linux/mm/shuffle.c
Pingfan Liu e03d1f7834 mm/sparse: rename pfn_present() to pfn_in_present_section()
After introducing mem sub section concept, pfn_present() loses its literal
meaning, and will not be necessary a truth on partial populated mem
section.

Since all of the callers use it to judge an absent section, it is better
to rename pfn_present() as pfn_in_present_section().

Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>		[powerpc]
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Leonardo Bras <leonardo@linux.ibm.com>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Link: http://lkml.kernel.org/r/1581919110-29575-1-git-send-email-kernelfans@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:30 -07:00

208 lines
5.7 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright(c) 2018 Intel Corporation. All rights reserved.
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/mmzone.h>
#include <linux/random.h>
#include <linux/moduleparam.h>
#include "internal.h"
#include "shuffle.h"
DEFINE_STATIC_KEY_FALSE(page_alloc_shuffle_key);
static unsigned long shuffle_state __ro_after_init;
/*
* Depending on the architecture, module parameter parsing may run
* before, or after the cache detection. SHUFFLE_FORCE_DISABLE prevents,
* or reverts the enabling of the shuffle implementation. SHUFFLE_ENABLE
* attempts to turn on the implementation, but aborts if it finds
* SHUFFLE_FORCE_DISABLE already set.
*/
__meminit void page_alloc_shuffle(enum mm_shuffle_ctl ctl)
{
if (ctl == SHUFFLE_FORCE_DISABLE)
set_bit(SHUFFLE_FORCE_DISABLE, &shuffle_state);
if (test_bit(SHUFFLE_FORCE_DISABLE, &shuffle_state)) {
if (test_and_clear_bit(SHUFFLE_ENABLE, &shuffle_state))
static_branch_disable(&page_alloc_shuffle_key);
} else if (ctl == SHUFFLE_ENABLE
&& !test_and_set_bit(SHUFFLE_ENABLE, &shuffle_state))
static_branch_enable(&page_alloc_shuffle_key);
}
static bool shuffle_param;
static int shuffle_show(char *buffer, const struct kernel_param *kp)
{
return sprintf(buffer, "%c\n", test_bit(SHUFFLE_ENABLE, &shuffle_state)
? 'Y' : 'N');
}
static __meminit int shuffle_store(const char *val,
const struct kernel_param *kp)
{
int rc = param_set_bool(val, kp);
if (rc < 0)
return rc;
if (shuffle_param)
page_alloc_shuffle(SHUFFLE_ENABLE);
else
page_alloc_shuffle(SHUFFLE_FORCE_DISABLE);
return 0;
}
module_param_call(shuffle, shuffle_store, shuffle_show, &shuffle_param, 0400);
/*
* For two pages to be swapped in the shuffle, they must be free (on a
* 'free_area' lru), have the same order, and have the same migratetype.
*/
static struct page * __meminit shuffle_valid_page(unsigned long pfn, int order)
{
struct page *page;
/*
* Given we're dealing with randomly selected pfns in a zone we
* need to ask questions like...
*/
/* ...is the pfn even in the memmap? */
if (!pfn_valid_within(pfn))
return NULL;
/* ...is the pfn in a present section or a hole? */
if (!pfn_in_present_section(pfn))
return NULL;
/* ...is the page free and currently on a free_area list? */
page = pfn_to_page(pfn);
if (!PageBuddy(page))
return NULL;
/*
* ...is the page on the same list as the page we will
* shuffle it with?
*/
if (page_order(page) != order)
return NULL;
return page;
}
/*
* Fisher-Yates shuffle the freelist which prescribes iterating through an
* array, pfns in this case, and randomly swapping each entry with another in
* the span, end_pfn - start_pfn.
*
* To keep the implementation simple it does not attempt to correct for sources
* of bias in the distribution, like modulo bias or pseudo-random number
* generator bias. I.e. the expectation is that this shuffling raises the bar
* for attacks that exploit the predictability of page allocations, but need not
* be a perfect shuffle.
*/
#define SHUFFLE_RETRY 10
void __meminit __shuffle_zone(struct zone *z)
{
unsigned long i, flags;
unsigned long start_pfn = z->zone_start_pfn;
unsigned long end_pfn = zone_end_pfn(z);
const int order = SHUFFLE_ORDER;
const int order_pages = 1 << order;
spin_lock_irqsave(&z->lock, flags);
start_pfn = ALIGN(start_pfn, order_pages);
for (i = start_pfn; i < end_pfn; i += order_pages) {
unsigned long j;
int migratetype, retry;
struct page *page_i, *page_j;
/*
* We expect page_i, in the sub-range of a zone being added
* (@start_pfn to @end_pfn), to more likely be valid compared to
* page_j randomly selected in the span @zone_start_pfn to
* @spanned_pages.
*/
page_i = shuffle_valid_page(i, order);
if (!page_i)
continue;
for (retry = 0; retry < SHUFFLE_RETRY; retry++) {
/*
* Pick a random order aligned page in the zone span as
* a swap target. If the selected pfn is a hole, retry
* up to SHUFFLE_RETRY attempts find a random valid pfn
* in the zone.
*/
j = z->zone_start_pfn +
ALIGN_DOWN(get_random_long() % z->spanned_pages,
order_pages);
page_j = shuffle_valid_page(j, order);
if (page_j && page_j != page_i)
break;
}
if (retry >= SHUFFLE_RETRY) {
pr_debug("%s: failed to swap %#lx\n", __func__, i);
continue;
}
/*
* Each migratetype corresponds to its own list, make sure the
* types match otherwise we're moving pages to lists where they
* do not belong.
*/
migratetype = get_pageblock_migratetype(page_i);
if (get_pageblock_migratetype(page_j) != migratetype) {
pr_debug("%s: migratetype mismatch %#lx\n", __func__, i);
continue;
}
list_swap(&page_i->lru, &page_j->lru);
pr_debug("%s: swap: %#lx -> %#lx\n", __func__, i, j);
/* take it easy on the zone lock */
if ((i % (100 * order_pages)) == 0) {
spin_unlock_irqrestore(&z->lock, flags);
cond_resched();
spin_lock_irqsave(&z->lock, flags);
}
}
spin_unlock_irqrestore(&z->lock, flags);
}
/**
* shuffle_free_memory - reduce the predictability of the page allocator
* @pgdat: node page data
*/
void __meminit __shuffle_free_memory(pg_data_t *pgdat)
{
struct zone *z;
for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
shuffle_zone(z);
}
void add_to_free_area_random(struct page *page, struct free_area *area,
int migratetype)
{
static u64 rand;
static u8 rand_bits;
/*
* The lack of locking is deliberate. If 2 threads race to
* update the rand state it just adds to the entropy.
*/
if (rand_bits == 0) {
rand_bits = 64;
rand = get_random_u64();
}
if (rand & 1)
add_to_free_area(page, area, migratetype);
else
add_to_free_area_tail(page, area, migratetype);
rand_bits--;
rand >>= 1;
}