mirror of
https://github.com/torvalds/linux.git
synced 2024-11-05 03:21:32 +00:00
b7bc15b98e
Separates registration of the phy and the lookup. The method is copied from clkdev.c, Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com> Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com>
153 lines
6.5 KiB
Plaintext
153 lines
6.5 KiB
Plaintext
PHY SUBSYSTEM
|
|
Kishon Vijay Abraham I <kishon@ti.com>
|
|
|
|
This document explains the Generic PHY Framework along with the APIs provided,
|
|
and how-to-use.
|
|
|
|
1. Introduction
|
|
|
|
*PHY* is the abbreviation for physical layer. It is used to connect a device
|
|
to the physical medium e.g., the USB controller has a PHY to provide functions
|
|
such as serialization, de-serialization, encoding, decoding and is responsible
|
|
for obtaining the required data transmission rate. Note that some USB
|
|
controllers have PHY functionality embedded into it and others use an external
|
|
PHY. Other peripherals that use PHY include Wireless LAN, Ethernet,
|
|
SATA etc.
|
|
|
|
The intention of creating this framework is to bring the PHY drivers spread
|
|
all over the Linux kernel to drivers/phy to increase code re-use and for
|
|
better code maintainability.
|
|
|
|
This framework will be of use only to devices that use external PHY (PHY
|
|
functionality is not embedded within the controller).
|
|
|
|
2. Registering/Unregistering the PHY provider
|
|
|
|
PHY provider refers to an entity that implements one or more PHY instances.
|
|
For the simple case where the PHY provider implements only a single instance of
|
|
the PHY, the framework provides its own implementation of of_xlate in
|
|
of_phy_simple_xlate. If the PHY provider implements multiple instances, it
|
|
should provide its own implementation of of_xlate. of_xlate is used only for
|
|
dt boot case.
|
|
|
|
#define of_phy_provider_register(dev, xlate) \
|
|
__of_phy_provider_register((dev), THIS_MODULE, (xlate))
|
|
|
|
#define devm_of_phy_provider_register(dev, xlate) \
|
|
__devm_of_phy_provider_register((dev), THIS_MODULE, (xlate))
|
|
|
|
of_phy_provider_register and devm_of_phy_provider_register macros can be used to
|
|
register the phy_provider and it takes device and of_xlate as
|
|
arguments. For the dt boot case, all PHY providers should use one of the above
|
|
2 macros to register the PHY provider.
|
|
|
|
void devm_of_phy_provider_unregister(struct device *dev,
|
|
struct phy_provider *phy_provider);
|
|
void of_phy_provider_unregister(struct phy_provider *phy_provider);
|
|
|
|
devm_of_phy_provider_unregister and of_phy_provider_unregister can be used to
|
|
unregister the PHY.
|
|
|
|
3. Creating the PHY
|
|
|
|
The PHY driver should create the PHY in order for other peripheral controllers
|
|
to make use of it. The PHY framework provides 2 APIs to create the PHY.
|
|
|
|
struct phy *phy_create(struct device *dev, struct device_node *node,
|
|
const struct phy_ops *ops);
|
|
struct phy *devm_phy_create(struct device *dev, struct device_node *node,
|
|
const struct phy_ops *ops);
|
|
|
|
The PHY drivers can use one of the above 2 APIs to create the PHY by passing
|
|
the device pointer and phy ops.
|
|
phy_ops is a set of function pointers for performing PHY operations such as
|
|
init, exit, power_on and power_off.
|
|
|
|
Inorder to dereference the private data (in phy_ops), the phy provider driver
|
|
can use phy_set_drvdata() after creating the PHY and use phy_get_drvdata() in
|
|
phy_ops to get back the private data.
|
|
|
|
4. Getting a reference to the PHY
|
|
|
|
Before the controller can make use of the PHY, it has to get a reference to
|
|
it. This framework provides the following APIs to get a reference to the PHY.
|
|
|
|
struct phy *phy_get(struct device *dev, const char *string);
|
|
struct phy *phy_optional_get(struct device *dev, const char *string);
|
|
struct phy *devm_phy_get(struct device *dev, const char *string);
|
|
struct phy *devm_phy_optional_get(struct device *dev, const char *string);
|
|
|
|
phy_get, phy_optional_get, devm_phy_get and devm_phy_optional_get can
|
|
be used to get the PHY. In the case of dt boot, the string arguments
|
|
should contain the phy name as given in the dt data and in the case of
|
|
non-dt boot, it should contain the label of the PHY. The two
|
|
devm_phy_get associates the device with the PHY using devres on
|
|
successful PHY get. On driver detach, release function is invoked on
|
|
the the devres data and devres data is freed. phy_optional_get and
|
|
devm_phy_optional_get should be used when the phy is optional. These
|
|
two functions will never return -ENODEV, but instead returns NULL when
|
|
the phy cannot be found.
|
|
|
|
It should be noted that NULL is a valid phy reference. All phy
|
|
consumer calls on the NULL phy become NOPs. That is the release calls,
|
|
the phy_init() and phy_exit() calls, and phy_power_on() and
|
|
phy_power_off() calls are all NOP when applied to a NULL phy. The NULL
|
|
phy is useful in devices for handling optional phy devices.
|
|
|
|
5. Releasing a reference to the PHY
|
|
|
|
When the controller no longer needs the PHY, it has to release the reference
|
|
to the PHY it has obtained using the APIs mentioned in the above section. The
|
|
PHY framework provides 2 APIs to release a reference to the PHY.
|
|
|
|
void phy_put(struct phy *phy);
|
|
void devm_phy_put(struct device *dev, struct phy *phy);
|
|
|
|
Both these APIs are used to release a reference to the PHY and devm_phy_put
|
|
destroys the devres associated with this PHY.
|
|
|
|
6. Destroying the PHY
|
|
|
|
When the driver that created the PHY is unloaded, it should destroy the PHY it
|
|
created using one of the following 2 APIs.
|
|
|
|
void phy_destroy(struct phy *phy);
|
|
void devm_phy_destroy(struct device *dev, struct phy *phy);
|
|
|
|
Both these APIs destroy the PHY and devm_phy_destroy destroys the devres
|
|
associated with this PHY.
|
|
|
|
7. PM Runtime
|
|
|
|
This subsystem is pm runtime enabled. So while creating the PHY,
|
|
pm_runtime_enable of the phy device created by this subsystem is called and
|
|
while destroying the PHY, pm_runtime_disable is called. Note that the phy
|
|
device created by this subsystem will be a child of the device that calls
|
|
phy_create (PHY provider device).
|
|
|
|
So pm_runtime_get_sync of the phy_device created by this subsystem will invoke
|
|
pm_runtime_get_sync of PHY provider device because of parent-child relationship.
|
|
It should also be noted that phy_power_on and phy_power_off performs
|
|
phy_pm_runtime_get_sync and phy_pm_runtime_put respectively.
|
|
There are exported APIs like phy_pm_runtime_get, phy_pm_runtime_get_sync,
|
|
phy_pm_runtime_put, phy_pm_runtime_put_sync, phy_pm_runtime_allow and
|
|
phy_pm_runtime_forbid for performing PM operations.
|
|
|
|
8. PHY Mappings
|
|
|
|
In order to get reference to a PHY without help from DeviceTree, the framework
|
|
offers lookups which can be compared to clkdev that allow clk structures to be
|
|
bound to devices. A lookup can be made be made during runtime when a handle to
|
|
the struct phy already exists.
|
|
|
|
The framework offers the following API for registering and unregistering the
|
|
lookups.
|
|
|
|
int phy_create_lookup(struct phy *phy, const char *con_id, const char *dev_id);
|
|
void phy_remove_lookup(struct phy *phy, const char *con_id, const char *dev_id);
|
|
|
|
9. DeviceTree Binding
|
|
|
|
The documentation for PHY dt binding can be found @
|
|
Documentation/devicetree/bindings/phy/phy-bindings.txt
|