linux/arch/sparc64/kernel/irq.c
Eric Sesterhenn 9132983ae1 [SPARC64]: kzalloc() conversion
this patch converts arch/sparc64 to kzalloc usage.
Crosscompile tested with allyesconfig.

Signed-off-by: Eric Sesterhenn <snakebyte@gmx.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20 01:14:19 -08:00

1175 lines
28 KiB
C

/* $Id: irq.c,v 1.114 2002/01/11 08:45:38 davem Exp $
* irq.c: UltraSparc IRQ handling/init/registry.
*
* Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/bootmem.h>
#include <asm/ptrace.h>
#include <asm/processor.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/sbus.h>
#include <asm/iommu.h>
#include <asm/upa.h>
#include <asm/oplib.h>
#include <asm/timer.h>
#include <asm/smp.h>
#include <asm/starfire.h>
#include <asm/uaccess.h>
#include <asm/cache.h>
#include <asm/cpudata.h>
#include <asm/auxio.h>
#include <asm/head.h>
#ifdef CONFIG_SMP
static void distribute_irqs(void);
#endif
/* UPA nodes send interrupt packet to UltraSparc with first data reg
* value low 5 (7 on Starfire) bits holding the IRQ identifier being
* delivered. We must translate this into a non-vector IRQ so we can
* set the softint on this cpu.
*
* To make processing these packets efficient and race free we use
* an array of irq buckets below. The interrupt vector handler in
* entry.S feeds incoming packets into per-cpu pil-indexed lists.
* The IVEC handler does not need to act atomically, the PIL dispatch
* code uses CAS to get an atomic snapshot of the list and clear it
* at the same time.
*/
struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES)));
/* This has to be in the main kernel image, it cannot be
* turned into per-cpu data. The reason is that the main
* kernel image is locked into the TLB and this structure
* is accessed from the vectored interrupt trap handler. If
* access to this structure takes a TLB miss it could cause
* the 5-level sparc v9 trap stack to overflow.
*/
struct irq_work_struct {
unsigned int irq_worklists[16];
};
struct irq_work_struct __irq_work[NR_CPUS];
#define irq_work(__cpu, __pil) &(__irq_work[(__cpu)].irq_worklists[(__pil)])
static struct irqaction *irq_action[NR_IRQS+1];
/* This only synchronizes entities which modify IRQ handler
* state and some selected user-level spots that want to
* read things in the table. IRQ handler processing orders
* its' accesses such that no locking is needed.
*/
static DEFINE_SPINLOCK(irq_action_lock);
static void register_irq_proc (unsigned int irq);
/*
* Upper 2b of irqaction->flags holds the ino.
* irqaction->mask holds the smp affinity information.
*/
#define put_ino_in_irqaction(action, irq) \
action->flags &= 0xffffffffffffUL; \
if (__bucket(irq) == &pil0_dummy_bucket) \
action->flags |= 0xdeadUL << 48; \
else \
action->flags |= __irq_ino(irq) << 48;
#define get_ino_in_irqaction(action) (action->flags >> 48)
#define put_smpaff_in_irqaction(action, smpaff) (action)->mask = (smpaff)
#define get_smpaff_in_irqaction(action) ((action)->mask)
int show_interrupts(struct seq_file *p, void *v)
{
unsigned long flags;
int i = *(loff_t *) v;
struct irqaction *action;
#ifdef CONFIG_SMP
int j;
#endif
spin_lock_irqsave(&irq_action_lock, flags);
if (i <= NR_IRQS) {
if (!(action = *(i + irq_action)))
goto out_unlock;
seq_printf(p, "%3d: ", i);
#ifndef CONFIG_SMP
seq_printf(p, "%10u ", kstat_irqs(i));
#else
for (j = 0; j < NR_CPUS; j++) {
if (!cpu_online(j))
continue;
seq_printf(p, "%10u ",
kstat_cpu(j).irqs[i]);
}
#endif
seq_printf(p, " %s:%lx", action->name,
get_ino_in_irqaction(action));
for (action = action->next; action; action = action->next) {
seq_printf(p, ", %s:%lx", action->name,
get_ino_in_irqaction(action));
}
seq_putc(p, '\n');
}
out_unlock:
spin_unlock_irqrestore(&irq_action_lock, flags);
return 0;
}
extern unsigned long real_hard_smp_processor_id(void);
static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
{
unsigned int tid;
if (this_is_starfire) {
tid = starfire_translate(imap, cpuid);
tid <<= IMAP_TID_SHIFT;
tid &= IMAP_TID_UPA;
} else {
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
unsigned long ver;
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
if ((ver >> 32UL) == __JALAPENO_ID ||
(ver >> 32UL) == __SERRANO_ID) {
tid = cpuid << IMAP_TID_SHIFT;
tid &= IMAP_TID_JBUS;
} else {
unsigned int a = cpuid & 0x1f;
unsigned int n = (cpuid >> 5) & 0x1f;
tid = ((a << IMAP_AID_SHIFT) |
(n << IMAP_NID_SHIFT));
tid &= (IMAP_AID_SAFARI |
IMAP_NID_SAFARI);;
}
} else {
tid = cpuid << IMAP_TID_SHIFT;
tid &= IMAP_TID_UPA;
}
}
return tid;
}
/* Now these are always passed a true fully specified sun4u INO. */
void enable_irq(unsigned int irq)
{
struct ino_bucket *bucket = __bucket(irq);
unsigned long imap, cpuid;
imap = bucket->imap;
if (imap == 0UL)
return;
preempt_disable();
/* This gets the physical processor ID, even on uniprocessor,
* so we can always program the interrupt target correctly.
*/
cpuid = real_hard_smp_processor_id();
if (tlb_type == hypervisor) {
unsigned int ino = __irq_ino(irq);
int err;
err = sun4v_intr_settarget(ino, cpuid);
if (err != HV_EOK)
printk("sun4v_intr_settarget(%x,%lu): err(%d)\n",
ino, cpuid, err);
err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
if (err != HV_EOK)
printk("sun4v_intr_setenabled(%x): err(%d)\n",
ino, err);
} else {
unsigned int tid = sun4u_compute_tid(imap, cpuid);
/* NOTE NOTE NOTE, IGN and INO are read-only, IGN is a product
* of this SYSIO's preconfigured IGN in the SYSIO Control
* Register, the hardware just mirrors that value here.
* However for Graphics and UPA Slave devices the full
* IMAP_INR field can be set by the programmer here.
*
* Things like FFB can now be handled via the new IRQ
* mechanism.
*/
upa_writel(tid | IMAP_VALID, imap);
}
preempt_enable();
}
/* This now gets passed true ino's as well. */
void disable_irq(unsigned int irq)
{
struct ino_bucket *bucket = __bucket(irq);
unsigned long imap;
imap = bucket->imap;
if (imap != 0UL) {
if (tlb_type == hypervisor) {
unsigned int ino = __irq_ino(irq);
int err;
err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
if (err != HV_EOK)
printk("sun4v_intr_setenabled(%x): "
"err(%d)\n", ino, err);
} else {
u32 tmp;
/* NOTE: We do not want to futz with the IRQ clear registers
* and move the state to IDLE, the SCSI code does call
* disable_irq() to assure atomicity in the queue cmd
* SCSI adapter driver code. Thus we'd lose interrupts.
*/
tmp = upa_readl(imap);
tmp &= ~IMAP_VALID;
upa_writel(tmp, imap);
}
}
}
/* The timer is the one "weird" interrupt which is generated by
* the CPU %tick register and not by some normal vectored interrupt
* source. To handle this special case, we use this dummy INO bucket.
*/
static struct irq_desc pil0_dummy_desc;
static struct ino_bucket pil0_dummy_bucket = {
.irq_info = &pil0_dummy_desc,
};
static void build_irq_error(const char *msg, unsigned int ino, int pil, int inofixup,
unsigned long iclr, unsigned long imap,
struct ino_bucket *bucket)
{
prom_printf("IRQ: INO %04x (%d:%016lx:%016lx) --> "
"(%d:%d:%016lx:%016lx), halting...\n",
ino, bucket->pil, bucket->iclr, bucket->imap,
pil, inofixup, iclr, imap);
prom_halt();
}
unsigned int build_irq(int pil, int inofixup, unsigned long iclr, unsigned long imap)
{
struct ino_bucket *bucket;
int ino;
if (pil == 0) {
if (iclr != 0UL || imap != 0UL) {
prom_printf("Invalid dummy bucket for PIL0 (%lx:%lx)\n",
iclr, imap);
prom_halt();
}
return __irq(&pil0_dummy_bucket);
}
BUG_ON(tlb_type == hypervisor);
/* RULE: Both must be specified in all other cases. */
if (iclr == 0UL || imap == 0UL) {
prom_printf("Invalid build_irq %d %d %016lx %016lx\n",
pil, inofixup, iclr, imap);
prom_halt();
}
ino = (upa_readl(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
if (ino > NUM_IVECS) {
prom_printf("Invalid INO %04x (%d:%d:%016lx:%016lx)\n",
ino, pil, inofixup, iclr, imap);
prom_halt();
}
bucket = &ivector_table[ino];
if (bucket->flags & IBF_ACTIVE)
build_irq_error("IRQ: Trying to build active INO bucket.\n",
ino, pil, inofixup, iclr, imap, bucket);
if (bucket->irq_info) {
if (bucket->imap != imap || bucket->iclr != iclr)
build_irq_error("IRQ: Trying to reinit INO bucket.\n",
ino, pil, inofixup, iclr, imap, bucket);
goto out;
}
bucket->irq_info = kzalloc(sizeof(struct irq_desc), GFP_ATOMIC);
if (!bucket->irq_info) {
prom_printf("IRQ: Error, kmalloc(irq_desc) failed.\n");
prom_halt();
}
/* Ok, looks good, set it up. Don't touch the irq_chain or
* the pending flag.
*/
bucket->imap = imap;
bucket->iclr = iclr;
bucket->pil = pil;
bucket->flags = 0;
out:
return __irq(bucket);
}
unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino, int pil, unsigned char flags)
{
struct ino_bucket *bucket;
unsigned long sysino;
sysino = sun4v_devino_to_sysino(devhandle, devino);
bucket = &ivector_table[sysino];
/* Catch accidental accesses to these things. IMAP/ICLR handling
* is done by hypervisor calls on sun4v platforms, not by direct
* register accesses.
*
* But we need to make them look unique for the disable_irq() logic
* in free_irq().
*/
bucket->imap = ~0UL - sysino;
bucket->iclr = ~0UL - sysino;
bucket->pil = pil;
bucket->flags = flags;
bucket->irq_info = kzalloc(sizeof(struct irq_desc), GFP_ATOMIC);
if (!bucket->irq_info) {
prom_printf("IRQ: Error, kmalloc(irq_desc) failed.\n");
prom_halt();
}
return __irq(bucket);
}
static void atomic_bucket_insert(struct ino_bucket *bucket)
{
unsigned long pstate;
unsigned int *ent;
__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
__asm__ __volatile__("wrpr %0, %1, %%pstate"
: : "r" (pstate), "i" (PSTATE_IE));
ent = irq_work(smp_processor_id(), bucket->pil);
bucket->irq_chain = *ent;
*ent = __irq(bucket);
__asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
}
static int check_irq_sharing(int pil, unsigned long irqflags)
{
struct irqaction *action, *tmp;
action = *(irq_action + pil);
if (action) {
if ((action->flags & SA_SHIRQ) && (irqflags & SA_SHIRQ)) {
for (tmp = action; tmp->next; tmp = tmp->next)
;
} else {
return -EBUSY;
}
}
return 0;
}
static void append_irq_action(int pil, struct irqaction *action)
{
struct irqaction **pp = irq_action + pil;
while (*pp)
pp = &((*pp)->next);
*pp = action;
}
static struct irqaction *get_action_slot(struct ino_bucket *bucket)
{
struct irq_desc *desc = bucket->irq_info;
int max_irq, i;
max_irq = 1;
if (bucket->flags & IBF_PCI)
max_irq = MAX_IRQ_DESC_ACTION;
for (i = 0; i < max_irq; i++) {
struct irqaction *p = &desc->action[i];
u32 mask = (1 << i);
if (desc->action_active_mask & mask)
continue;
desc->action_active_mask |= mask;
return p;
}
return NULL;
}
int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),
unsigned long irqflags, const char *name, void *dev_id)
{
struct irqaction *action;
struct ino_bucket *bucket = __bucket(irq);
unsigned long flags;
int pending = 0;
if (unlikely(!handler))
return -EINVAL;
if (unlikely(!bucket->irq_info))
return -ENODEV;
if ((bucket != &pil0_dummy_bucket) && (irqflags & SA_SAMPLE_RANDOM)) {
/*
* This function might sleep, we want to call it first,
* outside of the atomic block. In SA_STATIC_ALLOC case,
* random driver's kmalloc will fail, but it is safe.
* If already initialized, random driver will not reinit.
* Yes, this might clear the entropy pool if the wrong
* driver is attempted to be loaded, without actually
* installing a new handler, but is this really a problem,
* only the sysadmin is able to do this.
*/
rand_initialize_irq(irq);
}
spin_lock_irqsave(&irq_action_lock, flags);
if (check_irq_sharing(bucket->pil, irqflags)) {
spin_unlock_irqrestore(&irq_action_lock, flags);
return -EBUSY;
}
action = get_action_slot(bucket);
if (!action) {
spin_unlock_irqrestore(&irq_action_lock, flags);
return -ENOMEM;
}
bucket->flags |= IBF_ACTIVE;
pending = 0;
if (bucket != &pil0_dummy_bucket) {
pending = bucket->pending;
if (pending)
bucket->pending = 0;
}
action->handler = handler;
action->flags = irqflags;
action->name = name;
action->next = NULL;
action->dev_id = dev_id;
put_ino_in_irqaction(action, irq);
put_smpaff_in_irqaction(action, CPU_MASK_NONE);
append_irq_action(bucket->pil, action);
enable_irq(irq);
/* We ate the IVEC already, this makes sure it does not get lost. */
if (pending) {
atomic_bucket_insert(bucket);
set_softint(1 << bucket->pil);
}
spin_unlock_irqrestore(&irq_action_lock, flags);
if (bucket != &pil0_dummy_bucket)
register_irq_proc(__irq_ino(irq));
#ifdef CONFIG_SMP
distribute_irqs();
#endif
return 0;
}
EXPORT_SYMBOL(request_irq);
static struct irqaction *unlink_irq_action(unsigned int irq, void *dev_id)
{
struct ino_bucket *bucket = __bucket(irq);
struct irqaction *action, **pp;
pp = irq_action + bucket->pil;
action = *pp;
if (unlikely(!action))
return NULL;
if (unlikely(!action->handler)) {
printk("Freeing free IRQ %d\n", bucket->pil);
return NULL;
}
while (action && action->dev_id != dev_id) {
pp = &action->next;
action = *pp;
}
if (likely(action))
*pp = action->next;
return action;
}
void free_irq(unsigned int irq, void *dev_id)
{
struct irqaction *action;
struct ino_bucket *bucket;
unsigned long flags;
spin_lock_irqsave(&irq_action_lock, flags);
action = unlink_irq_action(irq, dev_id);
spin_unlock_irqrestore(&irq_action_lock, flags);
if (unlikely(!action))
return;
synchronize_irq(irq);
spin_lock_irqsave(&irq_action_lock, flags);
bucket = __bucket(irq);
if (bucket != &pil0_dummy_bucket) {
struct irq_desc *desc = bucket->irq_info;
int ent, i;
for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) {
struct irqaction *p = &desc->action[i];
if (p == action) {
desc->action_active_mask &= ~(1 << i);
break;
}
}
if (!desc->action_active_mask) {
unsigned long imap = bucket->imap;
/* This unique interrupt source is now inactive. */
bucket->flags &= ~IBF_ACTIVE;
/* See if any other buckets share this bucket's IMAP
* and are still active.
*/
for (ent = 0; ent < NUM_IVECS; ent++) {
struct ino_bucket *bp = &ivector_table[ent];
if (bp != bucket &&
bp->imap == imap &&
(bp->flags & IBF_ACTIVE) != 0)
break;
}
/* Only disable when no other sub-irq levels of
* the same IMAP are active.
*/
if (ent == NUM_IVECS)
disable_irq(irq);
}
}
spin_unlock_irqrestore(&irq_action_lock, flags);
}
EXPORT_SYMBOL(free_irq);
#ifdef CONFIG_SMP
void synchronize_irq(unsigned int irq)
{
struct ino_bucket *bucket = __bucket(irq);
#if 0
/* The following is how I wish I could implement this.
* Unfortunately the ICLR registers are read-only, you can
* only write ICLR_foo values to them. To get the current
* IRQ status you would need to get at the IRQ diag registers
* in the PCI/SBUS controller and the layout of those vary
* from one controller to the next, sigh... -DaveM
*/
unsigned long iclr = bucket->iclr;
while (1) {
u32 tmp = upa_readl(iclr);
if (tmp == ICLR_TRANSMIT ||
tmp == ICLR_PENDING) {
cpu_relax();
continue;
}
break;
}
#else
/* So we have to do this with a INPROGRESS bit just like x86. */
while (bucket->flags & IBF_INPROGRESS)
cpu_relax();
#endif
}
#endif /* CONFIG_SMP */
static void process_bucket(int irq, struct ino_bucket *bp, struct pt_regs *regs)
{
struct irq_desc *desc = bp->irq_info;
unsigned char flags = bp->flags;
u32 action_mask, i;
int random;
bp->flags |= IBF_INPROGRESS;
if (unlikely(!(flags & IBF_ACTIVE))) {
bp->pending = 1;
goto out;
}
if (desc->pre_handler)
desc->pre_handler(bp,
desc->pre_handler_arg1,
desc->pre_handler_arg2);
action_mask = desc->action_active_mask;
random = 0;
for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) {
struct irqaction *p = &desc->action[i];
u32 mask = (1 << i);
if (!(action_mask & mask))
continue;
action_mask &= ~mask;
if (p->handler(__irq(bp), p->dev_id, regs) == IRQ_HANDLED)
random |= p->flags;
if (!action_mask)
break;
}
if (bp->pil != 0) {
if (tlb_type == hypervisor) {
unsigned int ino = __irq_ino(bp);
int err;
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk("sun4v_intr_setstate(%x): "
"err(%d)\n", ino, err);
} else {
upa_writel(ICLR_IDLE, bp->iclr);
}
/* Test and add entropy */
if (random & SA_SAMPLE_RANDOM)
add_interrupt_randomness(irq);
}
out:
bp->flags &= ~IBF_INPROGRESS;
}
void handler_irq(int irq, struct pt_regs *regs)
{
struct ino_bucket *bp;
int cpu = smp_processor_id();
#ifndef CONFIG_SMP
/*
* Check for TICK_INT on level 14 softint.
*/
{
unsigned long clr_mask = 1 << irq;
unsigned long tick_mask = tick_ops->softint_mask;
if ((irq == 14) && (get_softint() & tick_mask)) {
irq = 0;
clr_mask = tick_mask;
}
clear_softint(clr_mask);
}
#else
clear_softint(1 << irq);
#endif
irq_enter();
kstat_this_cpu.irqs[irq]++;
/* Sliiiick... */
#ifndef CONFIG_SMP
bp = ((irq != 0) ?
__bucket(xchg32(irq_work(cpu, irq), 0)) :
&pil0_dummy_bucket);
#else
bp = __bucket(xchg32(irq_work(cpu, irq), 0));
#endif
while (bp) {
struct ino_bucket *nbp = __bucket(bp->irq_chain);
bp->irq_chain = 0;
process_bucket(irq, bp, regs);
bp = nbp;
}
irq_exit();
}
#ifdef CONFIG_BLK_DEV_FD
extern irqreturn_t floppy_interrupt(int, void *, struct pt_regs *);;
/* XXX No easy way to include asm/floppy.h XXX */
extern unsigned char *pdma_vaddr;
extern unsigned long pdma_size;
extern volatile int doing_pdma;
extern unsigned long fdc_status;
irqreturn_t sparc_floppy_irq(int irq, void *dev_cookie, struct pt_regs *regs)
{
if (likely(doing_pdma)) {
void __iomem *stat = (void __iomem *) fdc_status;
unsigned char *vaddr = pdma_vaddr;
unsigned long size = pdma_size;
u8 val;
while (size) {
val = readb(stat);
if (unlikely(!(val & 0x80))) {
pdma_vaddr = vaddr;
pdma_size = size;
return IRQ_HANDLED;
}
if (unlikely(!(val & 0x20))) {
pdma_vaddr = vaddr;
pdma_size = size;
doing_pdma = 0;
goto main_interrupt;
}
if (val & 0x40) {
/* read */
*vaddr++ = readb(stat + 1);
} else {
unsigned char data = *vaddr++;
/* write */
writeb(data, stat + 1);
}
size--;
}
pdma_vaddr = vaddr;
pdma_size = size;
/* Send Terminal Count pulse to floppy controller. */
val = readb(auxio_register);
val |= AUXIO_AUX1_FTCNT;
writeb(val, auxio_register);
val &= ~AUXIO_AUX1_FTCNT;
writeb(val, auxio_register);
doing_pdma = 0;
}
main_interrupt:
return floppy_interrupt(irq, dev_cookie, regs);
}
EXPORT_SYMBOL(sparc_floppy_irq);
#endif
/* We really don't need these at all on the Sparc. We only have
* stubs here because they are exported to modules.
*/
unsigned long probe_irq_on(void)
{
return 0;
}
EXPORT_SYMBOL(probe_irq_on);
int probe_irq_off(unsigned long mask)
{
return 0;
}
EXPORT_SYMBOL(probe_irq_off);
#ifdef CONFIG_SMP
static int retarget_one_irq(struct irqaction *p, int goal_cpu)
{
struct ino_bucket *bucket = get_ino_in_irqaction(p) + ivector_table;
while (!cpu_online(goal_cpu)) {
if (++goal_cpu >= NR_CPUS)
goal_cpu = 0;
}
if (tlb_type == hypervisor) {
unsigned int ino = __irq_ino(bucket);
sun4v_intr_settarget(ino, goal_cpu);
sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
} else {
unsigned long imap = bucket->imap;
unsigned int tid = sun4u_compute_tid(imap, goal_cpu);
upa_writel(tid | IMAP_VALID, imap);
}
do {
if (++goal_cpu >= NR_CPUS)
goal_cpu = 0;
} while (!cpu_online(goal_cpu));
return goal_cpu;
}
/* Called from request_irq. */
static void distribute_irqs(void)
{
unsigned long flags;
int cpu, level;
spin_lock_irqsave(&irq_action_lock, flags);
cpu = 0;
/*
* Skip the timer at [0], and very rare error/power intrs at [15].
* Also level [12], it causes problems on Ex000 systems.
*/
for (level = 1; level < NR_IRQS; level++) {
struct irqaction *p = irq_action[level];
if (level == 12)
continue;
while(p) {
cpu = retarget_one_irq(p, cpu);
p = p->next;
}
}
spin_unlock_irqrestore(&irq_action_lock, flags);
}
#endif
struct sun5_timer {
u64 count0;
u64 limit0;
u64 count1;
u64 limit1;
};
static struct sun5_timer *prom_timers;
static u64 prom_limit0, prom_limit1;
static void map_prom_timers(void)
{
unsigned int addr[3];
int tnode, err;
/* PROM timer node hangs out in the top level of device siblings... */
tnode = prom_finddevice("/counter-timer");
/* Assume if node is not present, PROM uses different tick mechanism
* which we should not care about.
*/
if (tnode == 0 || tnode == -1) {
prom_timers = (struct sun5_timer *) 0;
return;
}
/* If PROM is really using this, it must be mapped by him. */
err = prom_getproperty(tnode, "address", (char *)addr, sizeof(addr));
if (err == -1) {
prom_printf("PROM does not have timer mapped, trying to continue.\n");
prom_timers = (struct sun5_timer *) 0;
return;
}
prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
}
static void kill_prom_timer(void)
{
if (!prom_timers)
return;
/* Save them away for later. */
prom_limit0 = prom_timers->limit0;
prom_limit1 = prom_timers->limit1;
/* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
* We turn both off here just to be paranoid.
*/
prom_timers->limit0 = 0;
prom_timers->limit1 = 0;
/* Wheee, eat the interrupt packet too... */
__asm__ __volatile__(
" mov 0x40, %%g2\n"
" ldxa [%%g0] %0, %%g1\n"
" ldxa [%%g2] %1, %%g1\n"
" stxa %%g0, [%%g0] %0\n"
" membar #Sync\n"
: /* no outputs */
: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
: "g1", "g2");
}
void init_irqwork_curcpu(void)
{
int cpu = hard_smp_processor_id();
memset(__irq_work + cpu, 0, sizeof(struct irq_work_struct));
}
static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type)
{
unsigned long num_entries = 128;
unsigned long status;
status = sun4v_cpu_qconf(type, paddr, num_entries);
if (status != HV_EOK) {
prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
"err %lu\n", type, paddr, num_entries, status);
prom_halt();
}
}
static void __cpuinit sun4v_register_mondo_queues(int this_cpu)
{
struct trap_per_cpu *tb = &trap_block[this_cpu];
register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO);
register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO);
register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR);
register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR);
}
static void __cpuinit alloc_one_mondo(unsigned long *pa_ptr, int use_bootmem)
{
void *page;
if (use_bootmem)
page = alloc_bootmem_low_pages(PAGE_SIZE);
else
page = (void *) get_zeroed_page(GFP_ATOMIC);
if (!page) {
prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
prom_halt();
}
*pa_ptr = __pa(page);
}
static void __cpuinit alloc_one_kbuf(unsigned long *pa_ptr, int use_bootmem)
{
void *page;
if (use_bootmem)
page = alloc_bootmem_low_pages(PAGE_SIZE);
else
page = (void *) get_zeroed_page(GFP_ATOMIC);
if (!page) {
prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
prom_halt();
}
*pa_ptr = __pa(page);
}
static void __cpuinit init_cpu_send_mondo_info(struct trap_per_cpu *tb, int use_bootmem)
{
#ifdef CONFIG_SMP
void *page;
BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
if (use_bootmem)
page = alloc_bootmem_low_pages(PAGE_SIZE);
else
page = (void *) get_zeroed_page(GFP_ATOMIC);
if (!page) {
prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
prom_halt();
}
tb->cpu_mondo_block_pa = __pa(page);
tb->cpu_list_pa = __pa(page + 64);
#endif
}
/* Allocate and register the mondo and error queues for this cpu. */
void __cpuinit sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load)
{
struct trap_per_cpu *tb = &trap_block[cpu];
if (alloc) {
alloc_one_mondo(&tb->cpu_mondo_pa, use_bootmem);
alloc_one_mondo(&tb->dev_mondo_pa, use_bootmem);
alloc_one_mondo(&tb->resum_mondo_pa, use_bootmem);
alloc_one_kbuf(&tb->resum_kernel_buf_pa, use_bootmem);
alloc_one_mondo(&tb->nonresum_mondo_pa, use_bootmem);
alloc_one_kbuf(&tb->nonresum_kernel_buf_pa, use_bootmem);
init_cpu_send_mondo_info(tb, use_bootmem);
}
if (load) {
if (cpu != hard_smp_processor_id()) {
prom_printf("SUN4V: init mondo on cpu %d not %d\n",
cpu, hard_smp_processor_id());
prom_halt();
}
sun4v_register_mondo_queues(cpu);
}
}
/* Only invoked on boot processor. */
void __init init_IRQ(void)
{
map_prom_timers();
kill_prom_timer();
memset(&ivector_table[0], 0, sizeof(ivector_table));
if (tlb_type == hypervisor)
sun4v_init_mondo_queues(1, hard_smp_processor_id(), 1, 1);
/* We need to clear any IRQ's pending in the soft interrupt
* registers, a spurious one could be left around from the
* PROM timer which we just disabled.
*/
clear_softint(get_softint());
/* Now that ivector table is initialized, it is safe
* to receive IRQ vector traps. We will normally take
* one or two right now, in case some device PROM used
* to boot us wants to speak to us. We just ignore them.
*/
__asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
"or %%g1, %0, %%g1\n\t"
"wrpr %%g1, 0x0, %%pstate"
: /* No outputs */
: "i" (PSTATE_IE)
: "g1");
}
static struct proc_dir_entry * root_irq_dir;
static struct proc_dir_entry * irq_dir [NUM_IVECS];
#ifdef CONFIG_SMP
static int irq_affinity_read_proc (char *page, char **start, off_t off,
int count, int *eof, void *data)
{
struct ino_bucket *bp = ivector_table + (long)data;
struct irq_desc *desc = bp->irq_info;
struct irqaction *ap = desc->action;
cpumask_t mask;
int len;
mask = get_smpaff_in_irqaction(ap);
if (cpus_empty(mask))
mask = cpu_online_map;
len = cpumask_scnprintf(page, count, mask);
if (count - len < 2)
return -EINVAL;
len += sprintf(page + len, "\n");
return len;
}
static inline void set_intr_affinity(int irq, cpumask_t hw_aff)
{
struct ino_bucket *bp = ivector_table + irq;
struct irq_desc *desc = bp->irq_info;
struct irqaction *ap = desc->action;
/* Users specify affinity in terms of hw cpu ids.
* As soon as we do this, handler_irq() might see and take action.
*/
put_smpaff_in_irqaction(ap, hw_aff);
/* Migration is simply done by the next cpu to service this
* interrupt.
*/
}
static int irq_affinity_write_proc (struct file *file, const char __user *buffer,
unsigned long count, void *data)
{
int irq = (long) data, full_count = count, err;
cpumask_t new_value;
err = cpumask_parse(buffer, count, new_value);
/*
* Do not allow disabling IRQs completely - it's a too easy
* way to make the system unusable accidentally :-) At least
* one online CPU still has to be targeted.
*/
cpus_and(new_value, new_value, cpu_online_map);
if (cpus_empty(new_value))
return -EINVAL;
set_intr_affinity(irq, new_value);
return full_count;
}
#endif
#define MAX_NAMELEN 10
static void register_irq_proc (unsigned int irq)
{
char name [MAX_NAMELEN];
if (!root_irq_dir || irq_dir[irq])
return;
memset(name, 0, MAX_NAMELEN);
sprintf(name, "%x", irq);
/* create /proc/irq/1234 */
irq_dir[irq] = proc_mkdir(name, root_irq_dir);
#ifdef CONFIG_SMP
/* XXX SMP affinity not supported on starfire yet. */
if (this_is_starfire == 0) {
struct proc_dir_entry *entry;
/* create /proc/irq/1234/smp_affinity */
entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]);
if (entry) {
entry->nlink = 1;
entry->data = (void *)(long)irq;
entry->read_proc = irq_affinity_read_proc;
entry->write_proc = irq_affinity_write_proc;
}
}
#endif
}
void init_irq_proc (void)
{
/* create /proc/irq */
root_irq_dir = proc_mkdir("irq", NULL);
}