mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 12:42:02 +00:00
a4ff1fc2cc
SR-IOV can create buses without a bridge. There may be other cases where this happens as well. In these cases skip to the parent bus and continue testing devices there. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Tested-by: David Ahern <dsahern@gmail.com> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
4303 lines
106 KiB
C
4303 lines
106 KiB
C
/*
|
|
* Copyright (c) 2006, Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
* Place - Suite 330, Boston, MA 02111-1307 USA.
|
|
*
|
|
* Copyright (C) 2006-2008 Intel Corporation
|
|
* Author: Ashok Raj <ashok.raj@intel.com>
|
|
* Author: Shaohua Li <shaohua.li@intel.com>
|
|
* Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
|
|
* Author: Fenghua Yu <fenghua.yu@intel.com>
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dmar.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/iova.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/intel-iommu.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/tboot.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/pci-ats.h>
|
|
#include <linux/memblock.h>
|
|
#include <asm/irq_remapping.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/iommu.h>
|
|
|
|
#define ROOT_SIZE VTD_PAGE_SIZE
|
|
#define CONTEXT_SIZE VTD_PAGE_SIZE
|
|
|
|
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
|
|
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
|
|
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
|
|
|
|
#define IOAPIC_RANGE_START (0xfee00000)
|
|
#define IOAPIC_RANGE_END (0xfeefffff)
|
|
#define IOVA_START_ADDR (0x1000)
|
|
|
|
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
|
|
|
|
#define MAX_AGAW_WIDTH 64
|
|
|
|
#define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
|
|
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
|
|
|
|
/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
|
|
to match. That way, we can use 'unsigned long' for PFNs with impunity. */
|
|
#define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
|
|
__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
|
|
#define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
|
|
|
|
#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
|
|
#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
|
|
#define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
|
|
|
|
/* page table handling */
|
|
#define LEVEL_STRIDE (9)
|
|
#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
|
|
|
|
/*
|
|
* This bitmap is used to advertise the page sizes our hardware support
|
|
* to the IOMMU core, which will then use this information to split
|
|
* physically contiguous memory regions it is mapping into page sizes
|
|
* that we support.
|
|
*
|
|
* Traditionally the IOMMU core just handed us the mappings directly,
|
|
* after making sure the size is an order of a 4KiB page and that the
|
|
* mapping has natural alignment.
|
|
*
|
|
* To retain this behavior, we currently advertise that we support
|
|
* all page sizes that are an order of 4KiB.
|
|
*
|
|
* If at some point we'd like to utilize the IOMMU core's new behavior,
|
|
* we could change this to advertise the real page sizes we support.
|
|
*/
|
|
#define INTEL_IOMMU_PGSIZES (~0xFFFUL)
|
|
|
|
static inline int agaw_to_level(int agaw)
|
|
{
|
|
return agaw + 2;
|
|
}
|
|
|
|
static inline int agaw_to_width(int agaw)
|
|
{
|
|
return 30 + agaw * LEVEL_STRIDE;
|
|
}
|
|
|
|
static inline int width_to_agaw(int width)
|
|
{
|
|
return (width - 30) / LEVEL_STRIDE;
|
|
}
|
|
|
|
static inline unsigned int level_to_offset_bits(int level)
|
|
{
|
|
return (level - 1) * LEVEL_STRIDE;
|
|
}
|
|
|
|
static inline int pfn_level_offset(unsigned long pfn, int level)
|
|
{
|
|
return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
|
|
}
|
|
|
|
static inline unsigned long level_mask(int level)
|
|
{
|
|
return -1UL << level_to_offset_bits(level);
|
|
}
|
|
|
|
static inline unsigned long level_size(int level)
|
|
{
|
|
return 1UL << level_to_offset_bits(level);
|
|
}
|
|
|
|
static inline unsigned long align_to_level(unsigned long pfn, int level)
|
|
{
|
|
return (pfn + level_size(level) - 1) & level_mask(level);
|
|
}
|
|
|
|
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
|
|
{
|
|
return 1 << ((lvl - 1) * LEVEL_STRIDE);
|
|
}
|
|
|
|
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
|
|
are never going to work. */
|
|
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
|
|
{
|
|
return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
|
|
}
|
|
|
|
static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
|
|
{
|
|
return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
|
|
}
|
|
static inline unsigned long page_to_dma_pfn(struct page *pg)
|
|
{
|
|
return mm_to_dma_pfn(page_to_pfn(pg));
|
|
}
|
|
static inline unsigned long virt_to_dma_pfn(void *p)
|
|
{
|
|
return page_to_dma_pfn(virt_to_page(p));
|
|
}
|
|
|
|
/* global iommu list, set NULL for ignored DMAR units */
|
|
static struct intel_iommu **g_iommus;
|
|
|
|
static void __init check_tylersburg_isoch(void);
|
|
static int rwbf_quirk;
|
|
|
|
/*
|
|
* set to 1 to panic kernel if can't successfully enable VT-d
|
|
* (used when kernel is launched w/ TXT)
|
|
*/
|
|
static int force_on = 0;
|
|
|
|
/*
|
|
* 0: Present
|
|
* 1-11: Reserved
|
|
* 12-63: Context Ptr (12 - (haw-1))
|
|
* 64-127: Reserved
|
|
*/
|
|
struct root_entry {
|
|
u64 val;
|
|
u64 rsvd1;
|
|
};
|
|
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
|
|
static inline bool root_present(struct root_entry *root)
|
|
{
|
|
return (root->val & 1);
|
|
}
|
|
static inline void set_root_present(struct root_entry *root)
|
|
{
|
|
root->val |= 1;
|
|
}
|
|
static inline void set_root_value(struct root_entry *root, unsigned long value)
|
|
{
|
|
root->val |= value & VTD_PAGE_MASK;
|
|
}
|
|
|
|
static inline struct context_entry *
|
|
get_context_addr_from_root(struct root_entry *root)
|
|
{
|
|
return (struct context_entry *)
|
|
(root_present(root)?phys_to_virt(
|
|
root->val & VTD_PAGE_MASK) :
|
|
NULL);
|
|
}
|
|
|
|
/*
|
|
* low 64 bits:
|
|
* 0: present
|
|
* 1: fault processing disable
|
|
* 2-3: translation type
|
|
* 12-63: address space root
|
|
* high 64 bits:
|
|
* 0-2: address width
|
|
* 3-6: aval
|
|
* 8-23: domain id
|
|
*/
|
|
struct context_entry {
|
|
u64 lo;
|
|
u64 hi;
|
|
};
|
|
|
|
static inline bool context_present(struct context_entry *context)
|
|
{
|
|
return (context->lo & 1);
|
|
}
|
|
static inline void context_set_present(struct context_entry *context)
|
|
{
|
|
context->lo |= 1;
|
|
}
|
|
|
|
static inline void context_set_fault_enable(struct context_entry *context)
|
|
{
|
|
context->lo &= (((u64)-1) << 2) | 1;
|
|
}
|
|
|
|
static inline void context_set_translation_type(struct context_entry *context,
|
|
unsigned long value)
|
|
{
|
|
context->lo &= (((u64)-1) << 4) | 3;
|
|
context->lo |= (value & 3) << 2;
|
|
}
|
|
|
|
static inline void context_set_address_root(struct context_entry *context,
|
|
unsigned long value)
|
|
{
|
|
context->lo |= value & VTD_PAGE_MASK;
|
|
}
|
|
|
|
static inline void context_set_address_width(struct context_entry *context,
|
|
unsigned long value)
|
|
{
|
|
context->hi |= value & 7;
|
|
}
|
|
|
|
static inline void context_set_domain_id(struct context_entry *context,
|
|
unsigned long value)
|
|
{
|
|
context->hi |= (value & ((1 << 16) - 1)) << 8;
|
|
}
|
|
|
|
static inline void context_clear_entry(struct context_entry *context)
|
|
{
|
|
context->lo = 0;
|
|
context->hi = 0;
|
|
}
|
|
|
|
/*
|
|
* 0: readable
|
|
* 1: writable
|
|
* 2-6: reserved
|
|
* 7: super page
|
|
* 8-10: available
|
|
* 11: snoop behavior
|
|
* 12-63: Host physcial address
|
|
*/
|
|
struct dma_pte {
|
|
u64 val;
|
|
};
|
|
|
|
static inline void dma_clear_pte(struct dma_pte *pte)
|
|
{
|
|
pte->val = 0;
|
|
}
|
|
|
|
static inline void dma_set_pte_readable(struct dma_pte *pte)
|
|
{
|
|
pte->val |= DMA_PTE_READ;
|
|
}
|
|
|
|
static inline void dma_set_pte_writable(struct dma_pte *pte)
|
|
{
|
|
pte->val |= DMA_PTE_WRITE;
|
|
}
|
|
|
|
static inline void dma_set_pte_snp(struct dma_pte *pte)
|
|
{
|
|
pte->val |= DMA_PTE_SNP;
|
|
}
|
|
|
|
static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
|
|
{
|
|
pte->val = (pte->val & ~3) | (prot & 3);
|
|
}
|
|
|
|
static inline u64 dma_pte_addr(struct dma_pte *pte)
|
|
{
|
|
#ifdef CONFIG_64BIT
|
|
return pte->val & VTD_PAGE_MASK;
|
|
#else
|
|
/* Must have a full atomic 64-bit read */
|
|
return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
|
|
#endif
|
|
}
|
|
|
|
static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
|
|
{
|
|
pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
|
|
}
|
|
|
|
static inline bool dma_pte_present(struct dma_pte *pte)
|
|
{
|
|
return (pte->val & 3) != 0;
|
|
}
|
|
|
|
static inline bool dma_pte_superpage(struct dma_pte *pte)
|
|
{
|
|
return (pte->val & (1 << 7));
|
|
}
|
|
|
|
static inline int first_pte_in_page(struct dma_pte *pte)
|
|
{
|
|
return !((unsigned long)pte & ~VTD_PAGE_MASK);
|
|
}
|
|
|
|
/*
|
|
* This domain is a statically identity mapping domain.
|
|
* 1. This domain creats a static 1:1 mapping to all usable memory.
|
|
* 2. It maps to each iommu if successful.
|
|
* 3. Each iommu mapps to this domain if successful.
|
|
*/
|
|
static struct dmar_domain *si_domain;
|
|
static int hw_pass_through = 1;
|
|
|
|
/* devices under the same p2p bridge are owned in one domain */
|
|
#define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
|
|
|
|
/* domain represents a virtual machine, more than one devices
|
|
* across iommus may be owned in one domain, e.g. kvm guest.
|
|
*/
|
|
#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
|
|
|
|
/* si_domain contains mulitple devices */
|
|
#define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
|
|
|
|
/* define the limit of IOMMUs supported in each domain */
|
|
#ifdef CONFIG_X86
|
|
# define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
|
|
#else
|
|
# define IOMMU_UNITS_SUPPORTED 64
|
|
#endif
|
|
|
|
struct dmar_domain {
|
|
int id; /* domain id */
|
|
int nid; /* node id */
|
|
DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
|
|
/* bitmap of iommus this domain uses*/
|
|
|
|
struct list_head devices; /* all devices' list */
|
|
struct iova_domain iovad; /* iova's that belong to this domain */
|
|
|
|
struct dma_pte *pgd; /* virtual address */
|
|
int gaw; /* max guest address width */
|
|
|
|
/* adjusted guest address width, 0 is level 2 30-bit */
|
|
int agaw;
|
|
|
|
int flags; /* flags to find out type of domain */
|
|
|
|
int iommu_coherency;/* indicate coherency of iommu access */
|
|
int iommu_snooping; /* indicate snooping control feature*/
|
|
int iommu_count; /* reference count of iommu */
|
|
int iommu_superpage;/* Level of superpages supported:
|
|
0 == 4KiB (no superpages), 1 == 2MiB,
|
|
2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
|
|
spinlock_t iommu_lock; /* protect iommu set in domain */
|
|
u64 max_addr; /* maximum mapped address */
|
|
};
|
|
|
|
/* PCI domain-device relationship */
|
|
struct device_domain_info {
|
|
struct list_head link; /* link to domain siblings */
|
|
struct list_head global; /* link to global list */
|
|
int segment; /* PCI domain */
|
|
u8 bus; /* PCI bus number */
|
|
u8 devfn; /* PCI devfn number */
|
|
struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
|
|
struct intel_iommu *iommu; /* IOMMU used by this device */
|
|
struct dmar_domain *domain; /* pointer to domain */
|
|
};
|
|
|
|
static void flush_unmaps_timeout(unsigned long data);
|
|
|
|
DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
|
|
|
|
#define HIGH_WATER_MARK 250
|
|
struct deferred_flush_tables {
|
|
int next;
|
|
struct iova *iova[HIGH_WATER_MARK];
|
|
struct dmar_domain *domain[HIGH_WATER_MARK];
|
|
};
|
|
|
|
static struct deferred_flush_tables *deferred_flush;
|
|
|
|
/* bitmap for indexing intel_iommus */
|
|
static int g_num_of_iommus;
|
|
|
|
static DEFINE_SPINLOCK(async_umap_flush_lock);
|
|
static LIST_HEAD(unmaps_to_do);
|
|
|
|
static int timer_on;
|
|
static long list_size;
|
|
|
|
static void domain_remove_dev_info(struct dmar_domain *domain);
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
|
|
int dmar_disabled = 0;
|
|
#else
|
|
int dmar_disabled = 1;
|
|
#endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
|
|
|
|
int intel_iommu_enabled = 0;
|
|
EXPORT_SYMBOL_GPL(intel_iommu_enabled);
|
|
|
|
static int dmar_map_gfx = 1;
|
|
static int dmar_forcedac;
|
|
static int intel_iommu_strict;
|
|
static int intel_iommu_superpage = 1;
|
|
|
|
int intel_iommu_gfx_mapped;
|
|
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
|
|
|
|
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
|
|
static DEFINE_SPINLOCK(device_domain_lock);
|
|
static LIST_HEAD(device_domain_list);
|
|
|
|
static struct iommu_ops intel_iommu_ops;
|
|
|
|
static int __init intel_iommu_setup(char *str)
|
|
{
|
|
if (!str)
|
|
return -EINVAL;
|
|
while (*str) {
|
|
if (!strncmp(str, "on", 2)) {
|
|
dmar_disabled = 0;
|
|
printk(KERN_INFO "Intel-IOMMU: enabled\n");
|
|
} else if (!strncmp(str, "off", 3)) {
|
|
dmar_disabled = 1;
|
|
printk(KERN_INFO "Intel-IOMMU: disabled\n");
|
|
} else if (!strncmp(str, "igfx_off", 8)) {
|
|
dmar_map_gfx = 0;
|
|
printk(KERN_INFO
|
|
"Intel-IOMMU: disable GFX device mapping\n");
|
|
} else if (!strncmp(str, "forcedac", 8)) {
|
|
printk(KERN_INFO
|
|
"Intel-IOMMU: Forcing DAC for PCI devices\n");
|
|
dmar_forcedac = 1;
|
|
} else if (!strncmp(str, "strict", 6)) {
|
|
printk(KERN_INFO
|
|
"Intel-IOMMU: disable batched IOTLB flush\n");
|
|
intel_iommu_strict = 1;
|
|
} else if (!strncmp(str, "sp_off", 6)) {
|
|
printk(KERN_INFO
|
|
"Intel-IOMMU: disable supported super page\n");
|
|
intel_iommu_superpage = 0;
|
|
}
|
|
|
|
str += strcspn(str, ",");
|
|
while (*str == ',')
|
|
str++;
|
|
}
|
|
return 0;
|
|
}
|
|
__setup("intel_iommu=", intel_iommu_setup);
|
|
|
|
static struct kmem_cache *iommu_domain_cache;
|
|
static struct kmem_cache *iommu_devinfo_cache;
|
|
static struct kmem_cache *iommu_iova_cache;
|
|
|
|
static inline void *alloc_pgtable_page(int node)
|
|
{
|
|
struct page *page;
|
|
void *vaddr = NULL;
|
|
|
|
page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
|
|
if (page)
|
|
vaddr = page_address(page);
|
|
return vaddr;
|
|
}
|
|
|
|
static inline void free_pgtable_page(void *vaddr)
|
|
{
|
|
free_page((unsigned long)vaddr);
|
|
}
|
|
|
|
static inline void *alloc_domain_mem(void)
|
|
{
|
|
return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
|
|
}
|
|
|
|
static void free_domain_mem(void *vaddr)
|
|
{
|
|
kmem_cache_free(iommu_domain_cache, vaddr);
|
|
}
|
|
|
|
static inline void * alloc_devinfo_mem(void)
|
|
{
|
|
return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
|
|
}
|
|
|
|
static inline void free_devinfo_mem(void *vaddr)
|
|
{
|
|
kmem_cache_free(iommu_devinfo_cache, vaddr);
|
|
}
|
|
|
|
struct iova *alloc_iova_mem(void)
|
|
{
|
|
return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
|
|
}
|
|
|
|
void free_iova_mem(struct iova *iova)
|
|
{
|
|
kmem_cache_free(iommu_iova_cache, iova);
|
|
}
|
|
|
|
|
|
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
|
|
{
|
|
unsigned long sagaw;
|
|
int agaw = -1;
|
|
|
|
sagaw = cap_sagaw(iommu->cap);
|
|
for (agaw = width_to_agaw(max_gaw);
|
|
agaw >= 0; agaw--) {
|
|
if (test_bit(agaw, &sagaw))
|
|
break;
|
|
}
|
|
|
|
return agaw;
|
|
}
|
|
|
|
/*
|
|
* Calculate max SAGAW for each iommu.
|
|
*/
|
|
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
|
|
{
|
|
return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
|
|
}
|
|
|
|
/*
|
|
* calculate agaw for each iommu.
|
|
* "SAGAW" may be different across iommus, use a default agaw, and
|
|
* get a supported less agaw for iommus that don't support the default agaw.
|
|
*/
|
|
int iommu_calculate_agaw(struct intel_iommu *iommu)
|
|
{
|
|
return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
|
|
}
|
|
|
|
/* This functionin only returns single iommu in a domain */
|
|
static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
|
|
{
|
|
int iommu_id;
|
|
|
|
/* si_domain and vm domain should not get here. */
|
|
BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
|
|
BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
|
|
|
|
iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
|
|
if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
|
|
return NULL;
|
|
|
|
return g_iommus[iommu_id];
|
|
}
|
|
|
|
static void domain_update_iommu_coherency(struct dmar_domain *domain)
|
|
{
|
|
int i;
|
|
|
|
domain->iommu_coherency = 1;
|
|
|
|
for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
|
|
if (!ecap_coherent(g_iommus[i]->ecap)) {
|
|
domain->iommu_coherency = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void domain_update_iommu_snooping(struct dmar_domain *domain)
|
|
{
|
|
int i;
|
|
|
|
domain->iommu_snooping = 1;
|
|
|
|
for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
|
|
if (!ecap_sc_support(g_iommus[i]->ecap)) {
|
|
domain->iommu_snooping = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void domain_update_iommu_superpage(struct dmar_domain *domain)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu = NULL;
|
|
int mask = 0xf;
|
|
|
|
if (!intel_iommu_superpage) {
|
|
domain->iommu_superpage = 0;
|
|
return;
|
|
}
|
|
|
|
/* set iommu_superpage to the smallest common denominator */
|
|
for_each_active_iommu(iommu, drhd) {
|
|
mask &= cap_super_page_val(iommu->cap);
|
|
if (!mask) {
|
|
break;
|
|
}
|
|
}
|
|
domain->iommu_superpage = fls(mask);
|
|
}
|
|
|
|
/* Some capabilities may be different across iommus */
|
|
static void domain_update_iommu_cap(struct dmar_domain *domain)
|
|
{
|
|
domain_update_iommu_coherency(domain);
|
|
domain_update_iommu_snooping(domain);
|
|
domain_update_iommu_superpage(domain);
|
|
}
|
|
|
|
static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
|
|
{
|
|
struct dmar_drhd_unit *drhd = NULL;
|
|
int i;
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored)
|
|
continue;
|
|
if (segment != drhd->segment)
|
|
continue;
|
|
|
|
for (i = 0; i < drhd->devices_cnt; i++) {
|
|
if (drhd->devices[i] &&
|
|
drhd->devices[i]->bus->number == bus &&
|
|
drhd->devices[i]->devfn == devfn)
|
|
return drhd->iommu;
|
|
if (drhd->devices[i] &&
|
|
drhd->devices[i]->subordinate &&
|
|
drhd->devices[i]->subordinate->number <= bus &&
|
|
drhd->devices[i]->subordinate->busn_res.end >= bus)
|
|
return drhd->iommu;
|
|
}
|
|
|
|
if (drhd->include_all)
|
|
return drhd->iommu;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void domain_flush_cache(struct dmar_domain *domain,
|
|
void *addr, int size)
|
|
{
|
|
if (!domain->iommu_coherency)
|
|
clflush_cache_range(addr, size);
|
|
}
|
|
|
|
/* Gets context entry for a given bus and devfn */
|
|
static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
|
|
u8 bus, u8 devfn)
|
|
{
|
|
struct root_entry *root;
|
|
struct context_entry *context;
|
|
unsigned long phy_addr;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
root = &iommu->root_entry[bus];
|
|
context = get_context_addr_from_root(root);
|
|
if (!context) {
|
|
context = (struct context_entry *)
|
|
alloc_pgtable_page(iommu->node);
|
|
if (!context) {
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return NULL;
|
|
}
|
|
__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
|
|
phy_addr = virt_to_phys((void *)context);
|
|
set_root_value(root, phy_addr);
|
|
set_root_present(root);
|
|
__iommu_flush_cache(iommu, root, sizeof(*root));
|
|
}
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return &context[devfn];
|
|
}
|
|
|
|
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
|
|
{
|
|
struct root_entry *root;
|
|
struct context_entry *context;
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
root = &iommu->root_entry[bus];
|
|
context = get_context_addr_from_root(root);
|
|
if (!context) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
ret = context_present(&context[devfn]);
|
|
out:
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
|
|
{
|
|
struct root_entry *root;
|
|
struct context_entry *context;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
root = &iommu->root_entry[bus];
|
|
context = get_context_addr_from_root(root);
|
|
if (context) {
|
|
context_clear_entry(&context[devfn]);
|
|
__iommu_flush_cache(iommu, &context[devfn], \
|
|
sizeof(*context));
|
|
}
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
static void free_context_table(struct intel_iommu *iommu)
|
|
{
|
|
struct root_entry *root;
|
|
int i;
|
|
unsigned long flags;
|
|
struct context_entry *context;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
if (!iommu->root_entry) {
|
|
goto out;
|
|
}
|
|
for (i = 0; i < ROOT_ENTRY_NR; i++) {
|
|
root = &iommu->root_entry[i];
|
|
context = get_context_addr_from_root(root);
|
|
if (context)
|
|
free_pgtable_page(context);
|
|
}
|
|
free_pgtable_page(iommu->root_entry);
|
|
iommu->root_entry = NULL;
|
|
out:
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
|
|
unsigned long pfn, int target_level)
|
|
{
|
|
int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
|
|
struct dma_pte *parent, *pte = NULL;
|
|
int level = agaw_to_level(domain->agaw);
|
|
int offset;
|
|
|
|
BUG_ON(!domain->pgd);
|
|
BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
|
|
parent = domain->pgd;
|
|
|
|
while (level > 0) {
|
|
void *tmp_page;
|
|
|
|
offset = pfn_level_offset(pfn, level);
|
|
pte = &parent[offset];
|
|
if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
|
|
break;
|
|
if (level == target_level)
|
|
break;
|
|
|
|
if (!dma_pte_present(pte)) {
|
|
uint64_t pteval;
|
|
|
|
tmp_page = alloc_pgtable_page(domain->nid);
|
|
|
|
if (!tmp_page)
|
|
return NULL;
|
|
|
|
domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
|
|
pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
|
|
if (cmpxchg64(&pte->val, 0ULL, pteval)) {
|
|
/* Someone else set it while we were thinking; use theirs. */
|
|
free_pgtable_page(tmp_page);
|
|
} else {
|
|
dma_pte_addr(pte);
|
|
domain_flush_cache(domain, pte, sizeof(*pte));
|
|
}
|
|
}
|
|
parent = phys_to_virt(dma_pte_addr(pte));
|
|
level--;
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
|
|
/* return address's pte at specific level */
|
|
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
|
|
unsigned long pfn,
|
|
int level, int *large_page)
|
|
{
|
|
struct dma_pte *parent, *pte = NULL;
|
|
int total = agaw_to_level(domain->agaw);
|
|
int offset;
|
|
|
|
parent = domain->pgd;
|
|
while (level <= total) {
|
|
offset = pfn_level_offset(pfn, total);
|
|
pte = &parent[offset];
|
|
if (level == total)
|
|
return pte;
|
|
|
|
if (!dma_pte_present(pte)) {
|
|
*large_page = total;
|
|
break;
|
|
}
|
|
|
|
if (pte->val & DMA_PTE_LARGE_PAGE) {
|
|
*large_page = total;
|
|
return pte;
|
|
}
|
|
|
|
parent = phys_to_virt(dma_pte_addr(pte));
|
|
total--;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* clear last level pte, a tlb flush should be followed */
|
|
static int dma_pte_clear_range(struct dmar_domain *domain,
|
|
unsigned long start_pfn,
|
|
unsigned long last_pfn)
|
|
{
|
|
int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
|
|
unsigned int large_page = 1;
|
|
struct dma_pte *first_pte, *pte;
|
|
int order;
|
|
|
|
BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
|
|
BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
|
|
BUG_ON(start_pfn > last_pfn);
|
|
|
|
/* we don't need lock here; nobody else touches the iova range */
|
|
do {
|
|
large_page = 1;
|
|
first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
|
|
if (!pte) {
|
|
start_pfn = align_to_level(start_pfn + 1, large_page + 1);
|
|
continue;
|
|
}
|
|
do {
|
|
dma_clear_pte(pte);
|
|
start_pfn += lvl_to_nr_pages(large_page);
|
|
pte++;
|
|
} while (start_pfn <= last_pfn && !first_pte_in_page(pte));
|
|
|
|
domain_flush_cache(domain, first_pte,
|
|
(void *)pte - (void *)first_pte);
|
|
|
|
} while (start_pfn && start_pfn <= last_pfn);
|
|
|
|
order = (large_page - 1) * 9;
|
|
return order;
|
|
}
|
|
|
|
/* free page table pages. last level pte should already be cleared */
|
|
static void dma_pte_free_pagetable(struct dmar_domain *domain,
|
|
unsigned long start_pfn,
|
|
unsigned long last_pfn)
|
|
{
|
|
int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
|
|
struct dma_pte *first_pte, *pte;
|
|
int total = agaw_to_level(domain->agaw);
|
|
int level;
|
|
unsigned long tmp;
|
|
int large_page = 2;
|
|
|
|
BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
|
|
BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
|
|
BUG_ON(start_pfn > last_pfn);
|
|
|
|
/* We don't need lock here; nobody else touches the iova range */
|
|
level = 2;
|
|
while (level <= total) {
|
|
tmp = align_to_level(start_pfn, level);
|
|
|
|
/* If we can't even clear one PTE at this level, we're done */
|
|
if (tmp + level_size(level) - 1 > last_pfn)
|
|
return;
|
|
|
|
do {
|
|
large_page = level;
|
|
first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page);
|
|
if (large_page > level)
|
|
level = large_page + 1;
|
|
if (!pte) {
|
|
tmp = align_to_level(tmp + 1, level + 1);
|
|
continue;
|
|
}
|
|
do {
|
|
if (dma_pte_present(pte)) {
|
|
free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
|
|
dma_clear_pte(pte);
|
|
}
|
|
pte++;
|
|
tmp += level_size(level);
|
|
} while (!first_pte_in_page(pte) &&
|
|
tmp + level_size(level) - 1 <= last_pfn);
|
|
|
|
domain_flush_cache(domain, first_pte,
|
|
(void *)pte - (void *)first_pte);
|
|
|
|
} while (tmp && tmp + level_size(level) - 1 <= last_pfn);
|
|
level++;
|
|
}
|
|
/* free pgd */
|
|
if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
|
|
free_pgtable_page(domain->pgd);
|
|
domain->pgd = NULL;
|
|
}
|
|
}
|
|
|
|
/* iommu handling */
|
|
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
|
|
{
|
|
struct root_entry *root;
|
|
unsigned long flags;
|
|
|
|
root = (struct root_entry *)alloc_pgtable_page(iommu->node);
|
|
if (!root)
|
|
return -ENOMEM;
|
|
|
|
__iommu_flush_cache(iommu, root, ROOT_SIZE);
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
iommu->root_entry = root;
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_set_root_entry(struct intel_iommu *iommu)
|
|
{
|
|
void *addr;
|
|
u32 sts;
|
|
unsigned long flag;
|
|
|
|
addr = iommu->root_entry;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
|
|
|
|
writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (sts & DMA_GSTS_RTPS), sts);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
static void iommu_flush_write_buffer(struct intel_iommu *iommu)
|
|
{
|
|
u32 val;
|
|
unsigned long flag;
|
|
|
|
if (!rwbf_quirk && !cap_rwbf(iommu->cap))
|
|
return;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (!(val & DMA_GSTS_WBFS)), val);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
/* return value determine if we need a write buffer flush */
|
|
static void __iommu_flush_context(struct intel_iommu *iommu,
|
|
u16 did, u16 source_id, u8 function_mask,
|
|
u64 type)
|
|
{
|
|
u64 val = 0;
|
|
unsigned long flag;
|
|
|
|
switch (type) {
|
|
case DMA_CCMD_GLOBAL_INVL:
|
|
val = DMA_CCMD_GLOBAL_INVL;
|
|
break;
|
|
case DMA_CCMD_DOMAIN_INVL:
|
|
val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
|
|
break;
|
|
case DMA_CCMD_DEVICE_INVL:
|
|
val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
|
|
| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
val |= DMA_CCMD_ICC;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
|
|
dmar_readq, (!(val & DMA_CCMD_ICC)), val);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
/* return value determine if we need a write buffer flush */
|
|
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
|
|
u64 addr, unsigned int size_order, u64 type)
|
|
{
|
|
int tlb_offset = ecap_iotlb_offset(iommu->ecap);
|
|
u64 val = 0, val_iva = 0;
|
|
unsigned long flag;
|
|
|
|
switch (type) {
|
|
case DMA_TLB_GLOBAL_FLUSH:
|
|
/* global flush doesn't need set IVA_REG */
|
|
val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
|
|
break;
|
|
case DMA_TLB_DSI_FLUSH:
|
|
val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
|
|
break;
|
|
case DMA_TLB_PSI_FLUSH:
|
|
val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
|
|
/* Note: always flush non-leaf currently */
|
|
val_iva = size_order | addr;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
/* Note: set drain read/write */
|
|
#if 0
|
|
/*
|
|
* This is probably to be super secure.. Looks like we can
|
|
* ignore it without any impact.
|
|
*/
|
|
if (cap_read_drain(iommu->cap))
|
|
val |= DMA_TLB_READ_DRAIN;
|
|
#endif
|
|
if (cap_write_drain(iommu->cap))
|
|
val |= DMA_TLB_WRITE_DRAIN;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
/* Note: Only uses first TLB reg currently */
|
|
if (val_iva)
|
|
dmar_writeq(iommu->reg + tlb_offset, val_iva);
|
|
dmar_writeq(iommu->reg + tlb_offset + 8, val);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, tlb_offset + 8,
|
|
dmar_readq, (!(val & DMA_TLB_IVT)), val);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
|
|
/* check IOTLB invalidation granularity */
|
|
if (DMA_TLB_IAIG(val) == 0)
|
|
printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
|
|
if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
|
|
pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
|
|
(unsigned long long)DMA_TLB_IIRG(type),
|
|
(unsigned long long)DMA_TLB_IAIG(val));
|
|
}
|
|
|
|
static struct device_domain_info *iommu_support_dev_iotlb(
|
|
struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
|
|
{
|
|
int found = 0;
|
|
unsigned long flags;
|
|
struct device_domain_info *info;
|
|
struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
|
|
|
|
if (!ecap_dev_iotlb_support(iommu->ecap))
|
|
return NULL;
|
|
|
|
if (!iommu->qi)
|
|
return NULL;
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
list_for_each_entry(info, &domain->devices, link)
|
|
if (info->bus == bus && info->devfn == devfn) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
|
|
if (!found || !info->dev)
|
|
return NULL;
|
|
|
|
if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
|
|
return NULL;
|
|
|
|
if (!dmar_find_matched_atsr_unit(info->dev))
|
|
return NULL;
|
|
|
|
info->iommu = iommu;
|
|
|
|
return info;
|
|
}
|
|
|
|
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
|
|
{
|
|
if (!info)
|
|
return;
|
|
|
|
pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
|
|
}
|
|
|
|
static void iommu_disable_dev_iotlb(struct device_domain_info *info)
|
|
{
|
|
if (!info->dev || !pci_ats_enabled(info->dev))
|
|
return;
|
|
|
|
pci_disable_ats(info->dev);
|
|
}
|
|
|
|
static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
|
|
u64 addr, unsigned mask)
|
|
{
|
|
u16 sid, qdep;
|
|
unsigned long flags;
|
|
struct device_domain_info *info;
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
list_for_each_entry(info, &domain->devices, link) {
|
|
if (!info->dev || !pci_ats_enabled(info->dev))
|
|
continue;
|
|
|
|
sid = info->bus << 8 | info->devfn;
|
|
qdep = pci_ats_queue_depth(info->dev);
|
|
qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
|
|
}
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
}
|
|
|
|
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
|
|
unsigned long pfn, unsigned int pages, int map)
|
|
{
|
|
unsigned int mask = ilog2(__roundup_pow_of_two(pages));
|
|
uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
|
|
|
|
BUG_ON(pages == 0);
|
|
|
|
/*
|
|
* Fallback to domain selective flush if no PSI support or the size is
|
|
* too big.
|
|
* PSI requires page size to be 2 ^ x, and the base address is naturally
|
|
* aligned to the size
|
|
*/
|
|
if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
|
|
iommu->flush.flush_iotlb(iommu, did, 0, 0,
|
|
DMA_TLB_DSI_FLUSH);
|
|
else
|
|
iommu->flush.flush_iotlb(iommu, did, addr, mask,
|
|
DMA_TLB_PSI_FLUSH);
|
|
|
|
/*
|
|
* In caching mode, changes of pages from non-present to present require
|
|
* flush. However, device IOTLB doesn't need to be flushed in this case.
|
|
*/
|
|
if (!cap_caching_mode(iommu->cap) || !map)
|
|
iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
|
|
}
|
|
|
|
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
|
|
{
|
|
u32 pmen;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flags);
|
|
pmen = readl(iommu->reg + DMAR_PMEN_REG);
|
|
pmen &= ~DMA_PMEN_EPM;
|
|
writel(pmen, iommu->reg + DMAR_PMEN_REG);
|
|
|
|
/* wait for the protected region status bit to clear */
|
|
IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
|
|
readl, !(pmen & DMA_PMEN_PRS), pmen);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
}
|
|
|
|
static int iommu_enable_translation(struct intel_iommu *iommu)
|
|
{
|
|
u32 sts;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flags);
|
|
iommu->gcmd |= DMA_GCMD_TE;
|
|
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (sts & DMA_GSTS_TES), sts);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static int iommu_disable_translation(struct intel_iommu *iommu)
|
|
{
|
|
u32 sts;
|
|
unsigned long flag;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
iommu->gcmd &= ~DMA_GCMD_TE;
|
|
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (!(sts & DMA_GSTS_TES)), sts);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int iommu_init_domains(struct intel_iommu *iommu)
|
|
{
|
|
unsigned long ndomains;
|
|
unsigned long nlongs;
|
|
|
|
ndomains = cap_ndoms(iommu->cap);
|
|
pr_debug("IOMMU %d: Number of Domains supported <%ld>\n", iommu->seq_id,
|
|
ndomains);
|
|
nlongs = BITS_TO_LONGS(ndomains);
|
|
|
|
spin_lock_init(&iommu->lock);
|
|
|
|
/* TBD: there might be 64K domains,
|
|
* consider other allocation for future chip
|
|
*/
|
|
iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
|
|
if (!iommu->domain_ids) {
|
|
printk(KERN_ERR "Allocating domain id array failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
|
|
GFP_KERNEL);
|
|
if (!iommu->domains) {
|
|
printk(KERN_ERR "Allocating domain array failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* if Caching mode is set, then invalid translations are tagged
|
|
* with domainid 0. Hence we need to pre-allocate it.
|
|
*/
|
|
if (cap_caching_mode(iommu->cap))
|
|
set_bit(0, iommu->domain_ids);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void domain_exit(struct dmar_domain *domain);
|
|
static void vm_domain_exit(struct dmar_domain *domain);
|
|
|
|
void free_dmar_iommu(struct intel_iommu *iommu)
|
|
{
|
|
struct dmar_domain *domain;
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
if ((iommu->domains) && (iommu->domain_ids)) {
|
|
for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
|
|
domain = iommu->domains[i];
|
|
clear_bit(i, iommu->domain_ids);
|
|
|
|
spin_lock_irqsave(&domain->iommu_lock, flags);
|
|
if (--domain->iommu_count == 0) {
|
|
if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
|
|
vm_domain_exit(domain);
|
|
else
|
|
domain_exit(domain);
|
|
}
|
|
spin_unlock_irqrestore(&domain->iommu_lock, flags);
|
|
}
|
|
}
|
|
|
|
if (iommu->gcmd & DMA_GCMD_TE)
|
|
iommu_disable_translation(iommu);
|
|
|
|
if (iommu->irq) {
|
|
irq_set_handler_data(iommu->irq, NULL);
|
|
/* This will mask the irq */
|
|
free_irq(iommu->irq, iommu);
|
|
destroy_irq(iommu->irq);
|
|
}
|
|
|
|
kfree(iommu->domains);
|
|
kfree(iommu->domain_ids);
|
|
|
|
g_iommus[iommu->seq_id] = NULL;
|
|
|
|
/* if all iommus are freed, free g_iommus */
|
|
for (i = 0; i < g_num_of_iommus; i++) {
|
|
if (g_iommus[i])
|
|
break;
|
|
}
|
|
|
|
if (i == g_num_of_iommus)
|
|
kfree(g_iommus);
|
|
|
|
/* free context mapping */
|
|
free_context_table(iommu);
|
|
}
|
|
|
|
static struct dmar_domain *alloc_domain(void)
|
|
{
|
|
struct dmar_domain *domain;
|
|
|
|
domain = alloc_domain_mem();
|
|
if (!domain)
|
|
return NULL;
|
|
|
|
domain->nid = -1;
|
|
memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
|
|
domain->flags = 0;
|
|
|
|
return domain;
|
|
}
|
|
|
|
static int iommu_attach_domain(struct dmar_domain *domain,
|
|
struct intel_iommu *iommu)
|
|
{
|
|
int num;
|
|
unsigned long ndomains;
|
|
unsigned long flags;
|
|
|
|
ndomains = cap_ndoms(iommu->cap);
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
|
|
num = find_first_zero_bit(iommu->domain_ids, ndomains);
|
|
if (num >= ndomains) {
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
printk(KERN_ERR "IOMMU: no free domain ids\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
domain->id = num;
|
|
set_bit(num, iommu->domain_ids);
|
|
set_bit(iommu->seq_id, domain->iommu_bmp);
|
|
iommu->domains[num] = domain;
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_detach_domain(struct dmar_domain *domain,
|
|
struct intel_iommu *iommu)
|
|
{
|
|
unsigned long flags;
|
|
int num, ndomains;
|
|
int found = 0;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
ndomains = cap_ndoms(iommu->cap);
|
|
for_each_set_bit(num, iommu->domain_ids, ndomains) {
|
|
if (iommu->domains[num] == domain) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (found) {
|
|
clear_bit(num, iommu->domain_ids);
|
|
clear_bit(iommu->seq_id, domain->iommu_bmp);
|
|
iommu->domains[num] = NULL;
|
|
}
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
static struct iova_domain reserved_iova_list;
|
|
static struct lock_class_key reserved_rbtree_key;
|
|
|
|
static int dmar_init_reserved_ranges(void)
|
|
{
|
|
struct pci_dev *pdev = NULL;
|
|
struct iova *iova;
|
|
int i;
|
|
|
|
init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
|
|
|
|
lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
|
|
&reserved_rbtree_key);
|
|
|
|
/* IOAPIC ranges shouldn't be accessed by DMA */
|
|
iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
|
|
IOVA_PFN(IOAPIC_RANGE_END));
|
|
if (!iova) {
|
|
printk(KERN_ERR "Reserve IOAPIC range failed\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Reserve all PCI MMIO to avoid peer-to-peer access */
|
|
for_each_pci_dev(pdev) {
|
|
struct resource *r;
|
|
|
|
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
|
|
r = &pdev->resource[i];
|
|
if (!r->flags || !(r->flags & IORESOURCE_MEM))
|
|
continue;
|
|
iova = reserve_iova(&reserved_iova_list,
|
|
IOVA_PFN(r->start),
|
|
IOVA_PFN(r->end));
|
|
if (!iova) {
|
|
printk(KERN_ERR "Reserve iova failed\n");
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void domain_reserve_special_ranges(struct dmar_domain *domain)
|
|
{
|
|
copy_reserved_iova(&reserved_iova_list, &domain->iovad);
|
|
}
|
|
|
|
static inline int guestwidth_to_adjustwidth(int gaw)
|
|
{
|
|
int agaw;
|
|
int r = (gaw - 12) % 9;
|
|
|
|
if (r == 0)
|
|
agaw = gaw;
|
|
else
|
|
agaw = gaw + 9 - r;
|
|
if (agaw > 64)
|
|
agaw = 64;
|
|
return agaw;
|
|
}
|
|
|
|
static int domain_init(struct dmar_domain *domain, int guest_width)
|
|
{
|
|
struct intel_iommu *iommu;
|
|
int adjust_width, agaw;
|
|
unsigned long sagaw;
|
|
|
|
init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
|
|
spin_lock_init(&domain->iommu_lock);
|
|
|
|
domain_reserve_special_ranges(domain);
|
|
|
|
/* calculate AGAW */
|
|
iommu = domain_get_iommu(domain);
|
|
if (guest_width > cap_mgaw(iommu->cap))
|
|
guest_width = cap_mgaw(iommu->cap);
|
|
domain->gaw = guest_width;
|
|
adjust_width = guestwidth_to_adjustwidth(guest_width);
|
|
agaw = width_to_agaw(adjust_width);
|
|
sagaw = cap_sagaw(iommu->cap);
|
|
if (!test_bit(agaw, &sagaw)) {
|
|
/* hardware doesn't support it, choose a bigger one */
|
|
pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
|
|
agaw = find_next_bit(&sagaw, 5, agaw);
|
|
if (agaw >= 5)
|
|
return -ENODEV;
|
|
}
|
|
domain->agaw = agaw;
|
|
INIT_LIST_HEAD(&domain->devices);
|
|
|
|
if (ecap_coherent(iommu->ecap))
|
|
domain->iommu_coherency = 1;
|
|
else
|
|
domain->iommu_coherency = 0;
|
|
|
|
if (ecap_sc_support(iommu->ecap))
|
|
domain->iommu_snooping = 1;
|
|
else
|
|
domain->iommu_snooping = 0;
|
|
|
|
domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
|
|
domain->iommu_count = 1;
|
|
domain->nid = iommu->node;
|
|
|
|
/* always allocate the top pgd */
|
|
domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
|
|
if (!domain->pgd)
|
|
return -ENOMEM;
|
|
__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
static void domain_exit(struct dmar_domain *domain)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
|
|
/* Domain 0 is reserved, so dont process it */
|
|
if (!domain)
|
|
return;
|
|
|
|
/* Flush any lazy unmaps that may reference this domain */
|
|
if (!intel_iommu_strict)
|
|
flush_unmaps_timeout(0);
|
|
|
|
domain_remove_dev_info(domain);
|
|
/* destroy iovas */
|
|
put_iova_domain(&domain->iovad);
|
|
|
|
/* clear ptes */
|
|
dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
|
|
|
|
/* free page tables */
|
|
dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
|
|
|
|
for_each_active_iommu(iommu, drhd)
|
|
if (test_bit(iommu->seq_id, domain->iommu_bmp))
|
|
iommu_detach_domain(domain, iommu);
|
|
|
|
free_domain_mem(domain);
|
|
}
|
|
|
|
static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
|
|
u8 bus, u8 devfn, int translation)
|
|
{
|
|
struct context_entry *context;
|
|
unsigned long flags;
|
|
struct intel_iommu *iommu;
|
|
struct dma_pte *pgd;
|
|
unsigned long num;
|
|
unsigned long ndomains;
|
|
int id;
|
|
int agaw;
|
|
struct device_domain_info *info = NULL;
|
|
|
|
pr_debug("Set context mapping for %02x:%02x.%d\n",
|
|
bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
|
|
|
|
BUG_ON(!domain->pgd);
|
|
BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
|
|
translation != CONTEXT_TT_MULTI_LEVEL);
|
|
|
|
iommu = device_to_iommu(segment, bus, devfn);
|
|
if (!iommu)
|
|
return -ENODEV;
|
|
|
|
context = device_to_context_entry(iommu, bus, devfn);
|
|
if (!context)
|
|
return -ENOMEM;
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
if (context_present(context)) {
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
id = domain->id;
|
|
pgd = domain->pgd;
|
|
|
|
if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
|
|
domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
|
|
int found = 0;
|
|
|
|
/* find an available domain id for this device in iommu */
|
|
ndomains = cap_ndoms(iommu->cap);
|
|
for_each_set_bit(num, iommu->domain_ids, ndomains) {
|
|
if (iommu->domains[num] == domain) {
|
|
id = num;
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (found == 0) {
|
|
num = find_first_zero_bit(iommu->domain_ids, ndomains);
|
|
if (num >= ndomains) {
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
printk(KERN_ERR "IOMMU: no free domain ids\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
set_bit(num, iommu->domain_ids);
|
|
iommu->domains[num] = domain;
|
|
id = num;
|
|
}
|
|
|
|
/* Skip top levels of page tables for
|
|
* iommu which has less agaw than default.
|
|
* Unnecessary for PT mode.
|
|
*/
|
|
if (translation != CONTEXT_TT_PASS_THROUGH) {
|
|
for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
|
|
pgd = phys_to_virt(dma_pte_addr(pgd));
|
|
if (!dma_pte_present(pgd)) {
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
context_set_domain_id(context, id);
|
|
|
|
if (translation != CONTEXT_TT_PASS_THROUGH) {
|
|
info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
|
|
translation = info ? CONTEXT_TT_DEV_IOTLB :
|
|
CONTEXT_TT_MULTI_LEVEL;
|
|
}
|
|
/*
|
|
* In pass through mode, AW must be programmed to indicate the largest
|
|
* AGAW value supported by hardware. And ASR is ignored by hardware.
|
|
*/
|
|
if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
|
|
context_set_address_width(context, iommu->msagaw);
|
|
else {
|
|
context_set_address_root(context, virt_to_phys(pgd));
|
|
context_set_address_width(context, iommu->agaw);
|
|
}
|
|
|
|
context_set_translation_type(context, translation);
|
|
context_set_fault_enable(context);
|
|
context_set_present(context);
|
|
domain_flush_cache(domain, context, sizeof(*context));
|
|
|
|
/*
|
|
* It's a non-present to present mapping. If hardware doesn't cache
|
|
* non-present entry we only need to flush the write-buffer. If the
|
|
* _does_ cache non-present entries, then it does so in the special
|
|
* domain #0, which we have to flush:
|
|
*/
|
|
if (cap_caching_mode(iommu->cap)) {
|
|
iommu->flush.flush_context(iommu, 0,
|
|
(((u16)bus) << 8) | devfn,
|
|
DMA_CCMD_MASK_NOBIT,
|
|
DMA_CCMD_DEVICE_INVL);
|
|
iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
|
|
} else {
|
|
iommu_flush_write_buffer(iommu);
|
|
}
|
|
iommu_enable_dev_iotlb(info);
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
spin_lock_irqsave(&domain->iommu_lock, flags);
|
|
if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
|
|
domain->iommu_count++;
|
|
if (domain->iommu_count == 1)
|
|
domain->nid = iommu->node;
|
|
domain_update_iommu_cap(domain);
|
|
}
|
|
spin_unlock_irqrestore(&domain->iommu_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
|
|
int translation)
|
|
{
|
|
int ret;
|
|
struct pci_dev *tmp, *parent;
|
|
|
|
ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
|
|
pdev->bus->number, pdev->devfn,
|
|
translation);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* dependent device mapping */
|
|
tmp = pci_find_upstream_pcie_bridge(pdev);
|
|
if (!tmp)
|
|
return 0;
|
|
/* Secondary interface's bus number and devfn 0 */
|
|
parent = pdev->bus->self;
|
|
while (parent != tmp) {
|
|
ret = domain_context_mapping_one(domain,
|
|
pci_domain_nr(parent->bus),
|
|
parent->bus->number,
|
|
parent->devfn, translation);
|
|
if (ret)
|
|
return ret;
|
|
parent = parent->bus->self;
|
|
}
|
|
if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
|
|
return domain_context_mapping_one(domain,
|
|
pci_domain_nr(tmp->subordinate),
|
|
tmp->subordinate->number, 0,
|
|
translation);
|
|
else /* this is a legacy PCI bridge */
|
|
return domain_context_mapping_one(domain,
|
|
pci_domain_nr(tmp->bus),
|
|
tmp->bus->number,
|
|
tmp->devfn,
|
|
translation);
|
|
}
|
|
|
|
static int domain_context_mapped(struct pci_dev *pdev)
|
|
{
|
|
int ret;
|
|
struct pci_dev *tmp, *parent;
|
|
struct intel_iommu *iommu;
|
|
|
|
iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
|
|
pdev->devfn);
|
|
if (!iommu)
|
|
return -ENODEV;
|
|
|
|
ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
|
|
if (!ret)
|
|
return ret;
|
|
/* dependent device mapping */
|
|
tmp = pci_find_upstream_pcie_bridge(pdev);
|
|
if (!tmp)
|
|
return ret;
|
|
/* Secondary interface's bus number and devfn 0 */
|
|
parent = pdev->bus->self;
|
|
while (parent != tmp) {
|
|
ret = device_context_mapped(iommu, parent->bus->number,
|
|
parent->devfn);
|
|
if (!ret)
|
|
return ret;
|
|
parent = parent->bus->self;
|
|
}
|
|
if (pci_is_pcie(tmp))
|
|
return device_context_mapped(iommu, tmp->subordinate->number,
|
|
0);
|
|
else
|
|
return device_context_mapped(iommu, tmp->bus->number,
|
|
tmp->devfn);
|
|
}
|
|
|
|
/* Returns a number of VTD pages, but aligned to MM page size */
|
|
static inline unsigned long aligned_nrpages(unsigned long host_addr,
|
|
size_t size)
|
|
{
|
|
host_addr &= ~PAGE_MASK;
|
|
return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
|
|
}
|
|
|
|
/* Return largest possible superpage level for a given mapping */
|
|
static inline int hardware_largepage_caps(struct dmar_domain *domain,
|
|
unsigned long iov_pfn,
|
|
unsigned long phy_pfn,
|
|
unsigned long pages)
|
|
{
|
|
int support, level = 1;
|
|
unsigned long pfnmerge;
|
|
|
|
support = domain->iommu_superpage;
|
|
|
|
/* To use a large page, the virtual *and* physical addresses
|
|
must be aligned to 2MiB/1GiB/etc. Lower bits set in either
|
|
of them will mean we have to use smaller pages. So just
|
|
merge them and check both at once. */
|
|
pfnmerge = iov_pfn | phy_pfn;
|
|
|
|
while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
|
|
pages >>= VTD_STRIDE_SHIFT;
|
|
if (!pages)
|
|
break;
|
|
pfnmerge >>= VTD_STRIDE_SHIFT;
|
|
level++;
|
|
support--;
|
|
}
|
|
return level;
|
|
}
|
|
|
|
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
|
|
struct scatterlist *sg, unsigned long phys_pfn,
|
|
unsigned long nr_pages, int prot)
|
|
{
|
|
struct dma_pte *first_pte = NULL, *pte = NULL;
|
|
phys_addr_t uninitialized_var(pteval);
|
|
int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
|
|
unsigned long sg_res;
|
|
unsigned int largepage_lvl = 0;
|
|
unsigned long lvl_pages = 0;
|
|
|
|
BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
|
|
|
|
if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
|
|
return -EINVAL;
|
|
|
|
prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
|
|
|
|
if (sg)
|
|
sg_res = 0;
|
|
else {
|
|
sg_res = nr_pages + 1;
|
|
pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
|
|
}
|
|
|
|
while (nr_pages > 0) {
|
|
uint64_t tmp;
|
|
|
|
if (!sg_res) {
|
|
sg_res = aligned_nrpages(sg->offset, sg->length);
|
|
sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
|
|
sg->dma_length = sg->length;
|
|
pteval = page_to_phys(sg_page(sg)) | prot;
|
|
phys_pfn = pteval >> VTD_PAGE_SHIFT;
|
|
}
|
|
|
|
if (!pte) {
|
|
largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
|
|
|
|
first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
/* It is large page*/
|
|
if (largepage_lvl > 1)
|
|
pteval |= DMA_PTE_LARGE_PAGE;
|
|
else
|
|
pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
|
|
|
|
}
|
|
/* We don't need lock here, nobody else
|
|
* touches the iova range
|
|
*/
|
|
tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
|
|
if (tmp) {
|
|
static int dumps = 5;
|
|
printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
|
|
iov_pfn, tmp, (unsigned long long)pteval);
|
|
if (dumps) {
|
|
dumps--;
|
|
debug_dma_dump_mappings(NULL);
|
|
}
|
|
WARN_ON(1);
|
|
}
|
|
|
|
lvl_pages = lvl_to_nr_pages(largepage_lvl);
|
|
|
|
BUG_ON(nr_pages < lvl_pages);
|
|
BUG_ON(sg_res < lvl_pages);
|
|
|
|
nr_pages -= lvl_pages;
|
|
iov_pfn += lvl_pages;
|
|
phys_pfn += lvl_pages;
|
|
pteval += lvl_pages * VTD_PAGE_SIZE;
|
|
sg_res -= lvl_pages;
|
|
|
|
/* If the next PTE would be the first in a new page, then we
|
|
need to flush the cache on the entries we've just written.
|
|
And then we'll need to recalculate 'pte', so clear it and
|
|
let it get set again in the if (!pte) block above.
|
|
|
|
If we're done (!nr_pages) we need to flush the cache too.
|
|
|
|
Also if we've been setting superpages, we may need to
|
|
recalculate 'pte' and switch back to smaller pages for the
|
|
end of the mapping, if the trailing size is not enough to
|
|
use another superpage (i.e. sg_res < lvl_pages). */
|
|
pte++;
|
|
if (!nr_pages || first_pte_in_page(pte) ||
|
|
(largepage_lvl > 1 && sg_res < lvl_pages)) {
|
|
domain_flush_cache(domain, first_pte,
|
|
(void *)pte - (void *)first_pte);
|
|
pte = NULL;
|
|
}
|
|
|
|
if (!sg_res && nr_pages)
|
|
sg = sg_next(sg);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
|
|
struct scatterlist *sg, unsigned long nr_pages,
|
|
int prot)
|
|
{
|
|
return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
|
|
}
|
|
|
|
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
|
|
unsigned long phys_pfn, unsigned long nr_pages,
|
|
int prot)
|
|
{
|
|
return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
|
|
}
|
|
|
|
static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
|
|
{
|
|
if (!iommu)
|
|
return;
|
|
|
|
clear_context_table(iommu, bus, devfn);
|
|
iommu->flush.flush_context(iommu, 0, 0, 0,
|
|
DMA_CCMD_GLOBAL_INVL);
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
|
|
}
|
|
|
|
static inline void unlink_domain_info(struct device_domain_info *info)
|
|
{
|
|
assert_spin_locked(&device_domain_lock);
|
|
list_del(&info->link);
|
|
list_del(&info->global);
|
|
if (info->dev)
|
|
info->dev->dev.archdata.iommu = NULL;
|
|
}
|
|
|
|
static void domain_remove_dev_info(struct dmar_domain *domain)
|
|
{
|
|
struct device_domain_info *info;
|
|
unsigned long flags;
|
|
struct intel_iommu *iommu;
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
while (!list_empty(&domain->devices)) {
|
|
info = list_entry(domain->devices.next,
|
|
struct device_domain_info, link);
|
|
unlink_domain_info(info);
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
|
|
iommu_disable_dev_iotlb(info);
|
|
iommu = device_to_iommu(info->segment, info->bus, info->devfn);
|
|
iommu_detach_dev(iommu, info->bus, info->devfn);
|
|
free_devinfo_mem(info);
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
}
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* find_domain
|
|
* Note: we use struct pci_dev->dev.archdata.iommu stores the info
|
|
*/
|
|
static struct dmar_domain *
|
|
find_domain(struct pci_dev *pdev)
|
|
{
|
|
struct device_domain_info *info;
|
|
|
|
/* No lock here, assumes no domain exit in normal case */
|
|
info = pdev->dev.archdata.iommu;
|
|
if (info)
|
|
return info->domain;
|
|
return NULL;
|
|
}
|
|
|
|
/* domain is initialized */
|
|
static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
|
|
{
|
|
struct dmar_domain *domain, *found = NULL;
|
|
struct intel_iommu *iommu;
|
|
struct dmar_drhd_unit *drhd;
|
|
struct device_domain_info *info, *tmp;
|
|
struct pci_dev *dev_tmp;
|
|
unsigned long flags;
|
|
int bus = 0, devfn = 0;
|
|
int segment;
|
|
int ret;
|
|
|
|
domain = find_domain(pdev);
|
|
if (domain)
|
|
return domain;
|
|
|
|
segment = pci_domain_nr(pdev->bus);
|
|
|
|
dev_tmp = pci_find_upstream_pcie_bridge(pdev);
|
|
if (dev_tmp) {
|
|
if (pci_is_pcie(dev_tmp)) {
|
|
bus = dev_tmp->subordinate->number;
|
|
devfn = 0;
|
|
} else {
|
|
bus = dev_tmp->bus->number;
|
|
devfn = dev_tmp->devfn;
|
|
}
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
list_for_each_entry(info, &device_domain_list, global) {
|
|
if (info->segment == segment &&
|
|
info->bus == bus && info->devfn == devfn) {
|
|
found = info->domain;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
/* pcie-pci bridge already has a domain, uses it */
|
|
if (found) {
|
|
domain = found;
|
|
goto found_domain;
|
|
}
|
|
}
|
|
|
|
domain = alloc_domain();
|
|
if (!domain)
|
|
goto error;
|
|
|
|
/* Allocate new domain for the device */
|
|
drhd = dmar_find_matched_drhd_unit(pdev);
|
|
if (!drhd) {
|
|
printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
|
|
pci_name(pdev));
|
|
free_domain_mem(domain);
|
|
return NULL;
|
|
}
|
|
iommu = drhd->iommu;
|
|
|
|
ret = iommu_attach_domain(domain, iommu);
|
|
if (ret) {
|
|
free_domain_mem(domain);
|
|
goto error;
|
|
}
|
|
|
|
if (domain_init(domain, gaw)) {
|
|
domain_exit(domain);
|
|
goto error;
|
|
}
|
|
|
|
/* register pcie-to-pci device */
|
|
if (dev_tmp) {
|
|
info = alloc_devinfo_mem();
|
|
if (!info) {
|
|
domain_exit(domain);
|
|
goto error;
|
|
}
|
|
info->segment = segment;
|
|
info->bus = bus;
|
|
info->devfn = devfn;
|
|
info->dev = NULL;
|
|
info->domain = domain;
|
|
/* This domain is shared by devices under p2p bridge */
|
|
domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
|
|
|
|
/* pcie-to-pci bridge already has a domain, uses it */
|
|
found = NULL;
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
list_for_each_entry(tmp, &device_domain_list, global) {
|
|
if (tmp->segment == segment &&
|
|
tmp->bus == bus && tmp->devfn == devfn) {
|
|
found = tmp->domain;
|
|
break;
|
|
}
|
|
}
|
|
if (found) {
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
free_devinfo_mem(info);
|
|
domain_exit(domain);
|
|
domain = found;
|
|
} else {
|
|
list_add(&info->link, &domain->devices);
|
|
list_add(&info->global, &device_domain_list);
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
}
|
|
}
|
|
|
|
found_domain:
|
|
info = alloc_devinfo_mem();
|
|
if (!info)
|
|
goto error;
|
|
info->segment = segment;
|
|
info->bus = pdev->bus->number;
|
|
info->devfn = pdev->devfn;
|
|
info->dev = pdev;
|
|
info->domain = domain;
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
/* somebody is fast */
|
|
found = find_domain(pdev);
|
|
if (found != NULL) {
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
if (found != domain) {
|
|
domain_exit(domain);
|
|
domain = found;
|
|
}
|
|
free_devinfo_mem(info);
|
|
return domain;
|
|
}
|
|
list_add(&info->link, &domain->devices);
|
|
list_add(&info->global, &device_domain_list);
|
|
pdev->dev.archdata.iommu = info;
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
return domain;
|
|
error:
|
|
/* recheck it here, maybe others set it */
|
|
return find_domain(pdev);
|
|
}
|
|
|
|
static int iommu_identity_mapping;
|
|
#define IDENTMAP_ALL 1
|
|
#define IDENTMAP_GFX 2
|
|
#define IDENTMAP_AZALIA 4
|
|
|
|
static int iommu_domain_identity_map(struct dmar_domain *domain,
|
|
unsigned long long start,
|
|
unsigned long long end)
|
|
{
|
|
unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
|
|
unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
|
|
|
|
if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
|
|
dma_to_mm_pfn(last_vpfn))) {
|
|
printk(KERN_ERR "IOMMU: reserve iova failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
|
|
start, end, domain->id);
|
|
/*
|
|
* RMRR range might have overlap with physical memory range,
|
|
* clear it first
|
|
*/
|
|
dma_pte_clear_range(domain, first_vpfn, last_vpfn);
|
|
|
|
return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
|
|
last_vpfn - first_vpfn + 1,
|
|
DMA_PTE_READ|DMA_PTE_WRITE);
|
|
}
|
|
|
|
static int iommu_prepare_identity_map(struct pci_dev *pdev,
|
|
unsigned long long start,
|
|
unsigned long long end)
|
|
{
|
|
struct dmar_domain *domain;
|
|
int ret;
|
|
|
|
domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
|
|
if (!domain)
|
|
return -ENOMEM;
|
|
|
|
/* For _hardware_ passthrough, don't bother. But for software
|
|
passthrough, we do it anyway -- it may indicate a memory
|
|
range which is reserved in E820, so which didn't get set
|
|
up to start with in si_domain */
|
|
if (domain == si_domain && hw_pass_through) {
|
|
printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
|
|
pci_name(pdev), start, end);
|
|
return 0;
|
|
}
|
|
|
|
printk(KERN_INFO
|
|
"IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
|
|
pci_name(pdev), start, end);
|
|
|
|
if (end < start) {
|
|
WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
|
|
"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
|
|
dmi_get_system_info(DMI_BIOS_VENDOR),
|
|
dmi_get_system_info(DMI_BIOS_VERSION),
|
|
dmi_get_system_info(DMI_PRODUCT_VERSION));
|
|
ret = -EIO;
|
|
goto error;
|
|
}
|
|
|
|
if (end >> agaw_to_width(domain->agaw)) {
|
|
WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
|
|
"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
|
|
agaw_to_width(domain->agaw),
|
|
dmi_get_system_info(DMI_BIOS_VENDOR),
|
|
dmi_get_system_info(DMI_BIOS_VERSION),
|
|
dmi_get_system_info(DMI_PRODUCT_VERSION));
|
|
ret = -EIO;
|
|
goto error;
|
|
}
|
|
|
|
ret = iommu_domain_identity_map(domain, start, end);
|
|
if (ret)
|
|
goto error;
|
|
|
|
/* context entry init */
|
|
ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
|
|
if (ret)
|
|
goto error;
|
|
|
|
return 0;
|
|
|
|
error:
|
|
domain_exit(domain);
|
|
return ret;
|
|
}
|
|
|
|
static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
|
|
struct pci_dev *pdev)
|
|
{
|
|
if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
|
|
return 0;
|
|
return iommu_prepare_identity_map(pdev, rmrr->base_address,
|
|
rmrr->end_address);
|
|
}
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
|
|
static inline void iommu_prepare_isa(void)
|
|
{
|
|
struct pci_dev *pdev;
|
|
int ret;
|
|
|
|
pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
|
|
if (!pdev)
|
|
return;
|
|
|
|
printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
|
|
ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
|
|
|
|
if (ret)
|
|
printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
|
|
"floppy might not work\n");
|
|
|
|
}
|
|
#else
|
|
static inline void iommu_prepare_isa(void)
|
|
{
|
|
return;
|
|
}
|
|
#endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
|
|
|
|
static int md_domain_init(struct dmar_domain *domain, int guest_width);
|
|
|
|
static int __init si_domain_init(int hw)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
int nid, ret = 0;
|
|
|
|
si_domain = alloc_domain();
|
|
if (!si_domain)
|
|
return -EFAULT;
|
|
|
|
pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
ret = iommu_attach_domain(si_domain, iommu);
|
|
if (ret) {
|
|
domain_exit(si_domain);
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
|
|
if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
|
|
domain_exit(si_domain);
|
|
return -EFAULT;
|
|
}
|
|
|
|
si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
|
|
|
|
if (hw)
|
|
return 0;
|
|
|
|
for_each_online_node(nid) {
|
|
unsigned long start_pfn, end_pfn;
|
|
int i;
|
|
|
|
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
|
|
ret = iommu_domain_identity_map(si_domain,
|
|
PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void domain_remove_one_dev_info(struct dmar_domain *domain,
|
|
struct pci_dev *pdev);
|
|
static int identity_mapping(struct pci_dev *pdev)
|
|
{
|
|
struct device_domain_info *info;
|
|
|
|
if (likely(!iommu_identity_mapping))
|
|
return 0;
|
|
|
|
info = pdev->dev.archdata.iommu;
|
|
if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
|
|
return (info->domain == si_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int domain_add_dev_info(struct dmar_domain *domain,
|
|
struct pci_dev *pdev,
|
|
int translation)
|
|
{
|
|
struct device_domain_info *info;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
info = alloc_devinfo_mem();
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
info->segment = pci_domain_nr(pdev->bus);
|
|
info->bus = pdev->bus->number;
|
|
info->devfn = pdev->devfn;
|
|
info->dev = pdev;
|
|
info->domain = domain;
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
list_add(&info->link, &domain->devices);
|
|
list_add(&info->global, &device_domain_list);
|
|
pdev->dev.archdata.iommu = info;
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
|
|
ret = domain_context_mapping(domain, pdev, translation);
|
|
if (ret) {
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
unlink_domain_info(info);
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
free_devinfo_mem(info);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
|
|
{
|
|
if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
|
|
return 1;
|
|
|
|
if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
|
|
return 1;
|
|
|
|
if (!(iommu_identity_mapping & IDENTMAP_ALL))
|
|
return 0;
|
|
|
|
/*
|
|
* We want to start off with all devices in the 1:1 domain, and
|
|
* take them out later if we find they can't access all of memory.
|
|
*
|
|
* However, we can't do this for PCI devices behind bridges,
|
|
* because all PCI devices behind the same bridge will end up
|
|
* with the same source-id on their transactions.
|
|
*
|
|
* Practically speaking, we can't change things around for these
|
|
* devices at run-time, because we can't be sure there'll be no
|
|
* DMA transactions in flight for any of their siblings.
|
|
*
|
|
* So PCI devices (unless they're on the root bus) as well as
|
|
* their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
|
|
* the 1:1 domain, just in _case_ one of their siblings turns out
|
|
* not to be able to map all of memory.
|
|
*/
|
|
if (!pci_is_pcie(pdev)) {
|
|
if (!pci_is_root_bus(pdev->bus))
|
|
return 0;
|
|
if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
|
|
return 0;
|
|
} else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
|
|
return 0;
|
|
|
|
/*
|
|
* At boot time, we don't yet know if devices will be 64-bit capable.
|
|
* Assume that they will -- if they turn out not to be, then we can
|
|
* take them out of the 1:1 domain later.
|
|
*/
|
|
if (!startup) {
|
|
/*
|
|
* If the device's dma_mask is less than the system's memory
|
|
* size then this is not a candidate for identity mapping.
|
|
*/
|
|
u64 dma_mask = pdev->dma_mask;
|
|
|
|
if (pdev->dev.coherent_dma_mask &&
|
|
pdev->dev.coherent_dma_mask < dma_mask)
|
|
dma_mask = pdev->dev.coherent_dma_mask;
|
|
|
|
return dma_mask >= dma_get_required_mask(&pdev->dev);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __init iommu_prepare_static_identity_mapping(int hw)
|
|
{
|
|
struct pci_dev *pdev = NULL;
|
|
int ret;
|
|
|
|
ret = si_domain_init(hw);
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
for_each_pci_dev(pdev) {
|
|
if (iommu_should_identity_map(pdev, 1)) {
|
|
ret = domain_add_dev_info(si_domain, pdev,
|
|
hw ? CONTEXT_TT_PASS_THROUGH :
|
|
CONTEXT_TT_MULTI_LEVEL);
|
|
if (ret) {
|
|
/* device not associated with an iommu */
|
|
if (ret == -ENODEV)
|
|
continue;
|
|
return ret;
|
|
}
|
|
pr_info("IOMMU: %s identity mapping for device %s\n",
|
|
hw ? "hardware" : "software", pci_name(pdev));
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init init_dmars(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct dmar_rmrr_unit *rmrr;
|
|
struct pci_dev *pdev;
|
|
struct intel_iommu *iommu;
|
|
int i, ret;
|
|
|
|
/*
|
|
* for each drhd
|
|
* allocate root
|
|
* initialize and program root entry to not present
|
|
* endfor
|
|
*/
|
|
for_each_drhd_unit(drhd) {
|
|
/*
|
|
* lock not needed as this is only incremented in the single
|
|
* threaded kernel __init code path all other access are read
|
|
* only
|
|
*/
|
|
if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
|
|
g_num_of_iommus++;
|
|
continue;
|
|
}
|
|
printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
|
|
IOMMU_UNITS_SUPPORTED);
|
|
}
|
|
|
|
g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
|
|
GFP_KERNEL);
|
|
if (!g_iommus) {
|
|
printk(KERN_ERR "Allocating global iommu array failed\n");
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
deferred_flush = kzalloc(g_num_of_iommus *
|
|
sizeof(struct deferred_flush_tables), GFP_KERNEL);
|
|
if (!deferred_flush) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored)
|
|
continue;
|
|
|
|
iommu = drhd->iommu;
|
|
g_iommus[iommu->seq_id] = iommu;
|
|
|
|
ret = iommu_init_domains(iommu);
|
|
if (ret)
|
|
goto error;
|
|
|
|
/*
|
|
* TBD:
|
|
* we could share the same root & context tables
|
|
* among all IOMMU's. Need to Split it later.
|
|
*/
|
|
ret = iommu_alloc_root_entry(iommu);
|
|
if (ret) {
|
|
printk(KERN_ERR "IOMMU: allocate root entry failed\n");
|
|
goto error;
|
|
}
|
|
if (!ecap_pass_through(iommu->ecap))
|
|
hw_pass_through = 0;
|
|
}
|
|
|
|
/*
|
|
* Start from the sane iommu hardware state.
|
|
*/
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored)
|
|
continue;
|
|
|
|
iommu = drhd->iommu;
|
|
|
|
/*
|
|
* If the queued invalidation is already initialized by us
|
|
* (for example, while enabling interrupt-remapping) then
|
|
* we got the things already rolling from a sane state.
|
|
*/
|
|
if (iommu->qi)
|
|
continue;
|
|
|
|
/*
|
|
* Clear any previous faults.
|
|
*/
|
|
dmar_fault(-1, iommu);
|
|
/*
|
|
* Disable queued invalidation if supported and already enabled
|
|
* before OS handover.
|
|
*/
|
|
dmar_disable_qi(iommu);
|
|
}
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored)
|
|
continue;
|
|
|
|
iommu = drhd->iommu;
|
|
|
|
if (dmar_enable_qi(iommu)) {
|
|
/*
|
|
* Queued Invalidate not enabled, use Register Based
|
|
* Invalidate
|
|
*/
|
|
iommu->flush.flush_context = __iommu_flush_context;
|
|
iommu->flush.flush_iotlb = __iommu_flush_iotlb;
|
|
printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
|
|
"invalidation\n",
|
|
iommu->seq_id,
|
|
(unsigned long long)drhd->reg_base_addr);
|
|
} else {
|
|
iommu->flush.flush_context = qi_flush_context;
|
|
iommu->flush.flush_iotlb = qi_flush_iotlb;
|
|
printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
|
|
"invalidation\n",
|
|
iommu->seq_id,
|
|
(unsigned long long)drhd->reg_base_addr);
|
|
}
|
|
}
|
|
|
|
if (iommu_pass_through)
|
|
iommu_identity_mapping |= IDENTMAP_ALL;
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
|
|
iommu_identity_mapping |= IDENTMAP_GFX;
|
|
#endif
|
|
|
|
check_tylersburg_isoch();
|
|
|
|
/*
|
|
* If pass through is not set or not enabled, setup context entries for
|
|
* identity mappings for rmrr, gfx, and isa and may fall back to static
|
|
* identity mapping if iommu_identity_mapping is set.
|
|
*/
|
|
if (iommu_identity_mapping) {
|
|
ret = iommu_prepare_static_identity_mapping(hw_pass_through);
|
|
if (ret) {
|
|
printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
|
|
goto error;
|
|
}
|
|
}
|
|
/*
|
|
* For each rmrr
|
|
* for each dev attached to rmrr
|
|
* do
|
|
* locate drhd for dev, alloc domain for dev
|
|
* allocate free domain
|
|
* allocate page table entries for rmrr
|
|
* if context not allocated for bus
|
|
* allocate and init context
|
|
* set present in root table for this bus
|
|
* init context with domain, translation etc
|
|
* endfor
|
|
* endfor
|
|
*/
|
|
printk(KERN_INFO "IOMMU: Setting RMRR:\n");
|
|
for_each_rmrr_units(rmrr) {
|
|
for (i = 0; i < rmrr->devices_cnt; i++) {
|
|
pdev = rmrr->devices[i];
|
|
/*
|
|
* some BIOS lists non-exist devices in DMAR
|
|
* table.
|
|
*/
|
|
if (!pdev)
|
|
continue;
|
|
ret = iommu_prepare_rmrr_dev(rmrr, pdev);
|
|
if (ret)
|
|
printk(KERN_ERR
|
|
"IOMMU: mapping reserved region failed\n");
|
|
}
|
|
}
|
|
|
|
iommu_prepare_isa();
|
|
|
|
/*
|
|
* for each drhd
|
|
* enable fault log
|
|
* global invalidate context cache
|
|
* global invalidate iotlb
|
|
* enable translation
|
|
*/
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored) {
|
|
/*
|
|
* we always have to disable PMRs or DMA may fail on
|
|
* this device
|
|
*/
|
|
if (force_on)
|
|
iommu_disable_protect_mem_regions(drhd->iommu);
|
|
continue;
|
|
}
|
|
iommu = drhd->iommu;
|
|
|
|
iommu_flush_write_buffer(iommu);
|
|
|
|
ret = dmar_set_interrupt(iommu);
|
|
if (ret)
|
|
goto error;
|
|
|
|
iommu_set_root_entry(iommu);
|
|
|
|
iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
|
|
|
|
ret = iommu_enable_translation(iommu);
|
|
if (ret)
|
|
goto error;
|
|
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored)
|
|
continue;
|
|
iommu = drhd->iommu;
|
|
free_iommu(iommu);
|
|
}
|
|
kfree(g_iommus);
|
|
return ret;
|
|
}
|
|
|
|
/* This takes a number of _MM_ pages, not VTD pages */
|
|
static struct iova *intel_alloc_iova(struct device *dev,
|
|
struct dmar_domain *domain,
|
|
unsigned long nrpages, uint64_t dma_mask)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct iova *iova = NULL;
|
|
|
|
/* Restrict dma_mask to the width that the iommu can handle */
|
|
dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
|
|
|
|
if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
|
|
/*
|
|
* First try to allocate an io virtual address in
|
|
* DMA_BIT_MASK(32) and if that fails then try allocating
|
|
* from higher range
|
|
*/
|
|
iova = alloc_iova(&domain->iovad, nrpages,
|
|
IOVA_PFN(DMA_BIT_MASK(32)), 1);
|
|
if (iova)
|
|
return iova;
|
|
}
|
|
iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
|
|
if (unlikely(!iova)) {
|
|
printk(KERN_ERR "Allocating %ld-page iova for %s failed",
|
|
nrpages, pci_name(pdev));
|
|
return NULL;
|
|
}
|
|
|
|
return iova;
|
|
}
|
|
|
|
static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
|
|
{
|
|
struct dmar_domain *domain;
|
|
int ret;
|
|
|
|
domain = get_domain_for_dev(pdev,
|
|
DEFAULT_DOMAIN_ADDRESS_WIDTH);
|
|
if (!domain) {
|
|
printk(KERN_ERR
|
|
"Allocating domain for %s failed", pci_name(pdev));
|
|
return NULL;
|
|
}
|
|
|
|
/* make sure context mapping is ok */
|
|
if (unlikely(!domain_context_mapped(pdev))) {
|
|
ret = domain_context_mapping(domain, pdev,
|
|
CONTEXT_TT_MULTI_LEVEL);
|
|
if (ret) {
|
|
printk(KERN_ERR
|
|
"Domain context map for %s failed",
|
|
pci_name(pdev));
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return domain;
|
|
}
|
|
|
|
static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
|
|
{
|
|
struct device_domain_info *info;
|
|
|
|
/* No lock here, assumes no domain exit in normal case */
|
|
info = dev->dev.archdata.iommu;
|
|
if (likely(info))
|
|
return info->domain;
|
|
|
|
return __get_valid_domain_for_dev(dev);
|
|
}
|
|
|
|
static int iommu_dummy(struct pci_dev *pdev)
|
|
{
|
|
return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
|
|
}
|
|
|
|
/* Check if the pdev needs to go through non-identity map and unmap process.*/
|
|
static int iommu_no_mapping(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev;
|
|
int found;
|
|
|
|
if (unlikely(dev->bus != &pci_bus_type))
|
|
return 1;
|
|
|
|
pdev = to_pci_dev(dev);
|
|
if (iommu_dummy(pdev))
|
|
return 1;
|
|
|
|
if (!iommu_identity_mapping)
|
|
return 0;
|
|
|
|
found = identity_mapping(pdev);
|
|
if (found) {
|
|
if (iommu_should_identity_map(pdev, 0))
|
|
return 1;
|
|
else {
|
|
/*
|
|
* 32 bit DMA is removed from si_domain and fall back
|
|
* to non-identity mapping.
|
|
*/
|
|
domain_remove_one_dev_info(si_domain, pdev);
|
|
printk(KERN_INFO "32bit %s uses non-identity mapping\n",
|
|
pci_name(pdev));
|
|
return 0;
|
|
}
|
|
} else {
|
|
/*
|
|
* In case of a detached 64 bit DMA device from vm, the device
|
|
* is put into si_domain for identity mapping.
|
|
*/
|
|
if (iommu_should_identity_map(pdev, 0)) {
|
|
int ret;
|
|
ret = domain_add_dev_info(si_domain, pdev,
|
|
hw_pass_through ?
|
|
CONTEXT_TT_PASS_THROUGH :
|
|
CONTEXT_TT_MULTI_LEVEL);
|
|
if (!ret) {
|
|
printk(KERN_INFO "64bit %s uses identity mapping\n",
|
|
pci_name(pdev));
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
|
|
size_t size, int dir, u64 dma_mask)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(hwdev);
|
|
struct dmar_domain *domain;
|
|
phys_addr_t start_paddr;
|
|
struct iova *iova;
|
|
int prot = 0;
|
|
int ret;
|
|
struct intel_iommu *iommu;
|
|
unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
|
|
if (iommu_no_mapping(hwdev))
|
|
return paddr;
|
|
|
|
domain = get_valid_domain_for_dev(pdev);
|
|
if (!domain)
|
|
return 0;
|
|
|
|
iommu = domain_get_iommu(domain);
|
|
size = aligned_nrpages(paddr, size);
|
|
|
|
iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
|
|
if (!iova)
|
|
goto error;
|
|
|
|
/*
|
|
* Check if DMAR supports zero-length reads on write only
|
|
* mappings..
|
|
*/
|
|
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
|
|
!cap_zlr(iommu->cap))
|
|
prot |= DMA_PTE_READ;
|
|
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
|
|
prot |= DMA_PTE_WRITE;
|
|
/*
|
|
* paddr - (paddr + size) might be partial page, we should map the whole
|
|
* page. Note: if two part of one page are separately mapped, we
|
|
* might have two guest_addr mapping to the same host paddr, but this
|
|
* is not a big problem
|
|
*/
|
|
ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
|
|
mm_to_dma_pfn(paddr_pfn), size, prot);
|
|
if (ret)
|
|
goto error;
|
|
|
|
/* it's a non-present to present mapping. Only flush if caching mode */
|
|
if (cap_caching_mode(iommu->cap))
|
|
iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
|
|
else
|
|
iommu_flush_write_buffer(iommu);
|
|
|
|
start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
|
|
start_paddr += paddr & ~PAGE_MASK;
|
|
return start_paddr;
|
|
|
|
error:
|
|
if (iova)
|
|
__free_iova(&domain->iovad, iova);
|
|
printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
|
|
pci_name(pdev), size, (unsigned long long)paddr, dir);
|
|
return 0;
|
|
}
|
|
|
|
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
return __intel_map_single(dev, page_to_phys(page) + offset, size,
|
|
dir, to_pci_dev(dev)->dma_mask);
|
|
}
|
|
|
|
static void flush_unmaps(void)
|
|
{
|
|
int i, j;
|
|
|
|
timer_on = 0;
|
|
|
|
/* just flush them all */
|
|
for (i = 0; i < g_num_of_iommus; i++) {
|
|
struct intel_iommu *iommu = g_iommus[i];
|
|
if (!iommu)
|
|
continue;
|
|
|
|
if (!deferred_flush[i].next)
|
|
continue;
|
|
|
|
/* In caching mode, global flushes turn emulation expensive */
|
|
if (!cap_caching_mode(iommu->cap))
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0,
|
|
DMA_TLB_GLOBAL_FLUSH);
|
|
for (j = 0; j < deferred_flush[i].next; j++) {
|
|
unsigned long mask;
|
|
struct iova *iova = deferred_flush[i].iova[j];
|
|
struct dmar_domain *domain = deferred_flush[i].domain[j];
|
|
|
|
/* On real hardware multiple invalidations are expensive */
|
|
if (cap_caching_mode(iommu->cap))
|
|
iommu_flush_iotlb_psi(iommu, domain->id,
|
|
iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
|
|
else {
|
|
mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
|
|
iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
|
|
(uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
|
|
}
|
|
__free_iova(&deferred_flush[i].domain[j]->iovad, iova);
|
|
}
|
|
deferred_flush[i].next = 0;
|
|
}
|
|
|
|
list_size = 0;
|
|
}
|
|
|
|
static void flush_unmaps_timeout(unsigned long data)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&async_umap_flush_lock, flags);
|
|
flush_unmaps();
|
|
spin_unlock_irqrestore(&async_umap_flush_lock, flags);
|
|
}
|
|
|
|
static void add_unmap(struct dmar_domain *dom, struct iova *iova)
|
|
{
|
|
unsigned long flags;
|
|
int next, iommu_id;
|
|
struct intel_iommu *iommu;
|
|
|
|
spin_lock_irqsave(&async_umap_flush_lock, flags);
|
|
if (list_size == HIGH_WATER_MARK)
|
|
flush_unmaps();
|
|
|
|
iommu = domain_get_iommu(dom);
|
|
iommu_id = iommu->seq_id;
|
|
|
|
next = deferred_flush[iommu_id].next;
|
|
deferred_flush[iommu_id].domain[next] = dom;
|
|
deferred_flush[iommu_id].iova[next] = iova;
|
|
deferred_flush[iommu_id].next++;
|
|
|
|
if (!timer_on) {
|
|
mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
|
|
timer_on = 1;
|
|
}
|
|
list_size++;
|
|
spin_unlock_irqrestore(&async_umap_flush_lock, flags);
|
|
}
|
|
|
|
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
|
|
size_t size, enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct dmar_domain *domain;
|
|
unsigned long start_pfn, last_pfn;
|
|
struct iova *iova;
|
|
struct intel_iommu *iommu;
|
|
|
|
if (iommu_no_mapping(dev))
|
|
return;
|
|
|
|
domain = find_domain(pdev);
|
|
BUG_ON(!domain);
|
|
|
|
iommu = domain_get_iommu(domain);
|
|
|
|
iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
|
|
if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
|
|
(unsigned long long)dev_addr))
|
|
return;
|
|
|
|
start_pfn = mm_to_dma_pfn(iova->pfn_lo);
|
|
last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
|
|
|
|
pr_debug("Device %s unmapping: pfn %lx-%lx\n",
|
|
pci_name(pdev), start_pfn, last_pfn);
|
|
|
|
/* clear the whole page */
|
|
dma_pte_clear_range(domain, start_pfn, last_pfn);
|
|
|
|
/* free page tables */
|
|
dma_pte_free_pagetable(domain, start_pfn, last_pfn);
|
|
|
|
if (intel_iommu_strict) {
|
|
iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
|
|
last_pfn - start_pfn + 1, 0);
|
|
/* free iova */
|
|
__free_iova(&domain->iovad, iova);
|
|
} else {
|
|
add_unmap(domain, iova);
|
|
/*
|
|
* queue up the release of the unmap to save the 1/6th of the
|
|
* cpu used up by the iotlb flush operation...
|
|
*/
|
|
}
|
|
}
|
|
|
|
static void *intel_alloc_coherent(struct device *hwdev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t flags,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
void *vaddr;
|
|
int order;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
order = get_order(size);
|
|
|
|
if (!iommu_no_mapping(hwdev))
|
|
flags &= ~(GFP_DMA | GFP_DMA32);
|
|
else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
|
|
if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
|
|
flags |= GFP_DMA;
|
|
else
|
|
flags |= GFP_DMA32;
|
|
}
|
|
|
|
vaddr = (void *)__get_free_pages(flags, order);
|
|
if (!vaddr)
|
|
return NULL;
|
|
memset(vaddr, 0, size);
|
|
|
|
*dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
|
|
DMA_BIDIRECTIONAL,
|
|
hwdev->coherent_dma_mask);
|
|
if (*dma_handle)
|
|
return vaddr;
|
|
free_pages((unsigned long)vaddr, order);
|
|
return NULL;
|
|
}
|
|
|
|
static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
|
|
dma_addr_t dma_handle, struct dma_attrs *attrs)
|
|
{
|
|
int order;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
order = get_order(size);
|
|
|
|
intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
|
|
free_pages((unsigned long)vaddr, order);
|
|
}
|
|
|
|
static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
|
|
int nelems, enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(hwdev);
|
|
struct dmar_domain *domain;
|
|
unsigned long start_pfn, last_pfn;
|
|
struct iova *iova;
|
|
struct intel_iommu *iommu;
|
|
|
|
if (iommu_no_mapping(hwdev))
|
|
return;
|
|
|
|
domain = find_domain(pdev);
|
|
BUG_ON(!domain);
|
|
|
|
iommu = domain_get_iommu(domain);
|
|
|
|
iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
|
|
if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
|
|
(unsigned long long)sglist[0].dma_address))
|
|
return;
|
|
|
|
start_pfn = mm_to_dma_pfn(iova->pfn_lo);
|
|
last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
|
|
|
|
/* clear the whole page */
|
|
dma_pte_clear_range(domain, start_pfn, last_pfn);
|
|
|
|
/* free page tables */
|
|
dma_pte_free_pagetable(domain, start_pfn, last_pfn);
|
|
|
|
if (intel_iommu_strict) {
|
|
iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
|
|
last_pfn - start_pfn + 1, 0);
|
|
/* free iova */
|
|
__free_iova(&domain->iovad, iova);
|
|
} else {
|
|
add_unmap(domain, iova);
|
|
/*
|
|
* queue up the release of the unmap to save the 1/6th of the
|
|
* cpu used up by the iotlb flush operation...
|
|
*/
|
|
}
|
|
}
|
|
|
|
static int intel_nontranslate_map_sg(struct device *hddev,
|
|
struct scatterlist *sglist, int nelems, int dir)
|
|
{
|
|
int i;
|
|
struct scatterlist *sg;
|
|
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
BUG_ON(!sg_page(sg));
|
|
sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
|
|
sg->dma_length = sg->length;
|
|
}
|
|
return nelems;
|
|
}
|
|
|
|
static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
|
|
enum dma_data_direction dir, struct dma_attrs *attrs)
|
|
{
|
|
int i;
|
|
struct pci_dev *pdev = to_pci_dev(hwdev);
|
|
struct dmar_domain *domain;
|
|
size_t size = 0;
|
|
int prot = 0;
|
|
struct iova *iova = NULL;
|
|
int ret;
|
|
struct scatterlist *sg;
|
|
unsigned long start_vpfn;
|
|
struct intel_iommu *iommu;
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
if (iommu_no_mapping(hwdev))
|
|
return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
|
|
|
|
domain = get_valid_domain_for_dev(pdev);
|
|
if (!domain)
|
|
return 0;
|
|
|
|
iommu = domain_get_iommu(domain);
|
|
|
|
for_each_sg(sglist, sg, nelems, i)
|
|
size += aligned_nrpages(sg->offset, sg->length);
|
|
|
|
iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
|
|
pdev->dma_mask);
|
|
if (!iova) {
|
|
sglist->dma_length = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if DMAR supports zero-length reads on write only
|
|
* mappings..
|
|
*/
|
|
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
|
|
!cap_zlr(iommu->cap))
|
|
prot |= DMA_PTE_READ;
|
|
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
|
|
prot |= DMA_PTE_WRITE;
|
|
|
|
start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
|
|
|
|
ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
|
|
if (unlikely(ret)) {
|
|
/* clear the page */
|
|
dma_pte_clear_range(domain, start_vpfn,
|
|
start_vpfn + size - 1);
|
|
/* free page tables */
|
|
dma_pte_free_pagetable(domain, start_vpfn,
|
|
start_vpfn + size - 1);
|
|
/* free iova */
|
|
__free_iova(&domain->iovad, iova);
|
|
return 0;
|
|
}
|
|
|
|
/* it's a non-present to present mapping. Only flush if caching mode */
|
|
if (cap_caching_mode(iommu->cap))
|
|
iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
|
|
else
|
|
iommu_flush_write_buffer(iommu);
|
|
|
|
return nelems;
|
|
}
|
|
|
|
static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
|
|
{
|
|
return !dma_addr;
|
|
}
|
|
|
|
struct dma_map_ops intel_dma_ops = {
|
|
.alloc = intel_alloc_coherent,
|
|
.free = intel_free_coherent,
|
|
.map_sg = intel_map_sg,
|
|
.unmap_sg = intel_unmap_sg,
|
|
.map_page = intel_map_page,
|
|
.unmap_page = intel_unmap_page,
|
|
.mapping_error = intel_mapping_error,
|
|
};
|
|
|
|
static inline int iommu_domain_cache_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
iommu_domain_cache = kmem_cache_create("iommu_domain",
|
|
sizeof(struct dmar_domain),
|
|
0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
|
|
NULL);
|
|
if (!iommu_domain_cache) {
|
|
printk(KERN_ERR "Couldn't create iommu_domain cache\n");
|
|
ret = -ENOMEM;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int iommu_devinfo_cache_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
|
|
sizeof(struct device_domain_info),
|
|
0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
NULL);
|
|
if (!iommu_devinfo_cache) {
|
|
printk(KERN_ERR "Couldn't create devinfo cache\n");
|
|
ret = -ENOMEM;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int iommu_iova_cache_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
iommu_iova_cache = kmem_cache_create("iommu_iova",
|
|
sizeof(struct iova),
|
|
0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
NULL);
|
|
if (!iommu_iova_cache) {
|
|
printk(KERN_ERR "Couldn't create iova cache\n");
|
|
ret = -ENOMEM;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __init iommu_init_mempool(void)
|
|
{
|
|
int ret;
|
|
ret = iommu_iova_cache_init();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = iommu_domain_cache_init();
|
|
if (ret)
|
|
goto domain_error;
|
|
|
|
ret = iommu_devinfo_cache_init();
|
|
if (!ret)
|
|
return ret;
|
|
|
|
kmem_cache_destroy(iommu_domain_cache);
|
|
domain_error:
|
|
kmem_cache_destroy(iommu_iova_cache);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void __init iommu_exit_mempool(void)
|
|
{
|
|
kmem_cache_destroy(iommu_devinfo_cache);
|
|
kmem_cache_destroy(iommu_domain_cache);
|
|
kmem_cache_destroy(iommu_iova_cache);
|
|
|
|
}
|
|
|
|
static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
u32 vtbar;
|
|
int rc;
|
|
|
|
/* We know that this device on this chipset has its own IOMMU.
|
|
* If we find it under a different IOMMU, then the BIOS is lying
|
|
* to us. Hope that the IOMMU for this device is actually
|
|
* disabled, and it needs no translation...
|
|
*/
|
|
rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
|
|
if (rc) {
|
|
/* "can't" happen */
|
|
dev_info(&pdev->dev, "failed to run vt-d quirk\n");
|
|
return;
|
|
}
|
|
vtbar &= 0xffff0000;
|
|
|
|
/* we know that the this iommu should be at offset 0xa000 from vtbar */
|
|
drhd = dmar_find_matched_drhd_unit(pdev);
|
|
if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
|
|
TAINT_FIRMWARE_WORKAROUND,
|
|
"BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
|
|
pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
|
|
}
|
|
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
|
|
|
|
static void __init init_no_remapping_devices(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
if (!drhd->include_all) {
|
|
int i;
|
|
for (i = 0; i < drhd->devices_cnt; i++)
|
|
if (drhd->devices[i] != NULL)
|
|
break;
|
|
/* ignore DMAR unit if no pci devices exist */
|
|
if (i == drhd->devices_cnt)
|
|
drhd->ignored = 1;
|
|
}
|
|
}
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
int i;
|
|
if (drhd->ignored || drhd->include_all)
|
|
continue;
|
|
|
|
for (i = 0; i < drhd->devices_cnt; i++)
|
|
if (drhd->devices[i] &&
|
|
!IS_GFX_DEVICE(drhd->devices[i]))
|
|
break;
|
|
|
|
if (i < drhd->devices_cnt)
|
|
continue;
|
|
|
|
/* This IOMMU has *only* gfx devices. Either bypass it or
|
|
set the gfx_mapped flag, as appropriate */
|
|
if (dmar_map_gfx) {
|
|
intel_iommu_gfx_mapped = 1;
|
|
} else {
|
|
drhd->ignored = 1;
|
|
for (i = 0; i < drhd->devices_cnt; i++) {
|
|
if (!drhd->devices[i])
|
|
continue;
|
|
drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SUSPEND
|
|
static int init_iommu_hw(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu = NULL;
|
|
|
|
for_each_active_iommu(iommu, drhd)
|
|
if (iommu->qi)
|
|
dmar_reenable_qi(iommu);
|
|
|
|
for_each_iommu(iommu, drhd) {
|
|
if (drhd->ignored) {
|
|
/*
|
|
* we always have to disable PMRs or DMA may fail on
|
|
* this device
|
|
*/
|
|
if (force_on)
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
continue;
|
|
}
|
|
|
|
iommu_flush_write_buffer(iommu);
|
|
|
|
iommu_set_root_entry(iommu);
|
|
|
|
iommu->flush.flush_context(iommu, 0, 0, 0,
|
|
DMA_CCMD_GLOBAL_INVL);
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0,
|
|
DMA_TLB_GLOBAL_FLUSH);
|
|
if (iommu_enable_translation(iommu))
|
|
return 1;
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_flush_all(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
iommu->flush.flush_context(iommu, 0, 0, 0,
|
|
DMA_CCMD_GLOBAL_INVL);
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0,
|
|
DMA_TLB_GLOBAL_FLUSH);
|
|
}
|
|
}
|
|
|
|
static int iommu_suspend(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu = NULL;
|
|
unsigned long flag;
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
|
|
GFP_ATOMIC);
|
|
if (!iommu->iommu_state)
|
|
goto nomem;
|
|
}
|
|
|
|
iommu_flush_all();
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
iommu_disable_translation(iommu);
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
|
|
iommu->iommu_state[SR_DMAR_FECTL_REG] =
|
|
readl(iommu->reg + DMAR_FECTL_REG);
|
|
iommu->iommu_state[SR_DMAR_FEDATA_REG] =
|
|
readl(iommu->reg + DMAR_FEDATA_REG);
|
|
iommu->iommu_state[SR_DMAR_FEADDR_REG] =
|
|
readl(iommu->reg + DMAR_FEADDR_REG);
|
|
iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
|
|
readl(iommu->reg + DMAR_FEUADDR_REG);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
return 0;
|
|
|
|
nomem:
|
|
for_each_active_iommu(iommu, drhd)
|
|
kfree(iommu->iommu_state);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void iommu_resume(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu = NULL;
|
|
unsigned long flag;
|
|
|
|
if (init_iommu_hw()) {
|
|
if (force_on)
|
|
panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
|
|
else
|
|
WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
|
|
return;
|
|
}
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
|
|
writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
|
|
iommu->reg + DMAR_FECTL_REG);
|
|
writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
|
|
iommu->reg + DMAR_FEDATA_REG);
|
|
writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
|
|
iommu->reg + DMAR_FEADDR_REG);
|
|
writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
|
|
iommu->reg + DMAR_FEUADDR_REG);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
for_each_active_iommu(iommu, drhd)
|
|
kfree(iommu->iommu_state);
|
|
}
|
|
|
|
static struct syscore_ops iommu_syscore_ops = {
|
|
.resume = iommu_resume,
|
|
.suspend = iommu_suspend,
|
|
};
|
|
|
|
static void __init init_iommu_pm_ops(void)
|
|
{
|
|
register_syscore_ops(&iommu_syscore_ops);
|
|
}
|
|
|
|
#else
|
|
static inline void init_iommu_pm_ops(void) {}
|
|
#endif /* CONFIG_PM */
|
|
|
|
LIST_HEAD(dmar_rmrr_units);
|
|
|
|
static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
|
|
{
|
|
list_add(&rmrr->list, &dmar_rmrr_units);
|
|
}
|
|
|
|
|
|
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
|
|
{
|
|
struct acpi_dmar_reserved_memory *rmrr;
|
|
struct dmar_rmrr_unit *rmrru;
|
|
|
|
rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
|
|
if (!rmrru)
|
|
return -ENOMEM;
|
|
|
|
rmrru->hdr = header;
|
|
rmrr = (struct acpi_dmar_reserved_memory *)header;
|
|
rmrru->base_address = rmrr->base_address;
|
|
rmrru->end_address = rmrr->end_address;
|
|
|
|
dmar_register_rmrr_unit(rmrru);
|
|
return 0;
|
|
}
|
|
|
|
static int __init
|
|
rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
|
|
{
|
|
struct acpi_dmar_reserved_memory *rmrr;
|
|
int ret;
|
|
|
|
rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
|
|
ret = dmar_parse_dev_scope((void *)(rmrr + 1),
|
|
((void *)rmrr) + rmrr->header.length,
|
|
&rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
|
|
|
|
if (ret || (rmrru->devices_cnt == 0)) {
|
|
list_del(&rmrru->list);
|
|
kfree(rmrru);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static LIST_HEAD(dmar_atsr_units);
|
|
|
|
int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
|
|
{
|
|
struct acpi_dmar_atsr *atsr;
|
|
struct dmar_atsr_unit *atsru;
|
|
|
|
atsr = container_of(hdr, struct acpi_dmar_atsr, header);
|
|
atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
|
|
if (!atsru)
|
|
return -ENOMEM;
|
|
|
|
atsru->hdr = hdr;
|
|
atsru->include_all = atsr->flags & 0x1;
|
|
|
|
list_add(&atsru->list, &dmar_atsr_units);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
|
|
{
|
|
int rc;
|
|
struct acpi_dmar_atsr *atsr;
|
|
|
|
if (atsru->include_all)
|
|
return 0;
|
|
|
|
atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
|
|
rc = dmar_parse_dev_scope((void *)(atsr + 1),
|
|
(void *)atsr + atsr->header.length,
|
|
&atsru->devices_cnt, &atsru->devices,
|
|
atsr->segment);
|
|
if (rc || !atsru->devices_cnt) {
|
|
list_del(&atsru->list);
|
|
kfree(atsru);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int dmar_find_matched_atsr_unit(struct pci_dev *dev)
|
|
{
|
|
int i;
|
|
struct pci_bus *bus;
|
|
struct acpi_dmar_atsr *atsr;
|
|
struct dmar_atsr_unit *atsru;
|
|
|
|
dev = pci_physfn(dev);
|
|
|
|
list_for_each_entry(atsru, &dmar_atsr_units, list) {
|
|
atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
|
|
if (atsr->segment == pci_domain_nr(dev->bus))
|
|
goto found;
|
|
}
|
|
|
|
return 0;
|
|
|
|
found:
|
|
for (bus = dev->bus; bus; bus = bus->parent) {
|
|
struct pci_dev *bridge = bus->self;
|
|
|
|
if (!bridge || !pci_is_pcie(bridge) ||
|
|
bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
|
|
return 0;
|
|
|
|
if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
|
|
for (i = 0; i < atsru->devices_cnt; i++)
|
|
if (atsru->devices[i] == bridge)
|
|
return 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (atsru->include_all)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init dmar_parse_rmrr_atsr_dev(void)
|
|
{
|
|
struct dmar_rmrr_unit *rmrr, *rmrr_n;
|
|
struct dmar_atsr_unit *atsr, *atsr_n;
|
|
int ret = 0;
|
|
|
|
list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
|
|
ret = rmrr_parse_dev(rmrr);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
|
|
ret = atsr_parse_dev(atsr);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Here we only respond to action of unbound device from driver.
|
|
*
|
|
* Added device is not attached to its DMAR domain here yet. That will happen
|
|
* when mapping the device to iova.
|
|
*/
|
|
static int device_notifier(struct notifier_block *nb,
|
|
unsigned long action, void *data)
|
|
{
|
|
struct device *dev = data;
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct dmar_domain *domain;
|
|
|
|
if (iommu_no_mapping(dev))
|
|
return 0;
|
|
|
|
domain = find_domain(pdev);
|
|
if (!domain)
|
|
return 0;
|
|
|
|
if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
|
|
domain_remove_one_dev_info(domain, pdev);
|
|
|
|
if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
|
|
!(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
|
|
list_empty(&domain->devices))
|
|
domain_exit(domain);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block device_nb = {
|
|
.notifier_call = device_notifier,
|
|
};
|
|
|
|
int __init intel_iommu_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* VT-d is required for a TXT/tboot launch, so enforce that */
|
|
force_on = tboot_force_iommu();
|
|
|
|
if (dmar_table_init()) {
|
|
if (force_on)
|
|
panic("tboot: Failed to initialize DMAR table\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (dmar_dev_scope_init() < 0) {
|
|
if (force_on)
|
|
panic("tboot: Failed to initialize DMAR device scope\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (no_iommu || dmar_disabled)
|
|
return -ENODEV;
|
|
|
|
if (iommu_init_mempool()) {
|
|
if (force_on)
|
|
panic("tboot: Failed to initialize iommu memory\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (list_empty(&dmar_rmrr_units))
|
|
printk(KERN_INFO "DMAR: No RMRR found\n");
|
|
|
|
if (list_empty(&dmar_atsr_units))
|
|
printk(KERN_INFO "DMAR: No ATSR found\n");
|
|
|
|
if (dmar_init_reserved_ranges()) {
|
|
if (force_on)
|
|
panic("tboot: Failed to reserve iommu ranges\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
init_no_remapping_devices();
|
|
|
|
ret = init_dmars();
|
|
if (ret) {
|
|
if (force_on)
|
|
panic("tboot: Failed to initialize DMARs\n");
|
|
printk(KERN_ERR "IOMMU: dmar init failed\n");
|
|
put_iova_domain(&reserved_iova_list);
|
|
iommu_exit_mempool();
|
|
return ret;
|
|
}
|
|
printk(KERN_INFO
|
|
"PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
|
|
|
|
init_timer(&unmap_timer);
|
|
#ifdef CONFIG_SWIOTLB
|
|
swiotlb = 0;
|
|
#endif
|
|
dma_ops = &intel_dma_ops;
|
|
|
|
init_iommu_pm_ops();
|
|
|
|
bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
|
|
|
|
bus_register_notifier(&pci_bus_type, &device_nb);
|
|
|
|
intel_iommu_enabled = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
|
|
struct pci_dev *pdev)
|
|
{
|
|
struct pci_dev *tmp, *parent;
|
|
|
|
if (!iommu || !pdev)
|
|
return;
|
|
|
|
/* dependent device detach */
|
|
tmp = pci_find_upstream_pcie_bridge(pdev);
|
|
/* Secondary interface's bus number and devfn 0 */
|
|
if (tmp) {
|
|
parent = pdev->bus->self;
|
|
while (parent != tmp) {
|
|
iommu_detach_dev(iommu, parent->bus->number,
|
|
parent->devfn);
|
|
parent = parent->bus->self;
|
|
}
|
|
if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
|
|
iommu_detach_dev(iommu,
|
|
tmp->subordinate->number, 0);
|
|
else /* this is a legacy PCI bridge */
|
|
iommu_detach_dev(iommu, tmp->bus->number,
|
|
tmp->devfn);
|
|
}
|
|
}
|
|
|
|
static void domain_remove_one_dev_info(struct dmar_domain *domain,
|
|
struct pci_dev *pdev)
|
|
{
|
|
struct device_domain_info *info;
|
|
struct intel_iommu *iommu;
|
|
unsigned long flags;
|
|
int found = 0;
|
|
struct list_head *entry, *tmp;
|
|
|
|
iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
|
|
pdev->devfn);
|
|
if (!iommu)
|
|
return;
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
list_for_each_safe(entry, tmp, &domain->devices) {
|
|
info = list_entry(entry, struct device_domain_info, link);
|
|
if (info->segment == pci_domain_nr(pdev->bus) &&
|
|
info->bus == pdev->bus->number &&
|
|
info->devfn == pdev->devfn) {
|
|
unlink_domain_info(info);
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
|
|
iommu_disable_dev_iotlb(info);
|
|
iommu_detach_dev(iommu, info->bus, info->devfn);
|
|
iommu_detach_dependent_devices(iommu, pdev);
|
|
free_devinfo_mem(info);
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
|
|
if (found)
|
|
break;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
/* if there is no other devices under the same iommu
|
|
* owned by this domain, clear this iommu in iommu_bmp
|
|
* update iommu count and coherency
|
|
*/
|
|
if (iommu == device_to_iommu(info->segment, info->bus,
|
|
info->devfn))
|
|
found = 1;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
|
|
if (found == 0) {
|
|
unsigned long tmp_flags;
|
|
spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
|
|
clear_bit(iommu->seq_id, domain->iommu_bmp);
|
|
domain->iommu_count--;
|
|
domain_update_iommu_cap(domain);
|
|
spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
|
|
|
|
if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
|
|
!(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
|
|
spin_lock_irqsave(&iommu->lock, tmp_flags);
|
|
clear_bit(domain->id, iommu->domain_ids);
|
|
iommu->domains[domain->id] = NULL;
|
|
spin_unlock_irqrestore(&iommu->lock, tmp_flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
|
|
{
|
|
struct device_domain_info *info;
|
|
struct intel_iommu *iommu;
|
|
unsigned long flags1, flags2;
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags1);
|
|
while (!list_empty(&domain->devices)) {
|
|
info = list_entry(domain->devices.next,
|
|
struct device_domain_info, link);
|
|
unlink_domain_info(info);
|
|
spin_unlock_irqrestore(&device_domain_lock, flags1);
|
|
|
|
iommu_disable_dev_iotlb(info);
|
|
iommu = device_to_iommu(info->segment, info->bus, info->devfn);
|
|
iommu_detach_dev(iommu, info->bus, info->devfn);
|
|
iommu_detach_dependent_devices(iommu, info->dev);
|
|
|
|
/* clear this iommu in iommu_bmp, update iommu count
|
|
* and capabilities
|
|
*/
|
|
spin_lock_irqsave(&domain->iommu_lock, flags2);
|
|
if (test_and_clear_bit(iommu->seq_id,
|
|
domain->iommu_bmp)) {
|
|
domain->iommu_count--;
|
|
domain_update_iommu_cap(domain);
|
|
}
|
|
spin_unlock_irqrestore(&domain->iommu_lock, flags2);
|
|
|
|
free_devinfo_mem(info);
|
|
spin_lock_irqsave(&device_domain_lock, flags1);
|
|
}
|
|
spin_unlock_irqrestore(&device_domain_lock, flags1);
|
|
}
|
|
|
|
/* domain id for virtual machine, it won't be set in context */
|
|
static unsigned long vm_domid;
|
|
|
|
static struct dmar_domain *iommu_alloc_vm_domain(void)
|
|
{
|
|
struct dmar_domain *domain;
|
|
|
|
domain = alloc_domain_mem();
|
|
if (!domain)
|
|
return NULL;
|
|
|
|
domain->id = vm_domid++;
|
|
domain->nid = -1;
|
|
memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
|
|
domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
|
|
|
|
return domain;
|
|
}
|
|
|
|
static int md_domain_init(struct dmar_domain *domain, int guest_width)
|
|
{
|
|
int adjust_width;
|
|
|
|
init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
|
|
spin_lock_init(&domain->iommu_lock);
|
|
|
|
domain_reserve_special_ranges(domain);
|
|
|
|
/* calculate AGAW */
|
|
domain->gaw = guest_width;
|
|
adjust_width = guestwidth_to_adjustwidth(guest_width);
|
|
domain->agaw = width_to_agaw(adjust_width);
|
|
|
|
INIT_LIST_HEAD(&domain->devices);
|
|
|
|
domain->iommu_count = 0;
|
|
domain->iommu_coherency = 0;
|
|
domain->iommu_snooping = 0;
|
|
domain->iommu_superpage = 0;
|
|
domain->max_addr = 0;
|
|
domain->nid = -1;
|
|
|
|
/* always allocate the top pgd */
|
|
domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
|
|
if (!domain->pgd)
|
|
return -ENOMEM;
|
|
domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_free_vm_domain(struct dmar_domain *domain)
|
|
{
|
|
unsigned long flags;
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
unsigned long i;
|
|
unsigned long ndomains;
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored)
|
|
continue;
|
|
iommu = drhd->iommu;
|
|
|
|
ndomains = cap_ndoms(iommu->cap);
|
|
for_each_set_bit(i, iommu->domain_ids, ndomains) {
|
|
if (iommu->domains[i] == domain) {
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
clear_bit(i, iommu->domain_ids);
|
|
iommu->domains[i] = NULL;
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void vm_domain_exit(struct dmar_domain *domain)
|
|
{
|
|
/* Domain 0 is reserved, so dont process it */
|
|
if (!domain)
|
|
return;
|
|
|
|
vm_domain_remove_all_dev_info(domain);
|
|
/* destroy iovas */
|
|
put_iova_domain(&domain->iovad);
|
|
|
|
/* clear ptes */
|
|
dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
|
|
|
|
/* free page tables */
|
|
dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
|
|
|
|
iommu_free_vm_domain(domain);
|
|
free_domain_mem(domain);
|
|
}
|
|
|
|
static int intel_iommu_domain_init(struct iommu_domain *domain)
|
|
{
|
|
struct dmar_domain *dmar_domain;
|
|
|
|
dmar_domain = iommu_alloc_vm_domain();
|
|
if (!dmar_domain) {
|
|
printk(KERN_ERR
|
|
"intel_iommu_domain_init: dmar_domain == NULL\n");
|
|
return -ENOMEM;
|
|
}
|
|
if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
|
|
printk(KERN_ERR
|
|
"intel_iommu_domain_init() failed\n");
|
|
vm_domain_exit(dmar_domain);
|
|
return -ENOMEM;
|
|
}
|
|
domain_update_iommu_cap(dmar_domain);
|
|
domain->priv = dmar_domain;
|
|
|
|
domain->geometry.aperture_start = 0;
|
|
domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
|
|
domain->geometry.force_aperture = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_iommu_domain_destroy(struct iommu_domain *domain)
|
|
{
|
|
struct dmar_domain *dmar_domain = domain->priv;
|
|
|
|
domain->priv = NULL;
|
|
vm_domain_exit(dmar_domain);
|
|
}
|
|
|
|
static int intel_iommu_attach_device(struct iommu_domain *domain,
|
|
struct device *dev)
|
|
{
|
|
struct dmar_domain *dmar_domain = domain->priv;
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct intel_iommu *iommu;
|
|
int addr_width;
|
|
|
|
/* normally pdev is not mapped */
|
|
if (unlikely(domain_context_mapped(pdev))) {
|
|
struct dmar_domain *old_domain;
|
|
|
|
old_domain = find_domain(pdev);
|
|
if (old_domain) {
|
|
if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
|
|
dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
|
|
domain_remove_one_dev_info(old_domain, pdev);
|
|
else
|
|
domain_remove_dev_info(old_domain);
|
|
}
|
|
}
|
|
|
|
iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
|
|
pdev->devfn);
|
|
if (!iommu)
|
|
return -ENODEV;
|
|
|
|
/* check if this iommu agaw is sufficient for max mapped address */
|
|
addr_width = agaw_to_width(iommu->agaw);
|
|
if (addr_width > cap_mgaw(iommu->cap))
|
|
addr_width = cap_mgaw(iommu->cap);
|
|
|
|
if (dmar_domain->max_addr > (1LL << addr_width)) {
|
|
printk(KERN_ERR "%s: iommu width (%d) is not "
|
|
"sufficient for the mapped address (%llx)\n",
|
|
__func__, addr_width, dmar_domain->max_addr);
|
|
return -EFAULT;
|
|
}
|
|
dmar_domain->gaw = addr_width;
|
|
|
|
/*
|
|
* Knock out extra levels of page tables if necessary
|
|
*/
|
|
while (iommu->agaw < dmar_domain->agaw) {
|
|
struct dma_pte *pte;
|
|
|
|
pte = dmar_domain->pgd;
|
|
if (dma_pte_present(pte)) {
|
|
dmar_domain->pgd = (struct dma_pte *)
|
|
phys_to_virt(dma_pte_addr(pte));
|
|
free_pgtable_page(pte);
|
|
}
|
|
dmar_domain->agaw--;
|
|
}
|
|
|
|
return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
|
|
}
|
|
|
|
static void intel_iommu_detach_device(struct iommu_domain *domain,
|
|
struct device *dev)
|
|
{
|
|
struct dmar_domain *dmar_domain = domain->priv;
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
|
|
domain_remove_one_dev_info(dmar_domain, pdev);
|
|
}
|
|
|
|
static int intel_iommu_map(struct iommu_domain *domain,
|
|
unsigned long iova, phys_addr_t hpa,
|
|
size_t size, int iommu_prot)
|
|
{
|
|
struct dmar_domain *dmar_domain = domain->priv;
|
|
u64 max_addr;
|
|
int prot = 0;
|
|
int ret;
|
|
|
|
if (iommu_prot & IOMMU_READ)
|
|
prot |= DMA_PTE_READ;
|
|
if (iommu_prot & IOMMU_WRITE)
|
|
prot |= DMA_PTE_WRITE;
|
|
if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
|
|
prot |= DMA_PTE_SNP;
|
|
|
|
max_addr = iova + size;
|
|
if (dmar_domain->max_addr < max_addr) {
|
|
u64 end;
|
|
|
|
/* check if minimum agaw is sufficient for mapped address */
|
|
end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
|
|
if (end < max_addr) {
|
|
printk(KERN_ERR "%s: iommu width (%d) is not "
|
|
"sufficient for the mapped address (%llx)\n",
|
|
__func__, dmar_domain->gaw, max_addr);
|
|
return -EFAULT;
|
|
}
|
|
dmar_domain->max_addr = max_addr;
|
|
}
|
|
/* Round up size to next multiple of PAGE_SIZE, if it and
|
|
the low bits of hpa would take us onto the next page */
|
|
size = aligned_nrpages(hpa, size);
|
|
ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
|
|
hpa >> VTD_PAGE_SHIFT, size, prot);
|
|
return ret;
|
|
}
|
|
|
|
static size_t intel_iommu_unmap(struct iommu_domain *domain,
|
|
unsigned long iova, size_t size)
|
|
{
|
|
struct dmar_domain *dmar_domain = domain->priv;
|
|
int order;
|
|
|
|
order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
|
|
(iova + size - 1) >> VTD_PAGE_SHIFT);
|
|
|
|
if (dmar_domain->max_addr == iova + size)
|
|
dmar_domain->max_addr = iova;
|
|
|
|
return PAGE_SIZE << order;
|
|
}
|
|
|
|
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
|
|
unsigned long iova)
|
|
{
|
|
struct dmar_domain *dmar_domain = domain->priv;
|
|
struct dma_pte *pte;
|
|
u64 phys = 0;
|
|
|
|
pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
|
|
if (pte)
|
|
phys = dma_pte_addr(pte);
|
|
|
|
return phys;
|
|
}
|
|
|
|
static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
|
|
unsigned long cap)
|
|
{
|
|
struct dmar_domain *dmar_domain = domain->priv;
|
|
|
|
if (cap == IOMMU_CAP_CACHE_COHERENCY)
|
|
return dmar_domain->iommu_snooping;
|
|
if (cap == IOMMU_CAP_INTR_REMAP)
|
|
return irq_remapping_enabled;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
|
|
{
|
|
pci_dev_put(*from);
|
|
*from = to;
|
|
}
|
|
|
|
#define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
|
|
|
|
static int intel_iommu_add_device(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct pci_dev *bridge, *dma_pdev;
|
|
struct iommu_group *group;
|
|
int ret;
|
|
|
|
if (!device_to_iommu(pci_domain_nr(pdev->bus),
|
|
pdev->bus->number, pdev->devfn))
|
|
return -ENODEV;
|
|
|
|
bridge = pci_find_upstream_pcie_bridge(pdev);
|
|
if (bridge) {
|
|
if (pci_is_pcie(bridge))
|
|
dma_pdev = pci_get_domain_bus_and_slot(
|
|
pci_domain_nr(pdev->bus),
|
|
bridge->subordinate->number, 0);
|
|
else
|
|
dma_pdev = pci_dev_get(bridge);
|
|
} else
|
|
dma_pdev = pci_dev_get(pdev);
|
|
|
|
/* Account for quirked devices */
|
|
swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
|
|
|
|
/*
|
|
* If it's a multifunction device that does not support our
|
|
* required ACS flags, add to the same group as function 0.
|
|
*/
|
|
if (dma_pdev->multifunction &&
|
|
!pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
|
|
swap_pci_ref(&dma_pdev,
|
|
pci_get_slot(dma_pdev->bus,
|
|
PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
|
|
0)));
|
|
|
|
/*
|
|
* Devices on the root bus go through the iommu. If that's not us,
|
|
* find the next upstream device and test ACS up to the root bus.
|
|
* Finding the next device may require skipping virtual buses.
|
|
*/
|
|
while (!pci_is_root_bus(dma_pdev->bus)) {
|
|
struct pci_bus *bus = dma_pdev->bus;
|
|
|
|
while (!bus->self) {
|
|
if (!pci_is_root_bus(bus))
|
|
bus = bus->parent;
|
|
else
|
|
goto root_bus;
|
|
}
|
|
|
|
if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
|
|
break;
|
|
|
|
swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
|
|
}
|
|
|
|
root_bus:
|
|
group = iommu_group_get(&dma_pdev->dev);
|
|
pci_dev_put(dma_pdev);
|
|
if (!group) {
|
|
group = iommu_group_alloc();
|
|
if (IS_ERR(group))
|
|
return PTR_ERR(group);
|
|
}
|
|
|
|
ret = iommu_group_add_device(group, dev);
|
|
|
|
iommu_group_put(group);
|
|
return ret;
|
|
}
|
|
|
|
static void intel_iommu_remove_device(struct device *dev)
|
|
{
|
|
iommu_group_remove_device(dev);
|
|
}
|
|
|
|
static struct iommu_ops intel_iommu_ops = {
|
|
.domain_init = intel_iommu_domain_init,
|
|
.domain_destroy = intel_iommu_domain_destroy,
|
|
.attach_dev = intel_iommu_attach_device,
|
|
.detach_dev = intel_iommu_detach_device,
|
|
.map = intel_iommu_map,
|
|
.unmap = intel_iommu_unmap,
|
|
.iova_to_phys = intel_iommu_iova_to_phys,
|
|
.domain_has_cap = intel_iommu_domain_has_cap,
|
|
.add_device = intel_iommu_add_device,
|
|
.remove_device = intel_iommu_remove_device,
|
|
.pgsize_bitmap = INTEL_IOMMU_PGSIZES,
|
|
};
|
|
|
|
static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
|
|
{
|
|
/*
|
|
* Mobile 4 Series Chipset neglects to set RWBF capability,
|
|
* but needs it:
|
|
*/
|
|
printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
|
|
rwbf_quirk = 1;
|
|
|
|
/* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
|
|
if (dev->revision == 0x07) {
|
|
printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
|
|
dmar_map_gfx = 0;
|
|
}
|
|
}
|
|
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
|
|
|
|
#define GGC 0x52
|
|
#define GGC_MEMORY_SIZE_MASK (0xf << 8)
|
|
#define GGC_MEMORY_SIZE_NONE (0x0 << 8)
|
|
#define GGC_MEMORY_SIZE_1M (0x1 << 8)
|
|
#define GGC_MEMORY_SIZE_2M (0x3 << 8)
|
|
#define GGC_MEMORY_VT_ENABLED (0x8 << 8)
|
|
#define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
|
|
#define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
|
|
#define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
|
|
|
|
static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
|
|
{
|
|
unsigned short ggc;
|
|
|
|
if (pci_read_config_word(dev, GGC, &ggc))
|
|
return;
|
|
|
|
if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
|
|
printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
|
|
dmar_map_gfx = 0;
|
|
} else if (dmar_map_gfx) {
|
|
/* we have to ensure the gfx device is idle before we flush */
|
|
printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
|
|
intel_iommu_strict = 1;
|
|
}
|
|
}
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
|
|
|
|
/* On Tylersburg chipsets, some BIOSes have been known to enable the
|
|
ISOCH DMAR unit for the Azalia sound device, but not give it any
|
|
TLB entries, which causes it to deadlock. Check for that. We do
|
|
this in a function called from init_dmars(), instead of in a PCI
|
|
quirk, because we don't want to print the obnoxious "BIOS broken"
|
|
message if VT-d is actually disabled.
|
|
*/
|
|
static void __init check_tylersburg_isoch(void)
|
|
{
|
|
struct pci_dev *pdev;
|
|
uint32_t vtisochctrl;
|
|
|
|
/* If there's no Azalia in the system anyway, forget it. */
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
|
|
if (!pdev)
|
|
return;
|
|
pci_dev_put(pdev);
|
|
|
|
/* System Management Registers. Might be hidden, in which case
|
|
we can't do the sanity check. But that's OK, because the
|
|
known-broken BIOSes _don't_ actually hide it, so far. */
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
|
|
if (!pdev)
|
|
return;
|
|
|
|
if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
|
|
pci_dev_put(pdev);
|
|
return;
|
|
}
|
|
|
|
pci_dev_put(pdev);
|
|
|
|
/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
|
|
if (vtisochctrl & 1)
|
|
return;
|
|
|
|
/* Drop all bits other than the number of TLB entries */
|
|
vtisochctrl &= 0x1c;
|
|
|
|
/* If we have the recommended number of TLB entries (16), fine. */
|
|
if (vtisochctrl == 0x10)
|
|
return;
|
|
|
|
/* Zero TLB entries? You get to ride the short bus to school. */
|
|
if (!vtisochctrl) {
|
|
WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
|
|
"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
|
|
dmi_get_system_info(DMI_BIOS_VENDOR),
|
|
dmi_get_system_info(DMI_BIOS_VERSION),
|
|
dmi_get_system_info(DMI_PRODUCT_VERSION));
|
|
iommu_identity_mapping |= IDENTMAP_AZALIA;
|
|
return;
|
|
}
|
|
|
|
printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
|
|
vtisochctrl);
|
|
}
|