|
ret = KSFT_PASS;
|
|
|
|
close(fd);
|
|
return ret;
|
|
}
|
|
|
|
static void *pthread_wait_fn(void *arg)
|
|
{
|
|
sleep(100);
|
|
return NULL;
|
|
}
|
|
|
|
static int spawn_1000_threads(const char *cgroup, void *arg)
|
|
{
|
|
int nr_threads = 1000;
|
|
pthread_t *tinfo;
|
|
unsigned long i;
|
|
long stack;
|
|
int ret = -1;
|
|
|
|
tinfo = calloc(nr_threads, sizeof(pthread_t));
|
|
if (tinfo == NULL)
|
|
return -1;
|
|
|
|
for (i = 0; i < nr_threads; i++) {
|
|
if (pthread_create(&tinfo[i], NULL, &pthread_wait_fn,
|
|
(void *)i)) {
|
|
free(tinfo);
|
|
return(-1);
|
|
}
|
|
}
|
|
|
|
stack = cg_read_key_long(cgroup, "memory.stat", "kernel_stack ");
|
|
if (stack >= 4096 * 1000)
|
|
ret = 0;
|
|
|
|
free(tinfo);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The test spawns a process, which spawns 1000 threads. Then it checks
|
|
* that memory.stat's kernel_stack is at least 1000 pages large.
|
|
*/
|
|
static int test_kmem_kernel_stacks(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *cg = NULL;
|
|
|
|
cg = cg_name(root, "kmem_kernel_stacks_test");
|
|
if (!cg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(cg))
|
|
goto cleanup;
|
|
|
|
if (cg_run(cg, spawn_1000_threads, NULL))
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
cleanup:
|
|
cg_destroy(cg);
|
|
free(cg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test sequentionally creates 30 child cgroups, allocates some
|
|
* kernel memory in each of them, and deletes them. Then it checks
|
|
* that the number of dying cgroups on the parent level is 0.
|
|
*/
|
|
static int test_kmem_dead_cgroups(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *parent;
|
|
long dead;
|
|
int i;
|
|
|
|
parent = cg_name(root, "kmem_dead_cgroups_test");
|
|
if (!parent)
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent, "cgroup.subtree_control", "+memory"))
|
|
goto cleanup;
|
|
|
|
if (cg_run_in_subcgroups(parent, alloc_dcache, (void *)100, 30))
|
|
goto cleanup;
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
dead = cg_read_key_long(parent, "cgroup.stat",
|
|
"nr_dying_descendants ");
|
|
if (dead == 0) {
|
|
ret = KSFT_PASS;
|
|
break;
|
|
}
|
|
/*
|
|
* Reclaiming cgroups might take some time,
|
|
* let's wait a bit and repeat.
|
|
*/
|
|
sleep(1);
|
|
}
|
|
|
|
cleanup:
|
|
cg_destroy(parent);
|
|
free(parent);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test creates a sub-tree with 1000 memory cgroups.
|
|
* Then it checks that the memory.current on the parent level
|
|
* is greater than 0 and approximates matches the percpu value
|
|
* from memory.stat.
|
|
*/
|
|
static int test_percpu_basic(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *parent, *child;
|
|
long current, percpu;
|
|
int i;
|
|
|
|
parent = cg_name(root, "percpu_basic_test");
|
|
if (!parent)
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent, "cgroup.subtree_control", "+memory"))
|
|
goto cleanup;
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
child = cg_name_indexed(parent, "child", i);
|
|
if (!child)
|
|
return -1;
|
|
|
|
if (cg_create(child))
|
|
goto cleanup_children;
|
|
|
|
free(child);
|
|
}
|
|
|
|
current = cg_read_long(parent, "memory.current");
|
|
percpu = cg_read_key_long(parent, "memory.stat", "percpu ");
|
|
|
|
if (current > 0 && percpu > 0 && abs(current - percpu) <
|
|
MAX_VMSTAT_ERROR)
|
|
ret = KSFT_PASS;
|
|
else
|
|
printf("memory.current %ld\npercpu %ld\n",
|
|
current, percpu);
|
|
|
|
cleanup_children:
|
|
for (i = 0; i < 1000; i++) {
|
|
child = cg_name_indexed(parent, "child", i);
|
|
cg_destroy(child);
|
|
free(child);
|
|
}
|
|
|
|
cleanup:
|
|
cg_destroy(parent);
|
|
free(parent);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define T(x) { x, #x }
|
|
struct kmem_test {
|
|
int (*fn)(const char *root);
|
|
const char *name;
|
|
} tests[] = {
|
|
T(test_kmem_basic),
|
|
T(test_kmem_memcg_deletion),
|
|
T(test_kmem_proc_kpagecgroup),
|
|
T(test_kmem_kernel_stacks),
|
|
T(test_kmem_dead_cgroups),
|
|
T(test_percpu_basic),
|
|
};
|
|
#undef T
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
char root[PATH_MAX];
|
|
int i, ret = EXIT_SUCCESS;
|
|
|
|
if (cg_find_unified_root(root, sizeof(root)))
|
|
ksft_exit_skip("cgroup v2 isn't mounted\n");
|
|
|
|
/*
|
|
* Check that memory controller is available:
|
|
* memory is listed in cgroup.controllers
|
|
*/
|
|
if (cg_read_strstr(root, "cgroup.controllers", "memory"))
|
|
ksft_exit_skip("memory controller isn't available\n");
|
|
|
|
if (cg_read_strstr(root, "cgroup.subtree_control", "memory"))
|
|
if (cg_write(root, "cgroup.subtree_control", "+memory"))
|
|
ksft_exit_skip("Failed to set memory controller\n");
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tests); i++) {
|
|
switch (tests[i].fn(root)) {
|
|
case KSFT_PASS:
|
|
ksft_test_result_pass("%s\n", tests[i].name);
|
|
break;
|
|
case KSFT_SKIP:
|
|
ksft_test_result_skip("%s\n", tests[i].name);
|
|
break;
|
|
default:
|
|
ret = EXIT_FAILURE;
|
|
ksft_test_result_fail("%s\n", tests[i].name);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|