linux/drivers/net/wireless/ath/ath10k/bmi.c
Carl Huang 39501ea641 ath10k: download firmware via diag Copy Engine for QCA6174 and QCA9377.
Downloading firmware via BMI protocol takes too long time. For example,
a ~700K bytes firmware takes about 500ms to download via BMI protocol.
This is too long especially in suspend and resume scenario where firmware
is re-downloaded unless WoWLAN is enabled. Downloading firmware via diag CE
can reduce the time to ~40ms for a ~700K bytes firmware binary.

Ath10k driver parses the firmware to segments and downloads the segments
to the specified address directly. If the firmware is compressed or has
unsupported segments, ath10k driver will try BMI download again.

It's tested with QCA6174 hw3.2 and
firmware-6.bin_WLAN.RM.4.4.1-00111-QCARMSWP-1. QCA9377 is also affected.

Signed-off-by: Carl Huang <cjhuang@codeaurora.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2018-09-06 19:10:05 +03:00

485 lines
12 KiB
C

/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2014,2016-2017 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "bmi.h"
#include "hif.h"
#include "debug.h"
#include "htc.h"
#include "hw.h"
void ath10k_bmi_start(struct ath10k *ar)
{
int ret;
ath10k_dbg(ar, ATH10K_DBG_BMI, "bmi start\n");
ar->bmi.done_sent = false;
/* Enable hardware clock to speed up firmware download */
if (ar->hw_params.hw_ops->enable_pll_clk) {
ret = ar->hw_params.hw_ops->enable_pll_clk(ar);
ath10k_dbg(ar, ATH10K_DBG_BMI, "bmi enable pll ret %d\n", ret);
}
}
int ath10k_bmi_done(struct ath10k *ar)
{
struct bmi_cmd cmd;
u32 cmdlen = sizeof(cmd.id) + sizeof(cmd.done);
int ret;
ath10k_dbg(ar, ATH10K_DBG_BMI, "bmi done\n");
if (ar->bmi.done_sent) {
ath10k_dbg(ar, ATH10K_DBG_BMI, "bmi skipped\n");
return 0;
}
ar->bmi.done_sent = true;
cmd.id = __cpu_to_le32(BMI_DONE);
ret = ath10k_hif_exchange_bmi_msg(ar, &cmd, cmdlen, NULL, NULL);
if (ret) {
ath10k_warn(ar, "unable to write to the device: %d\n", ret);
return ret;
}
return 0;
}
int ath10k_bmi_get_target_info(struct ath10k *ar,
struct bmi_target_info *target_info)
{
struct bmi_cmd cmd;
union bmi_resp resp;
u32 cmdlen = sizeof(cmd.id) + sizeof(cmd.get_target_info);
u32 resplen = sizeof(resp.get_target_info);
int ret;
ath10k_dbg(ar, ATH10K_DBG_BMI, "bmi get target info\n");
if (ar->bmi.done_sent) {
ath10k_warn(ar, "BMI Get Target Info Command disallowed\n");
return -EBUSY;
}
cmd.id = __cpu_to_le32(BMI_GET_TARGET_INFO);
ret = ath10k_hif_exchange_bmi_msg(ar, &cmd, cmdlen, &resp, &resplen);
if (ret) {
ath10k_warn(ar, "unable to get target info from device\n");
return ret;
}
if (resplen < sizeof(resp.get_target_info)) {
ath10k_warn(ar, "invalid get_target_info response length (%d)\n",
resplen);
return -EIO;
}
target_info->version = __le32_to_cpu(resp.get_target_info.version);
target_info->type = __le32_to_cpu(resp.get_target_info.type);
return 0;
}
#define TARGET_VERSION_SENTINAL 0xffffffffu
int ath10k_bmi_get_target_info_sdio(struct ath10k *ar,
struct bmi_target_info *target_info)
{
struct bmi_cmd cmd;
union bmi_resp resp;
u32 cmdlen = sizeof(cmd.id) + sizeof(cmd.get_target_info);
u32 resplen, ver_len;
__le32 tmp;
int ret;
ath10k_dbg(ar, ATH10K_DBG_BMI, "bmi get target info SDIO\n");
if (ar->bmi.done_sent) {
ath10k_warn(ar, "BMI Get Target Info Command disallowed\n");
return -EBUSY;
}
cmd.id = __cpu_to_le32(BMI_GET_TARGET_INFO);
/* Step 1: Read 4 bytes of the target info and check if it is
* the special sentinal version word or the first word in the
* version response.
*/
resplen = sizeof(u32);
ret = ath10k_hif_exchange_bmi_msg(ar, &cmd, cmdlen, &tmp, &resplen);
if (ret) {
ath10k_warn(ar, "unable to read from device\n");
return ret;
}
/* Some SDIO boards have a special sentinal byte before the real
* version response.
*/
if (__le32_to_cpu(tmp) == TARGET_VERSION_SENTINAL) {
/* Step 1b: Read the version length */
resplen = sizeof(u32);
ret = ath10k_hif_exchange_bmi_msg(ar, NULL, 0, &tmp,
&resplen);
if (ret) {
ath10k_warn(ar, "unable to read from device\n");
return ret;
}
}
ver_len = __le32_to_cpu(tmp);
/* Step 2: Check the target info length */
if (ver_len != sizeof(resp.get_target_info)) {
ath10k_warn(ar, "Unexpected target info len: %u. Expected: %zu\n",
ver_len, sizeof(resp.get_target_info));
return -EINVAL;
}
/* Step 3: Read the rest of the version response */
resplen = sizeof(resp.get_target_info) - sizeof(u32);
ret = ath10k_hif_exchange_bmi_msg(ar, NULL, 0,
&resp.get_target_info.version,
&resplen);
if (ret) {
ath10k_warn(ar, "unable to read from device\n");
return ret;
}
target_info->version = __le32_to_cpu(resp.get_target_info.version);
target_info->type = __le32_to_cpu(resp.get_target_info.type);
return 0;
}
int ath10k_bmi_read_memory(struct ath10k *ar,
u32 address, void *buffer, u32 length)
{
struct bmi_cmd cmd;
union bmi_resp resp;
u32 cmdlen = sizeof(cmd.id) + sizeof(cmd.read_mem);
u32 rxlen;
int ret;
ath10k_dbg(ar, ATH10K_DBG_BMI, "bmi read address 0x%x length %d\n",
address, length);
if (ar->bmi.done_sent) {
ath10k_warn(ar, "command disallowed\n");
return -EBUSY;
}
while (length) {
rxlen = min_t(u32, length, BMI_MAX_DATA_SIZE);
cmd.id = __cpu_to_le32(BMI_READ_MEMORY);
cmd.read_mem.addr = __cpu_to_le32(address);
cmd.read_mem.len = __cpu_to_le32(rxlen);
ret = ath10k_hif_exchange_bmi_msg(ar, &cmd, cmdlen,
&resp, &rxlen);
if (ret) {
ath10k_warn(ar, "unable to read from the device (%d)\n",
ret);
return ret;
}
memcpy(buffer, resp.read_mem.payload, rxlen);
address += rxlen;
buffer += rxlen;
length -= rxlen;
}
return 0;
}
int ath10k_bmi_write_soc_reg(struct ath10k *ar, u32 address, u32 reg_val)
{
struct bmi_cmd cmd;
u32 cmdlen = sizeof(cmd.id) + sizeof(cmd.write_soc_reg);
int ret;
ath10k_dbg(ar, ATH10K_DBG_BMI,
"bmi write soc register 0x%08x val 0x%08x\n",
address, reg_val);
if (ar->bmi.done_sent) {
ath10k_warn(ar, "bmi write soc register command in progress\n");
return -EBUSY;
}
cmd.id = __cpu_to_le32(BMI_WRITE_SOC_REGISTER);
cmd.write_soc_reg.addr = __cpu_to_le32(address);
cmd.write_soc_reg.value = __cpu_to_le32(reg_val);
ret = ath10k_hif_exchange_bmi_msg(ar, &cmd, cmdlen, NULL, NULL);
if (ret) {
ath10k_warn(ar, "Unable to write soc register to device: %d\n",
ret);
return ret;
}
return 0;
}
int ath10k_bmi_read_soc_reg(struct ath10k *ar, u32 address, u32 *reg_val)
{
struct bmi_cmd cmd;
union bmi_resp resp;
u32 cmdlen = sizeof(cmd.id) + sizeof(cmd.read_soc_reg);
u32 resplen = sizeof(resp.read_soc_reg);
int ret;
ath10k_dbg(ar, ATH10K_DBG_BMI, "bmi read soc register 0x%08x\n",
address);
if (ar->bmi.done_sent) {
ath10k_warn(ar, "bmi read soc register command in progress\n");
return -EBUSY;
}
cmd.id = __cpu_to_le32(BMI_READ_SOC_REGISTER);
cmd.read_soc_reg.addr = __cpu_to_le32(address);
ret = ath10k_hif_exchange_bmi_msg(ar, &cmd, cmdlen, &resp, &resplen);
if (ret) {
ath10k_warn(ar, "Unable to read soc register from device: %d\n",
ret);
return ret;
}
*reg_val = __le32_to_cpu(resp.read_soc_reg.value);
ath10k_dbg(ar, ATH10K_DBG_BMI, "bmi read soc register value 0x%08x\n",
*reg_val);
return 0;
}
int ath10k_bmi_write_memory(struct ath10k *ar,
u32 address, const void *buffer, u32 length)
{
struct bmi_cmd cmd;
u32 hdrlen = sizeof(cmd.id) + sizeof(cmd.write_mem);
u32 txlen;
int ret;
ath10k_dbg(ar, ATH10K_DBG_BMI, "bmi write address 0x%x length %d\n",
address, length);
if (ar->bmi.done_sent) {
ath10k_warn(ar, "command disallowed\n");
return -EBUSY;
}
while (length) {
txlen = min(length, BMI_MAX_DATA_SIZE - hdrlen);
/* copy before roundup to avoid reading beyond buffer*/
memcpy(cmd.write_mem.payload, buffer, txlen);
txlen = roundup(txlen, 4);
cmd.id = __cpu_to_le32(BMI_WRITE_MEMORY);
cmd.write_mem.addr = __cpu_to_le32(address);
cmd.write_mem.len = __cpu_to_le32(txlen);
ret = ath10k_hif_exchange_bmi_msg(ar, &cmd, hdrlen + txlen,
NULL, NULL);
if (ret) {
ath10k_warn(ar, "unable to write to the device (%d)\n",
ret);
return ret;
}
/* fixup roundup() so `length` zeroes out for last chunk */
txlen = min(txlen, length);
address += txlen;
buffer += txlen;
length -= txlen;
}
return 0;
}
int ath10k_bmi_execute(struct ath10k *ar, u32 address, u32 param, u32 *result)
{
struct bmi_cmd cmd;
union bmi_resp resp;
u32 cmdlen = sizeof(cmd.id) + sizeof(cmd.execute);
u32 resplen = sizeof(resp.execute);
int ret;
ath10k_dbg(ar, ATH10K_DBG_BMI, "bmi execute address 0x%x param 0x%x\n",
address, param);
if (ar->bmi.done_sent) {
ath10k_warn(ar, "command disallowed\n");
return -EBUSY;
}
cmd.id = __cpu_to_le32(BMI_EXECUTE);
cmd.execute.addr = __cpu_to_le32(address);
cmd.execute.param = __cpu_to_le32(param);
ret = ath10k_hif_exchange_bmi_msg(ar, &cmd, cmdlen, &resp, &resplen);
if (ret) {
ath10k_warn(ar, "unable to read from the device\n");
return ret;
}
if (resplen < sizeof(resp.execute)) {
ath10k_warn(ar, "invalid execute response length (%d)\n",
resplen);
return -EIO;
}
*result = __le32_to_cpu(resp.execute.result);
ath10k_dbg(ar, ATH10K_DBG_BMI, "bmi execute result 0x%x\n", *result);
return 0;
}
int ath10k_bmi_lz_data(struct ath10k *ar, const void *buffer, u32 length)
{
struct bmi_cmd cmd;
u32 hdrlen = sizeof(cmd.id) + sizeof(cmd.lz_data);
u32 txlen;
int ret;
ath10k_dbg(ar, ATH10K_DBG_BMI, "bmi lz data buffer 0x%pK length %d\n",
buffer, length);
if (ar->bmi.done_sent) {
ath10k_warn(ar, "command disallowed\n");
return -EBUSY;
}
while (length) {
txlen = min(length, BMI_MAX_DATA_SIZE - hdrlen);
WARN_ON_ONCE(txlen & 3);
cmd.id = __cpu_to_le32(BMI_LZ_DATA);
cmd.lz_data.len = __cpu_to_le32(txlen);
memcpy(cmd.lz_data.payload, buffer, txlen);
ret = ath10k_hif_exchange_bmi_msg(ar, &cmd, hdrlen + txlen,
NULL, NULL);
if (ret) {
ath10k_warn(ar, "unable to write to the device\n");
return ret;
}
buffer += txlen;
length -= txlen;
}
return 0;
}
int ath10k_bmi_lz_stream_start(struct ath10k *ar, u32 address)
{
struct bmi_cmd cmd;
u32 cmdlen = sizeof(cmd.id) + sizeof(cmd.lz_start);
int ret;
ath10k_dbg(ar, ATH10K_DBG_BMI, "bmi lz stream start address 0x%x\n",
address);
if (ar->bmi.done_sent) {
ath10k_warn(ar, "command disallowed\n");
return -EBUSY;
}
cmd.id = __cpu_to_le32(BMI_LZ_STREAM_START);
cmd.lz_start.addr = __cpu_to_le32(address);
ret = ath10k_hif_exchange_bmi_msg(ar, &cmd, cmdlen, NULL, NULL);
if (ret) {
ath10k_warn(ar, "unable to Start LZ Stream to the device\n");
return ret;
}
return 0;
}
int ath10k_bmi_fast_download(struct ath10k *ar,
u32 address, const void *buffer, u32 length)
{
u8 trailer[4] = {};
u32 head_len = rounddown(length, 4);
u32 trailer_len = length - head_len;
int ret;
ath10k_dbg(ar, ATH10K_DBG_BMI,
"bmi fast download address 0x%x buffer 0x%pK length %d\n",
address, buffer, length);
ret = ath10k_bmi_lz_stream_start(ar, address);
if (ret)
return ret;
/* copy the last word into a zero padded buffer */
if (trailer_len > 0)
memcpy(trailer, buffer + head_len, trailer_len);
ret = ath10k_bmi_lz_data(ar, buffer, head_len);
if (ret)
return ret;
if (trailer_len > 0)
ret = ath10k_bmi_lz_data(ar, trailer, 4);
if (ret != 0)
return ret;
/*
* Close compressed stream and open a new (fake) one.
* This serves mainly to flush Target caches.
*/
ret = ath10k_bmi_lz_stream_start(ar, 0x00);
return ret;
}
int ath10k_bmi_set_start(struct ath10k *ar, u32 address)
{
struct bmi_cmd cmd;
u32 cmdlen = sizeof(cmd.id) + sizeof(cmd.set_app_start);
int ret;
if (ar->bmi.done_sent) {
ath10k_warn(ar, "bmi set start command disallowed\n");
return -EBUSY;
}
cmd.id = __cpu_to_le32(BMI_SET_APP_START);
cmd.set_app_start.addr = __cpu_to_le32(address);
ret = ath10k_hif_exchange_bmi_msg(ar, &cmd, cmdlen, NULL, NULL);
if (ret) {
ath10k_warn(ar, "unable to set start to the device:%d\n", ret);
return ret;
}
return 0;
}