linux/arch/s390/crypto/prng.c
Heiko Carstens 0a5f9b382c s390/cpufeature: rework to allow more than only hwcap bits
Rework cpufeature implementation to allow for various cpu feature
indications, which is not only limited to hwcap bits. This is achieved
by adding a sequential list of cpu feature numbers, where each of them
is mapped to an entry which indicates what this number is about.

Each entry contains a type member, which indicates what feature
name space to look into (e.g. hwcap, or cpu facility). If wanted this
allows also to automatically load modules only in e.g. z/VM
configurations.

Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Steffen Eiden <seiden@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Link: https://lore.kernel.org/r/20220713125644.16121-2-seiden@linux.ibm.com
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
2022-07-19 16:18:49 +02:00

912 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright IBM Corp. 2006, 2015
* Author(s): Jan Glauber <jan.glauber@de.ibm.com>
* Harald Freudenberger <freude@de.ibm.com>
* Driver for the s390 pseudo random number generator
*/
#define KMSG_COMPONENT "prng"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/fs.h>
#include <linux/fips.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/cpufeature.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/sched/signal.h>
#include <asm/debug.h>
#include <linux/uaccess.h>
#include <asm/timex.h>
#include <asm/cpacf.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("IBM Corporation");
MODULE_DESCRIPTION("s390 PRNG interface");
#define PRNG_MODE_AUTO 0
#define PRNG_MODE_TDES 1
#define PRNG_MODE_SHA512 2
static unsigned int prng_mode = PRNG_MODE_AUTO;
module_param_named(mode, prng_mode, int, 0);
MODULE_PARM_DESC(prng_mode, "PRNG mode: 0 - auto, 1 - TDES, 2 - SHA512");
#define PRNG_CHUNKSIZE_TDES_MIN 8
#define PRNG_CHUNKSIZE_TDES_MAX (64*1024)
#define PRNG_CHUNKSIZE_SHA512_MIN 64
#define PRNG_CHUNKSIZE_SHA512_MAX (64*1024)
static unsigned int prng_chunk_size = 256;
module_param_named(chunksize, prng_chunk_size, int, 0);
MODULE_PARM_DESC(prng_chunk_size, "PRNG read chunk size in bytes");
#define PRNG_RESEED_LIMIT_TDES 4096
#define PRNG_RESEED_LIMIT_TDES_LOWER 4096
#define PRNG_RESEED_LIMIT_SHA512 100000
#define PRNG_RESEED_LIMIT_SHA512_LOWER 10000
static unsigned int prng_reseed_limit;
module_param_named(reseed_limit, prng_reseed_limit, int, 0);
MODULE_PARM_DESC(prng_reseed_limit, "PRNG reseed limit");
static bool trng_available;
/*
* Any one who considers arithmetical methods of producing random digits is,
* of course, in a state of sin. -- John von Neumann
*/
static int prng_errorflag;
#define PRNG_GEN_ENTROPY_FAILED 1
#define PRNG_SELFTEST_FAILED 2
#define PRNG_INSTANTIATE_FAILED 3
#define PRNG_SEED_FAILED 4
#define PRNG_RESEED_FAILED 5
#define PRNG_GEN_FAILED 6
struct prng_ws_s {
u8 parm_block[32];
u32 reseed_counter;
u64 byte_counter;
};
struct prno_ws_s {
u32 res;
u32 reseed_counter;
u64 stream_bytes;
u8 V[112];
u8 C[112];
};
struct prng_data_s {
struct mutex mutex;
union {
struct prng_ws_s prngws;
struct prno_ws_s prnows;
};
u8 *buf;
u32 rest;
u8 *prev;
};
static struct prng_data_s *prng_data;
/* initial parameter block for tdes mode, copied from libica */
static const u8 initial_parm_block[32] __initconst = {
0x0F, 0x2B, 0x8E, 0x63, 0x8C, 0x8E, 0xD2, 0x52,
0x64, 0xB7, 0xA0, 0x7B, 0x75, 0x28, 0xB8, 0xF4,
0x75, 0x5F, 0xD2, 0xA6, 0x8D, 0x97, 0x11, 0xFF,
0x49, 0xD8, 0x23, 0xF3, 0x7E, 0x21, 0xEC, 0xA0 };
/*** helper functions ***/
/*
* generate_entropy:
* This function fills a given buffer with random bytes. The entropy within
* the random bytes given back is assumed to have at least 50% - meaning
* a 64 bytes buffer has at least 64 * 8 / 2 = 256 bits of entropy.
* Within the function the entropy generation is done in junks of 64 bytes.
* So the caller should also ask for buffer fill in multiples of 64 bytes.
* The generation of the entropy is based on the assumption that every stckf()
* invocation produces 0.5 bits of entropy. To accumulate 256 bits of entropy
* at least 512 stckf() values are needed. The entropy relevant part of the
* stckf value is bit 51 (counting starts at the left with bit nr 0) so
* here we use the lower 4 bytes and exor the values into 2k of bufferspace.
* To be on the save side, if there is ever a problem with stckf() the
* other half of the page buffer is filled with bytes from urandom via
* get_random_bytes(), so this function consumes 2k of urandom for each
* requested 64 bytes output data. Finally the buffer page is condensed into
* a 64 byte value by hashing with a SHA512 hash.
*/
static int generate_entropy(u8 *ebuf, size_t nbytes)
{
int n, ret = 0;
u8 *pg, pblock[80] = {
/* 8 x 64 bit init values */
0x6A, 0x09, 0xE6, 0x67, 0xF3, 0xBC, 0xC9, 0x08,
0xBB, 0x67, 0xAE, 0x85, 0x84, 0xCA, 0xA7, 0x3B,
0x3C, 0x6E, 0xF3, 0x72, 0xFE, 0x94, 0xF8, 0x2B,
0xA5, 0x4F, 0xF5, 0x3A, 0x5F, 0x1D, 0x36, 0xF1,
0x51, 0x0E, 0x52, 0x7F, 0xAD, 0xE6, 0x82, 0xD1,
0x9B, 0x05, 0x68, 0x8C, 0x2B, 0x3E, 0x6C, 0x1F,
0x1F, 0x83, 0xD9, 0xAB, 0xFB, 0x41, 0xBD, 0x6B,
0x5B, 0xE0, 0xCD, 0x19, 0x13, 0x7E, 0x21, 0x79,
/* 128 bit counter total message bit length */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00 };
/* allocate one page stckf buffer */
pg = (u8 *) __get_free_page(GFP_KERNEL);
if (!pg) {
prng_errorflag = PRNG_GEN_ENTROPY_FAILED;
return -ENOMEM;
}
/* fill the ebuf in chunks of 64 byte each */
while (nbytes) {
/* fill lower 2k with urandom bytes */
get_random_bytes(pg, PAGE_SIZE / 2);
/* exor upper 2k with 512 stckf values, offset 4 bytes each */
for (n = 0; n < 512; n++) {
int offset = (PAGE_SIZE / 2) + (n * 4) - 4;
u64 *p = (u64 *)(pg + offset);
*p ^= get_tod_clock_fast();
}
/* hash over the filled page */
cpacf_klmd(CPACF_KLMD_SHA_512, pblock, pg, PAGE_SIZE);
n = (nbytes < 64) ? nbytes : 64;
memcpy(ebuf, pblock, n);
ret += n;
ebuf += n;
nbytes -= n;
}
memzero_explicit(pblock, sizeof(pblock));
memzero_explicit(pg, PAGE_SIZE);
free_page((unsigned long)pg);
return ret;
}
/*** tdes functions ***/
static void prng_tdes_add_entropy(void)
{
__u64 entropy[4];
unsigned int i;
for (i = 0; i < 16; i++) {
cpacf_kmc(CPACF_KMC_PRNG, prng_data->prngws.parm_block,
(char *) entropy, (char *) entropy,
sizeof(entropy));
memcpy(prng_data->prngws.parm_block, entropy, sizeof(entropy));
}
}
static void prng_tdes_seed(int nbytes)
{
char buf[16];
int i = 0;
BUG_ON(nbytes > sizeof(buf));
get_random_bytes(buf, nbytes);
/* Add the entropy */
while (nbytes >= 8) {
*((__u64 *)prng_data->prngws.parm_block) ^= *((__u64 *)(buf+i));
prng_tdes_add_entropy();
i += 8;
nbytes -= 8;
}
prng_tdes_add_entropy();
prng_data->prngws.reseed_counter = 0;
}
static int __init prng_tdes_instantiate(void)
{
int datalen;
pr_debug("prng runs in TDES mode with "
"chunksize=%d and reseed_limit=%u\n",
prng_chunk_size, prng_reseed_limit);
/* memory allocation, prng_data struct init, mutex init */
datalen = sizeof(struct prng_data_s) + prng_chunk_size;
prng_data = kzalloc(datalen, GFP_KERNEL);
if (!prng_data) {
prng_errorflag = PRNG_INSTANTIATE_FAILED;
return -ENOMEM;
}
mutex_init(&prng_data->mutex);
prng_data->buf = ((u8 *)prng_data) + sizeof(struct prng_data_s);
memcpy(prng_data->prngws.parm_block, initial_parm_block, 32);
/* initialize the PRNG, add 128 bits of entropy */
prng_tdes_seed(16);
return 0;
}
static void prng_tdes_deinstantiate(void)
{
pr_debug("The prng module stopped "
"after running in triple DES mode\n");
kfree_sensitive(prng_data);
}
/*** sha512 functions ***/
static int __init prng_sha512_selftest(void)
{
/* NIST DRBG testvector for Hash Drbg, Sha-512, Count #0 */
static const u8 seed[] __initconst = {
0x6b, 0x50, 0xa7, 0xd8, 0xf8, 0xa5, 0x5d, 0x7a,
0x3d, 0xf8, 0xbb, 0x40, 0xbc, 0xc3, 0xb7, 0x22,
0xd8, 0x70, 0x8d, 0xe6, 0x7f, 0xda, 0x01, 0x0b,
0x03, 0xc4, 0xc8, 0x4d, 0x72, 0x09, 0x6f, 0x8c,
0x3e, 0xc6, 0x49, 0xcc, 0x62, 0x56, 0xd9, 0xfa,
0x31, 0xdb, 0x7a, 0x29, 0x04, 0xaa, 0xf0, 0x25 };
static const u8 V0[] __initconst = {
0x00, 0xad, 0xe3, 0x6f, 0x9a, 0x01, 0xc7, 0x76,
0x61, 0x34, 0x35, 0xf5, 0x4e, 0x24, 0x74, 0x22,
0x21, 0x9a, 0x29, 0x89, 0xc7, 0x93, 0x2e, 0x60,
0x1e, 0xe8, 0x14, 0x24, 0x8d, 0xd5, 0x03, 0xf1,
0x65, 0x5d, 0x08, 0x22, 0x72, 0xd5, 0xad, 0x95,
0xe1, 0x23, 0x1e, 0x8a, 0xa7, 0x13, 0xd9, 0x2b,
0x5e, 0xbc, 0xbb, 0x80, 0xab, 0x8d, 0xe5, 0x79,
0xab, 0x5b, 0x47, 0x4e, 0xdd, 0xee, 0x6b, 0x03,
0x8f, 0x0f, 0x5c, 0x5e, 0xa9, 0x1a, 0x83, 0xdd,
0xd3, 0x88, 0xb2, 0x75, 0x4b, 0xce, 0x83, 0x36,
0x57, 0x4b, 0xf1, 0x5c, 0xca, 0x7e, 0x09, 0xc0,
0xd3, 0x89, 0xc6, 0xe0, 0xda, 0xc4, 0x81, 0x7e,
0x5b, 0xf9, 0xe1, 0x01, 0xc1, 0x92, 0x05, 0xea,
0xf5, 0x2f, 0xc6, 0xc6, 0xc7, 0x8f, 0xbc, 0xf4 };
static const u8 C0[] __initconst = {
0x00, 0xf4, 0xa3, 0xe5, 0xa0, 0x72, 0x63, 0x95,
0xc6, 0x4f, 0x48, 0xd0, 0x8b, 0x5b, 0x5f, 0x8e,
0x6b, 0x96, 0x1f, 0x16, 0xed, 0xbc, 0x66, 0x94,
0x45, 0x31, 0xd7, 0x47, 0x73, 0x22, 0xa5, 0x86,
0xce, 0xc0, 0x4c, 0xac, 0x63, 0xb8, 0x39, 0x50,
0xbf, 0xe6, 0x59, 0x6c, 0x38, 0x58, 0x99, 0x1f,
0x27, 0xa7, 0x9d, 0x71, 0x2a, 0xb3, 0x7b, 0xf9,
0xfb, 0x17, 0x86, 0xaa, 0x99, 0x81, 0xaa, 0x43,
0xe4, 0x37, 0xd3, 0x1e, 0x6e, 0xe5, 0xe6, 0xee,
0xc2, 0xed, 0x95, 0x4f, 0x53, 0x0e, 0x46, 0x8a,
0xcc, 0x45, 0xa5, 0xdb, 0x69, 0x0d, 0x81, 0xc9,
0x32, 0x92, 0xbc, 0x8f, 0x33, 0xe6, 0xf6, 0x09,
0x7c, 0x8e, 0x05, 0x19, 0x0d, 0xf1, 0xb6, 0xcc,
0xf3, 0x02, 0x21, 0x90, 0x25, 0xec, 0xed, 0x0e };
static const u8 random[] __initconst = {
0x95, 0xb7, 0xf1, 0x7e, 0x98, 0x02, 0xd3, 0x57,
0x73, 0x92, 0xc6, 0xa9, 0xc0, 0x80, 0x83, 0xb6,
0x7d, 0xd1, 0x29, 0x22, 0x65, 0xb5, 0xf4, 0x2d,
0x23, 0x7f, 0x1c, 0x55, 0xbb, 0x9b, 0x10, 0xbf,
0xcf, 0xd8, 0x2c, 0x77, 0xa3, 0x78, 0xb8, 0x26,
0x6a, 0x00, 0x99, 0x14, 0x3b, 0x3c, 0x2d, 0x64,
0x61, 0x1e, 0xee, 0xb6, 0x9a, 0xcd, 0xc0, 0x55,
0x95, 0x7c, 0x13, 0x9e, 0x8b, 0x19, 0x0c, 0x7a,
0x06, 0x95, 0x5f, 0x2c, 0x79, 0x7c, 0x27, 0x78,
0xde, 0x94, 0x03, 0x96, 0xa5, 0x01, 0xf4, 0x0e,
0x91, 0x39, 0x6a, 0xcf, 0x8d, 0x7e, 0x45, 0xeb,
0xdb, 0xb5, 0x3b, 0xbf, 0x8c, 0x97, 0x52, 0x30,
0xd2, 0xf0, 0xff, 0x91, 0x06, 0xc7, 0x61, 0x19,
0xae, 0x49, 0x8e, 0x7f, 0xbc, 0x03, 0xd9, 0x0f,
0x8e, 0x4c, 0x51, 0x62, 0x7a, 0xed, 0x5c, 0x8d,
0x42, 0x63, 0xd5, 0xd2, 0xb9, 0x78, 0x87, 0x3a,
0x0d, 0xe5, 0x96, 0xee, 0x6d, 0xc7, 0xf7, 0xc2,
0x9e, 0x37, 0xee, 0xe8, 0xb3, 0x4c, 0x90, 0xdd,
0x1c, 0xf6, 0xa9, 0xdd, 0xb2, 0x2b, 0x4c, 0xbd,
0x08, 0x6b, 0x14, 0xb3, 0x5d, 0xe9, 0x3d, 0xa2,
0xd5, 0xcb, 0x18, 0x06, 0x69, 0x8c, 0xbd, 0x7b,
0xbb, 0x67, 0xbf, 0xe3, 0xd3, 0x1f, 0xd2, 0xd1,
0xdb, 0xd2, 0xa1, 0xe0, 0x58, 0xa3, 0xeb, 0x99,
0xd7, 0xe5, 0x1f, 0x1a, 0x93, 0x8e, 0xed, 0x5e,
0x1c, 0x1d, 0xe2, 0x3a, 0x6b, 0x43, 0x45, 0xd3,
0x19, 0x14, 0x09, 0xf9, 0x2f, 0x39, 0xb3, 0x67,
0x0d, 0x8d, 0xbf, 0xb6, 0x35, 0xd8, 0xe6, 0xa3,
0x69, 0x32, 0xd8, 0x10, 0x33, 0xd1, 0x44, 0x8d,
0x63, 0xb4, 0x03, 0xdd, 0xf8, 0x8e, 0x12, 0x1b,
0x6e, 0x81, 0x9a, 0xc3, 0x81, 0x22, 0x6c, 0x13,
0x21, 0xe4, 0xb0, 0x86, 0x44, 0xf6, 0x72, 0x7c,
0x36, 0x8c, 0x5a, 0x9f, 0x7a, 0x4b, 0x3e, 0xe2 };
u8 buf[sizeof(random)];
struct prno_ws_s ws;
memset(&ws, 0, sizeof(ws));
/* initial seed */
cpacf_prno(CPACF_PRNO_SHA512_DRNG_SEED,
&ws, NULL, 0, seed, sizeof(seed));
/* check working states V and C */
if (memcmp(ws.V, V0, sizeof(V0)) != 0
|| memcmp(ws.C, C0, sizeof(C0)) != 0) {
pr_err("The prng self test state test "
"for the SHA-512 mode failed\n");
prng_errorflag = PRNG_SELFTEST_FAILED;
return -EIO;
}
/* generate random bytes */
cpacf_prno(CPACF_PRNO_SHA512_DRNG_GEN,
&ws, buf, sizeof(buf), NULL, 0);
cpacf_prno(CPACF_PRNO_SHA512_DRNG_GEN,
&ws, buf, sizeof(buf), NULL, 0);
/* check against expected data */
if (memcmp(buf, random, sizeof(random)) != 0) {
pr_err("The prng self test data test "
"for the SHA-512 mode failed\n");
prng_errorflag = PRNG_SELFTEST_FAILED;
return -EIO;
}
return 0;
}
static int __init prng_sha512_instantiate(void)
{
int ret, datalen, seedlen;
u8 seed[128 + 16];
pr_debug("prng runs in SHA-512 mode "
"with chunksize=%d and reseed_limit=%u\n",
prng_chunk_size, prng_reseed_limit);
/* memory allocation, prng_data struct init, mutex init */
datalen = sizeof(struct prng_data_s) + prng_chunk_size;
if (fips_enabled)
datalen += prng_chunk_size;
prng_data = kzalloc(datalen, GFP_KERNEL);
if (!prng_data) {
prng_errorflag = PRNG_INSTANTIATE_FAILED;
return -ENOMEM;
}
mutex_init(&prng_data->mutex);
prng_data->buf = ((u8 *)prng_data) + sizeof(struct prng_data_s);
/* selftest */
ret = prng_sha512_selftest();
if (ret)
goto outfree;
/* generate initial seed, we need at least 256 + 128 bits entropy. */
if (trng_available) {
/*
* Trng available, so use it. The trng works in chunks of
* 32 bytes and produces 100% entropy. So we pull 64 bytes
* which gives us 512 bits entropy.
*/
seedlen = 2 * 32;
cpacf_trng(NULL, 0, seed, seedlen);
} else {
/*
* No trng available, so use the generate_entropy() function.
* This function works in 64 byte junks and produces
* 50% entropy. So we pull 2*64 bytes which gives us 512 bits
* of entropy.
*/
seedlen = 2 * 64;
ret = generate_entropy(seed, seedlen);
if (ret != seedlen)
goto outfree;
}
/* append the seed by 16 bytes of unique nonce */
store_tod_clock_ext((union tod_clock *)(seed + seedlen));
seedlen += 16;
/* now initial seed of the prno drng */
cpacf_prno(CPACF_PRNO_SHA512_DRNG_SEED,
&prng_data->prnows, NULL, 0, seed, seedlen);
memzero_explicit(seed, sizeof(seed));
/* if fips mode is enabled, generate a first block of random
bytes for the FIPS 140-2 Conditional Self Test */
if (fips_enabled) {
prng_data->prev = prng_data->buf + prng_chunk_size;
cpacf_prno(CPACF_PRNO_SHA512_DRNG_GEN,
&prng_data->prnows,
prng_data->prev, prng_chunk_size, NULL, 0);
}
return 0;
outfree:
kfree(prng_data);
return ret;
}
static void prng_sha512_deinstantiate(void)
{
pr_debug("The prng module stopped after running in SHA-512 mode\n");
kfree_sensitive(prng_data);
}
static int prng_sha512_reseed(void)
{
int ret, seedlen;
u8 seed[64];
/* We need at least 256 bits of fresh entropy for reseeding */
if (trng_available) {
/* trng produces 256 bits entropy in 32 bytes */
seedlen = 32;
cpacf_trng(NULL, 0, seed, seedlen);
} else {
/* generate_entropy() produces 256 bits entropy in 64 bytes */
seedlen = 64;
ret = generate_entropy(seed, seedlen);
if (ret != sizeof(seed))
return ret;
}
/* do a reseed of the prno drng with this bytestring */
cpacf_prno(CPACF_PRNO_SHA512_DRNG_SEED,
&prng_data->prnows, NULL, 0, seed, seedlen);
memzero_explicit(seed, sizeof(seed));
return 0;
}
static int prng_sha512_generate(u8 *buf, size_t nbytes)
{
int ret;
/* reseed needed ? */
if (prng_data->prnows.reseed_counter > prng_reseed_limit) {
ret = prng_sha512_reseed();
if (ret)
return ret;
}
/* PRNO generate */
cpacf_prno(CPACF_PRNO_SHA512_DRNG_GEN,
&prng_data->prnows, buf, nbytes, NULL, 0);
/* FIPS 140-2 Conditional Self Test */
if (fips_enabled) {
if (!memcmp(prng_data->prev, buf, nbytes)) {
prng_errorflag = PRNG_GEN_FAILED;
return -EILSEQ;
}
memcpy(prng_data->prev, buf, nbytes);
}
return nbytes;
}
/*** file io functions ***/
static int prng_open(struct inode *inode, struct file *file)
{
return nonseekable_open(inode, file);
}
static ssize_t prng_tdes_read(struct file *file, char __user *ubuf,
size_t nbytes, loff_t *ppos)
{
int chunk, n, ret = 0;
/* lock prng_data struct */
if (mutex_lock_interruptible(&prng_data->mutex))
return -ERESTARTSYS;
while (nbytes) {
if (need_resched()) {
if (signal_pending(current)) {
if (ret == 0)
ret = -ERESTARTSYS;
break;
}
/* give mutex free before calling schedule() */
mutex_unlock(&prng_data->mutex);
schedule();
/* occupy mutex again */
if (mutex_lock_interruptible(&prng_data->mutex)) {
if (ret == 0)
ret = -ERESTARTSYS;
return ret;
}
}
/*
* we lose some random bytes if an attacker issues
* reads < 8 bytes, but we don't care
*/
chunk = min_t(int, nbytes, prng_chunk_size);
/* PRNG only likes multiples of 8 bytes */
n = (chunk + 7) & -8;
if (prng_data->prngws.reseed_counter > prng_reseed_limit)
prng_tdes_seed(8);
/* if the CPU supports PRNG stckf is present too */
*((unsigned long long *)prng_data->buf) = get_tod_clock_fast();
/*
* Beside the STCKF the input for the TDES-EDE is the output
* of the last operation. We differ here from X9.17 since we
* only store one timestamp into the buffer. Padding the whole
* buffer with timestamps does not improve security, since
* successive stckf have nearly constant offsets.
* If an attacker knows the first timestamp it would be
* trivial to guess the additional values. One timestamp
* is therefore enough and still guarantees unique input values.
*
* Note: you can still get strict X9.17 conformity by setting
* prng_chunk_size to 8 bytes.
*/
cpacf_kmc(CPACF_KMC_PRNG, prng_data->prngws.parm_block,
prng_data->buf, prng_data->buf, n);
prng_data->prngws.byte_counter += n;
prng_data->prngws.reseed_counter += n;
if (copy_to_user(ubuf, prng_data->buf, chunk)) {
ret = -EFAULT;
break;
}
nbytes -= chunk;
ret += chunk;
ubuf += chunk;
}
/* unlock prng_data struct */
mutex_unlock(&prng_data->mutex);
return ret;
}
static ssize_t prng_sha512_read(struct file *file, char __user *ubuf,
size_t nbytes, loff_t *ppos)
{
int n, ret = 0;
u8 *p;
/* if errorflag is set do nothing and return 'broken pipe' */
if (prng_errorflag)
return -EPIPE;
/* lock prng_data struct */
if (mutex_lock_interruptible(&prng_data->mutex))
return -ERESTARTSYS;
while (nbytes) {
if (need_resched()) {
if (signal_pending(current)) {
if (ret == 0)
ret = -ERESTARTSYS;
break;
}
/* give mutex free before calling schedule() */
mutex_unlock(&prng_data->mutex);
schedule();
/* occopy mutex again */
if (mutex_lock_interruptible(&prng_data->mutex)) {
if (ret == 0)
ret = -ERESTARTSYS;
return ret;
}
}
if (prng_data->rest) {
/* push left over random bytes from the previous read */
p = prng_data->buf + prng_chunk_size - prng_data->rest;
n = (nbytes < prng_data->rest) ?
nbytes : prng_data->rest;
prng_data->rest -= n;
} else {
/* generate one chunk of random bytes into read buf */
p = prng_data->buf;
n = prng_sha512_generate(p, prng_chunk_size);
if (n < 0) {
ret = n;
break;
}
if (nbytes < prng_chunk_size) {
n = nbytes;
prng_data->rest = prng_chunk_size - n;
} else {
n = prng_chunk_size;
prng_data->rest = 0;
}
}
if (copy_to_user(ubuf, p, n)) {
ret = -EFAULT;
break;
}
memzero_explicit(p, n);
ubuf += n;
nbytes -= n;
ret += n;
}
/* unlock prng_data struct */
mutex_unlock(&prng_data->mutex);
return ret;
}
/*** sysfs stuff ***/
static const struct file_operations prng_sha512_fops = {
.owner = THIS_MODULE,
.open = &prng_open,
.release = NULL,
.read = &prng_sha512_read,
.llseek = noop_llseek,
};
static const struct file_operations prng_tdes_fops = {
.owner = THIS_MODULE,
.open = &prng_open,
.release = NULL,
.read = &prng_tdes_read,
.llseek = noop_llseek,
};
/* chunksize attribute (ro) */
static ssize_t prng_chunksize_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%u\n", prng_chunk_size);
}
static DEVICE_ATTR(chunksize, 0444, prng_chunksize_show, NULL);
/* counter attribute (ro) */
static ssize_t prng_counter_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u64 counter;
if (mutex_lock_interruptible(&prng_data->mutex))
return -ERESTARTSYS;
if (prng_mode == PRNG_MODE_SHA512)
counter = prng_data->prnows.stream_bytes;
else
counter = prng_data->prngws.byte_counter;
mutex_unlock(&prng_data->mutex);
return scnprintf(buf, PAGE_SIZE, "%llu\n", counter);
}
static DEVICE_ATTR(byte_counter, 0444, prng_counter_show, NULL);
/* errorflag attribute (ro) */
static ssize_t prng_errorflag_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%d\n", prng_errorflag);
}
static DEVICE_ATTR(errorflag, 0444, prng_errorflag_show, NULL);
/* mode attribute (ro) */
static ssize_t prng_mode_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
if (prng_mode == PRNG_MODE_TDES)
return scnprintf(buf, PAGE_SIZE, "TDES\n");
else
return scnprintf(buf, PAGE_SIZE, "SHA512\n");
}
static DEVICE_ATTR(mode, 0444, prng_mode_show, NULL);
/* reseed attribute (w) */
static ssize_t prng_reseed_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
if (mutex_lock_interruptible(&prng_data->mutex))
return -ERESTARTSYS;
prng_sha512_reseed();
mutex_unlock(&prng_data->mutex);
return count;
}
static DEVICE_ATTR(reseed, 0200, NULL, prng_reseed_store);
/* reseed limit attribute (rw) */
static ssize_t prng_reseed_limit_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%u\n", prng_reseed_limit);
}
static ssize_t prng_reseed_limit_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned limit;
if (sscanf(buf, "%u\n", &limit) != 1)
return -EINVAL;
if (prng_mode == PRNG_MODE_SHA512) {
if (limit < PRNG_RESEED_LIMIT_SHA512_LOWER)
return -EINVAL;
} else {
if (limit < PRNG_RESEED_LIMIT_TDES_LOWER)
return -EINVAL;
}
prng_reseed_limit = limit;
return count;
}
static DEVICE_ATTR(reseed_limit, 0644,
prng_reseed_limit_show, prng_reseed_limit_store);
/* strength attribute (ro) */
static ssize_t prng_strength_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return scnprintf(buf, PAGE_SIZE, "256\n");
}
static DEVICE_ATTR(strength, 0444, prng_strength_show, NULL);
static struct attribute *prng_sha512_dev_attrs[] = {
&dev_attr_errorflag.attr,
&dev_attr_chunksize.attr,
&dev_attr_byte_counter.attr,
&dev_attr_mode.attr,
&dev_attr_reseed.attr,
&dev_attr_reseed_limit.attr,
&dev_attr_strength.attr,
NULL
};
ATTRIBUTE_GROUPS(prng_sha512_dev);
static struct attribute *prng_tdes_dev_attrs[] = {
&dev_attr_chunksize.attr,
&dev_attr_byte_counter.attr,
&dev_attr_mode.attr,
NULL
};
ATTRIBUTE_GROUPS(prng_tdes_dev);
static struct miscdevice prng_sha512_dev = {
.name = "prandom",
.minor = MISC_DYNAMIC_MINOR,
.mode = 0644,
.fops = &prng_sha512_fops,
.groups = prng_sha512_dev_groups,
};
static struct miscdevice prng_tdes_dev = {
.name = "prandom",
.minor = MISC_DYNAMIC_MINOR,
.mode = 0644,
.fops = &prng_tdes_fops,
.groups = prng_tdes_dev_groups,
};
/*** module init and exit ***/
static int __init prng_init(void)
{
int ret;
/* check if the CPU has a PRNG */
if (!cpacf_query_func(CPACF_KMC, CPACF_KMC_PRNG))
return -ENODEV;
/* check if TRNG subfunction is available */
if (cpacf_query_func(CPACF_PRNO, CPACF_PRNO_TRNG))
trng_available = true;
/* choose prng mode */
if (prng_mode != PRNG_MODE_TDES) {
/* check for MSA5 support for PRNO operations */
if (!cpacf_query_func(CPACF_PRNO, CPACF_PRNO_SHA512_DRNG_GEN)) {
if (prng_mode == PRNG_MODE_SHA512) {
pr_err("The prng module cannot "
"start in SHA-512 mode\n");
return -ENODEV;
}
prng_mode = PRNG_MODE_TDES;
} else
prng_mode = PRNG_MODE_SHA512;
}
if (prng_mode == PRNG_MODE_SHA512) {
/* SHA512 mode */
if (prng_chunk_size < PRNG_CHUNKSIZE_SHA512_MIN
|| prng_chunk_size > PRNG_CHUNKSIZE_SHA512_MAX)
return -EINVAL;
prng_chunk_size = (prng_chunk_size + 0x3f) & ~0x3f;
if (prng_reseed_limit == 0)
prng_reseed_limit = PRNG_RESEED_LIMIT_SHA512;
else if (prng_reseed_limit < PRNG_RESEED_LIMIT_SHA512_LOWER)
return -EINVAL;
ret = prng_sha512_instantiate();
if (ret)
goto out;
ret = misc_register(&prng_sha512_dev);
if (ret) {
prng_sha512_deinstantiate();
goto out;
}
} else {
/* TDES mode */
if (prng_chunk_size < PRNG_CHUNKSIZE_TDES_MIN
|| prng_chunk_size > PRNG_CHUNKSIZE_TDES_MAX)
return -EINVAL;
prng_chunk_size = (prng_chunk_size + 0x07) & ~0x07;
if (prng_reseed_limit == 0)
prng_reseed_limit = PRNG_RESEED_LIMIT_TDES;
else if (prng_reseed_limit < PRNG_RESEED_LIMIT_TDES_LOWER)
return -EINVAL;
ret = prng_tdes_instantiate();
if (ret)
goto out;
ret = misc_register(&prng_tdes_dev);
if (ret) {
prng_tdes_deinstantiate();
goto out;
}
}
out:
return ret;
}
static void __exit prng_exit(void)
{
if (prng_mode == PRNG_MODE_SHA512) {
misc_deregister(&prng_sha512_dev);
prng_sha512_deinstantiate();
} else {
misc_deregister(&prng_tdes_dev);
prng_tdes_deinstantiate();
}
}
module_cpu_feature_match(S390_CPU_FEATURE_MSA, prng_init);
module_exit(prng_exit);