mirror of
https://github.com/torvalds/linux.git
synced 2024-11-07 12:41:55 +00:00
faabfa0816
When we soft-CPU hotplug a CPU, we reset the stack pointer and jump back to start_secondary(). This allows us to restart as if the CPU was actually reset. However, we weren't resetting the frame pointer, which could cause problems with backtracing. Reset the frame pointer to zero (which means no parent frame) just like the early assembly code also does. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
658 lines
14 KiB
C
658 lines
14 KiB
C
/*
|
|
* linux/arch/arm/kernel/smp.c
|
|
*
|
|
* Copyright (C) 2002 ARM Limited, All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/err.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/completion.h>
|
|
|
|
#include <asm/atomic.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/localtimer.h>
|
|
|
|
/*
|
|
* as from 2.5, kernels no longer have an init_tasks structure
|
|
* so we need some other way of telling a new secondary core
|
|
* where to place its SVC stack
|
|
*/
|
|
struct secondary_data secondary_data;
|
|
|
|
enum ipi_msg_type {
|
|
IPI_TIMER = 2,
|
|
IPI_RESCHEDULE,
|
|
IPI_CALL_FUNC,
|
|
IPI_CALL_FUNC_SINGLE,
|
|
IPI_CPU_STOP,
|
|
};
|
|
|
|
static inline void identity_mapping_add(pgd_t *pgd, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
unsigned long addr, prot;
|
|
pmd_t *pmd;
|
|
|
|
prot = PMD_TYPE_SECT | PMD_SECT_AP_WRITE;
|
|
if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
|
|
prot |= PMD_BIT4;
|
|
|
|
for (addr = start & PGDIR_MASK; addr < end;) {
|
|
pmd = pmd_offset(pgd + pgd_index(addr), addr);
|
|
pmd[0] = __pmd(addr | prot);
|
|
addr += SECTION_SIZE;
|
|
pmd[1] = __pmd(addr | prot);
|
|
addr += SECTION_SIZE;
|
|
flush_pmd_entry(pmd);
|
|
outer_clean_range(__pa(pmd), __pa(pmd + 1));
|
|
}
|
|
}
|
|
|
|
static inline void identity_mapping_del(pgd_t *pgd, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
unsigned long addr;
|
|
pmd_t *pmd;
|
|
|
|
for (addr = start & PGDIR_MASK; addr < end; addr += PGDIR_SIZE) {
|
|
pmd = pmd_offset(pgd + pgd_index(addr), addr);
|
|
pmd[0] = __pmd(0);
|
|
pmd[1] = __pmd(0);
|
|
clean_pmd_entry(pmd);
|
|
outer_clean_range(__pa(pmd), __pa(pmd + 1));
|
|
}
|
|
}
|
|
|
|
int __cpuinit __cpu_up(unsigned int cpu)
|
|
{
|
|
struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
|
|
struct task_struct *idle = ci->idle;
|
|
pgd_t *pgd;
|
|
int ret;
|
|
|
|
/*
|
|
* Spawn a new process manually, if not already done.
|
|
* Grab a pointer to its task struct so we can mess with it
|
|
*/
|
|
if (!idle) {
|
|
idle = fork_idle(cpu);
|
|
if (IS_ERR(idle)) {
|
|
printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
|
|
return PTR_ERR(idle);
|
|
}
|
|
ci->idle = idle;
|
|
} else {
|
|
/*
|
|
* Since this idle thread is being re-used, call
|
|
* init_idle() to reinitialize the thread structure.
|
|
*/
|
|
init_idle(idle, cpu);
|
|
}
|
|
|
|
/*
|
|
* Allocate initial page tables to allow the new CPU to
|
|
* enable the MMU safely. This essentially means a set
|
|
* of our "standard" page tables, with the addition of
|
|
* a 1:1 mapping for the physical address of the kernel.
|
|
*/
|
|
pgd = pgd_alloc(&init_mm);
|
|
if (!pgd)
|
|
return -ENOMEM;
|
|
|
|
if (PHYS_OFFSET != PAGE_OFFSET) {
|
|
#ifndef CONFIG_HOTPLUG_CPU
|
|
identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
|
|
#endif
|
|
identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
|
|
identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
|
|
}
|
|
|
|
/*
|
|
* We need to tell the secondary core where to find
|
|
* its stack and the page tables.
|
|
*/
|
|
secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
|
|
secondary_data.pgdir = virt_to_phys(pgd);
|
|
__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
|
|
outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
|
|
|
|
/*
|
|
* Now bring the CPU into our world.
|
|
*/
|
|
ret = boot_secondary(cpu, idle);
|
|
if (ret == 0) {
|
|
unsigned long timeout;
|
|
|
|
/*
|
|
* CPU was successfully started, wait for it
|
|
* to come online or time out.
|
|
*/
|
|
timeout = jiffies + HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
if (cpu_online(cpu))
|
|
break;
|
|
|
|
udelay(10);
|
|
barrier();
|
|
}
|
|
|
|
if (!cpu_online(cpu)) {
|
|
pr_crit("CPU%u: failed to come online\n", cpu);
|
|
ret = -EIO;
|
|
}
|
|
} else {
|
|
pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
|
|
}
|
|
|
|
secondary_data.stack = NULL;
|
|
secondary_data.pgdir = 0;
|
|
|
|
if (PHYS_OFFSET != PAGE_OFFSET) {
|
|
#ifndef CONFIG_HOTPLUG_CPU
|
|
identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
|
|
#endif
|
|
identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
|
|
identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
|
|
}
|
|
|
|
pgd_free(&init_mm, pgd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void percpu_timer_stop(void);
|
|
|
|
/*
|
|
* __cpu_disable runs on the processor to be shutdown.
|
|
*/
|
|
int __cpu_disable(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct task_struct *p;
|
|
int ret;
|
|
|
|
ret = platform_cpu_disable(cpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Take this CPU offline. Once we clear this, we can't return,
|
|
* and we must not schedule until we're ready to give up the cpu.
|
|
*/
|
|
set_cpu_online(cpu, false);
|
|
|
|
/*
|
|
* OK - migrate IRQs away from this CPU
|
|
*/
|
|
migrate_irqs();
|
|
|
|
/*
|
|
* Stop the local timer for this CPU.
|
|
*/
|
|
percpu_timer_stop();
|
|
|
|
/*
|
|
* Flush user cache and TLB mappings, and then remove this CPU
|
|
* from the vm mask set of all processes.
|
|
*/
|
|
flush_cache_all();
|
|
local_flush_tlb_all();
|
|
|
|
read_lock(&tasklist_lock);
|
|
for_each_process(p) {
|
|
if (p->mm)
|
|
cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static DECLARE_COMPLETION(cpu_died);
|
|
|
|
/*
|
|
* called on the thread which is asking for a CPU to be shutdown -
|
|
* waits until shutdown has completed, or it is timed out.
|
|
*/
|
|
void __cpu_die(unsigned int cpu)
|
|
{
|
|
if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
|
|
pr_err("CPU%u: cpu didn't die\n", cpu);
|
|
return;
|
|
}
|
|
printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
|
|
|
|
if (!platform_cpu_kill(cpu))
|
|
printk("CPU%u: unable to kill\n", cpu);
|
|
}
|
|
|
|
/*
|
|
* Called from the idle thread for the CPU which has been shutdown.
|
|
*
|
|
* Note that we disable IRQs here, but do not re-enable them
|
|
* before returning to the caller. This is also the behaviour
|
|
* of the other hotplug-cpu capable cores, so presumably coming
|
|
* out of idle fixes this.
|
|
*/
|
|
void __ref cpu_die(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
idle_task_exit();
|
|
|
|
local_irq_disable();
|
|
mb();
|
|
|
|
/* Tell __cpu_die() that this CPU is now safe to dispose of */
|
|
complete(&cpu_died);
|
|
|
|
/*
|
|
* actual CPU shutdown procedure is at least platform (if not
|
|
* CPU) specific.
|
|
*/
|
|
platform_cpu_die(cpu);
|
|
|
|
/*
|
|
* Do not return to the idle loop - jump back to the secondary
|
|
* cpu initialisation. There's some initialisation which needs
|
|
* to be repeated to undo the effects of taking the CPU offline.
|
|
*/
|
|
__asm__("mov sp, %0\n"
|
|
" mov fp, #0\n"
|
|
" b secondary_start_kernel"
|
|
:
|
|
: "r" (task_stack_page(current) + THREAD_SIZE - 8));
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
/*
|
|
* Called by both boot and secondaries to move global data into
|
|
* per-processor storage.
|
|
*/
|
|
static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
|
|
{
|
|
struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
|
|
|
|
cpu_info->loops_per_jiffy = loops_per_jiffy;
|
|
}
|
|
|
|
/*
|
|
* This is the secondary CPU boot entry. We're using this CPUs
|
|
* idle thread stack, but a set of temporary page tables.
|
|
*/
|
|
asmlinkage void __cpuinit secondary_start_kernel(void)
|
|
{
|
|
struct mm_struct *mm = &init_mm;
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
printk("CPU%u: Booted secondary processor\n", cpu);
|
|
|
|
/*
|
|
* All kernel threads share the same mm context; grab a
|
|
* reference and switch to it.
|
|
*/
|
|
atomic_inc(&mm->mm_users);
|
|
atomic_inc(&mm->mm_count);
|
|
current->active_mm = mm;
|
|
cpumask_set_cpu(cpu, mm_cpumask(mm));
|
|
cpu_switch_mm(mm->pgd, mm);
|
|
enter_lazy_tlb(mm, current);
|
|
local_flush_tlb_all();
|
|
|
|
cpu_init();
|
|
preempt_disable();
|
|
trace_hardirqs_off();
|
|
|
|
/*
|
|
* Give the platform a chance to do its own initialisation.
|
|
*/
|
|
platform_secondary_init(cpu);
|
|
|
|
/*
|
|
* Enable local interrupts.
|
|
*/
|
|
notify_cpu_starting(cpu);
|
|
local_irq_enable();
|
|
local_fiq_enable();
|
|
|
|
/*
|
|
* Setup the percpu timer for this CPU.
|
|
*/
|
|
percpu_timer_setup();
|
|
|
|
calibrate_delay();
|
|
|
|
smp_store_cpu_info(cpu);
|
|
|
|
/*
|
|
* OK, now it's safe to let the boot CPU continue
|
|
*/
|
|
set_cpu_online(cpu, true);
|
|
|
|
/*
|
|
* OK, it's off to the idle thread for us
|
|
*/
|
|
cpu_idle();
|
|
}
|
|
|
|
void __init smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
int cpu;
|
|
unsigned long bogosum = 0;
|
|
|
|
for_each_online_cpu(cpu)
|
|
bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
|
|
|
|
printk(KERN_INFO "SMP: Total of %d processors activated "
|
|
"(%lu.%02lu BogoMIPS).\n",
|
|
num_online_cpus(),
|
|
bogosum / (500000/HZ),
|
|
(bogosum / (5000/HZ)) % 100);
|
|
}
|
|
|
|
void __init smp_prepare_boot_cpu(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
per_cpu(cpu_data, cpu).idle = current;
|
|
}
|
|
|
|
void __init smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
unsigned int ncores = num_possible_cpus();
|
|
|
|
smp_store_cpu_info(smp_processor_id());
|
|
|
|
/*
|
|
* are we trying to boot more cores than exist?
|
|
*/
|
|
if (max_cpus > ncores)
|
|
max_cpus = ncores;
|
|
|
|
if (max_cpus > 1) {
|
|
/*
|
|
* Enable the local timer or broadcast device for the
|
|
* boot CPU, but only if we have more than one CPU.
|
|
*/
|
|
percpu_timer_setup();
|
|
|
|
/*
|
|
* Initialise the SCU if there are more than one CPU
|
|
* and let them know where to start.
|
|
*/
|
|
platform_smp_prepare_cpus(max_cpus);
|
|
}
|
|
}
|
|
|
|
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
|
|
{
|
|
smp_cross_call(mask, IPI_CALL_FUNC);
|
|
}
|
|
|
|
void arch_send_call_function_single_ipi(int cpu)
|
|
{
|
|
smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
|
|
}
|
|
|
|
static const char *ipi_types[NR_IPI] = {
|
|
#define S(x,s) [x - IPI_TIMER] = s
|
|
S(IPI_TIMER, "Timer broadcast interrupts"),
|
|
S(IPI_RESCHEDULE, "Rescheduling interrupts"),
|
|
S(IPI_CALL_FUNC, "Function call interrupts"),
|
|
S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
|
|
S(IPI_CPU_STOP, "CPU stop interrupts"),
|
|
};
|
|
|
|
void show_ipi_list(struct seq_file *p, int prec)
|
|
{
|
|
unsigned int cpu, i;
|
|
|
|
for (i = 0; i < NR_IPI; i++) {
|
|
seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
|
|
|
|
for_each_present_cpu(cpu)
|
|
seq_printf(p, "%10u ",
|
|
__get_irq_stat(cpu, ipi_irqs[i]));
|
|
|
|
seq_printf(p, " %s\n", ipi_types[i]);
|
|
}
|
|
}
|
|
|
|
u64 smp_irq_stat_cpu(unsigned int cpu)
|
|
{
|
|
u64 sum = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < NR_IPI; i++)
|
|
sum += __get_irq_stat(cpu, ipi_irqs[i]);
|
|
|
|
#ifdef CONFIG_LOCAL_TIMERS
|
|
sum += __get_irq_stat(cpu, local_timer_irqs);
|
|
#endif
|
|
|
|
return sum;
|
|
}
|
|
|
|
/*
|
|
* Timer (local or broadcast) support
|
|
*/
|
|
static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
|
|
|
|
static void ipi_timer(void)
|
|
{
|
|
struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
|
|
irq_enter();
|
|
evt->event_handler(evt);
|
|
irq_exit();
|
|
}
|
|
|
|
#ifdef CONFIG_LOCAL_TIMERS
|
|
asmlinkage void __exception do_local_timer(struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
int cpu = smp_processor_id();
|
|
|
|
if (local_timer_ack()) {
|
|
__inc_irq_stat(cpu, local_timer_irqs);
|
|
ipi_timer();
|
|
}
|
|
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
void show_local_irqs(struct seq_file *p, int prec)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
seq_printf(p, "%*s: ", prec, "LOC");
|
|
|
|
for_each_present_cpu(cpu)
|
|
seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
|
|
|
|
seq_printf(p, " Local timer interrupts\n");
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
|
|
static void smp_timer_broadcast(const struct cpumask *mask)
|
|
{
|
|
smp_cross_call(mask, IPI_TIMER);
|
|
}
|
|
#else
|
|
#define smp_timer_broadcast NULL
|
|
#endif
|
|
|
|
#ifndef CONFIG_LOCAL_TIMERS
|
|
static void broadcast_timer_set_mode(enum clock_event_mode mode,
|
|
struct clock_event_device *evt)
|
|
{
|
|
}
|
|
|
|
static void local_timer_setup(struct clock_event_device *evt)
|
|
{
|
|
evt->name = "dummy_timer";
|
|
evt->features = CLOCK_EVT_FEAT_ONESHOT |
|
|
CLOCK_EVT_FEAT_PERIODIC |
|
|
CLOCK_EVT_FEAT_DUMMY;
|
|
evt->rating = 400;
|
|
evt->mult = 1;
|
|
evt->set_mode = broadcast_timer_set_mode;
|
|
|
|
clockevents_register_device(evt);
|
|
}
|
|
#endif
|
|
|
|
void __cpuinit percpu_timer_setup(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
|
|
|
|
evt->cpumask = cpumask_of(cpu);
|
|
evt->broadcast = smp_timer_broadcast;
|
|
|
|
local_timer_setup(evt);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/*
|
|
* The generic clock events code purposely does not stop the local timer
|
|
* on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
|
|
* manually here.
|
|
*/
|
|
static void percpu_timer_stop(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
|
|
|
|
evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
|
|
}
|
|
#endif
|
|
|
|
static DEFINE_SPINLOCK(stop_lock);
|
|
|
|
/*
|
|
* ipi_cpu_stop - handle IPI from smp_send_stop()
|
|
*/
|
|
static void ipi_cpu_stop(unsigned int cpu)
|
|
{
|
|
if (system_state == SYSTEM_BOOTING ||
|
|
system_state == SYSTEM_RUNNING) {
|
|
spin_lock(&stop_lock);
|
|
printk(KERN_CRIT "CPU%u: stopping\n", cpu);
|
|
dump_stack();
|
|
spin_unlock(&stop_lock);
|
|
}
|
|
|
|
set_cpu_online(cpu, false);
|
|
|
|
local_fiq_disable();
|
|
local_irq_disable();
|
|
|
|
while (1)
|
|
cpu_relax();
|
|
}
|
|
|
|
/*
|
|
* Main handler for inter-processor interrupts
|
|
*/
|
|
asmlinkage void __exception do_IPI(int ipinr, struct pt_regs *regs)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
|
|
if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
|
|
__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
|
|
|
|
switch (ipinr) {
|
|
case IPI_TIMER:
|
|
ipi_timer();
|
|
break;
|
|
|
|
case IPI_RESCHEDULE:
|
|
/*
|
|
* nothing more to do - eveything is
|
|
* done on the interrupt return path
|
|
*/
|
|
break;
|
|
|
|
case IPI_CALL_FUNC:
|
|
generic_smp_call_function_interrupt();
|
|
break;
|
|
|
|
case IPI_CALL_FUNC_SINGLE:
|
|
generic_smp_call_function_single_interrupt();
|
|
break;
|
|
|
|
case IPI_CPU_STOP:
|
|
ipi_cpu_stop(cpu);
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
|
|
cpu, ipinr);
|
|
break;
|
|
}
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
void smp_send_reschedule(int cpu)
|
|
{
|
|
smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
|
|
}
|
|
|
|
void smp_send_stop(void)
|
|
{
|
|
unsigned long timeout;
|
|
|
|
if (num_online_cpus() > 1) {
|
|
cpumask_t mask = cpu_online_map;
|
|
cpu_clear(smp_processor_id(), mask);
|
|
|
|
smp_cross_call(&mask, IPI_CPU_STOP);
|
|
}
|
|
|
|
/* Wait up to one second for other CPUs to stop */
|
|
timeout = USEC_PER_SEC;
|
|
while (num_online_cpus() > 1 && timeout--)
|
|
udelay(1);
|
|
|
|
if (num_online_cpus() > 1)
|
|
pr_warning("SMP: failed to stop secondary CPUs\n");
|
|
}
|
|
|
|
/*
|
|
* not supported here
|
|
*/
|
|
int setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
return -EINVAL;
|
|
}
|