mirror of
https://github.com/torvalds/linux.git
synced 2024-11-28 15:11:31 +00:00
dbaf0624ff
This patch introduces virtio-crypto driver for Linux Kernel. The virtio crypto device is a virtual cryptography device as well as a kind of virtual hardware accelerator for virtual machines. The encryption anddecryption requests are placed in the data queue and are ultimately handled by thebackend crypto accelerators. The second queue is the control queue used to create or destroy sessions for symmetric algorithms and will control some advanced features in the future. The virtio crypto device provides the following cryptoservices: CIPHER, MAC, HASH, and AEAD. For more information about virtio-crypto device, please see: http://qemu-project.org/Features/VirtioCrypto CC: Michael S. Tsirkin <mst@redhat.com> CC: Cornelia Huck <cornelia.huck@de.ibm.com> CC: Stefan Hajnoczi <stefanha@redhat.com> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Halil Pasic <pasic@linux.vnet.ibm.com> CC: David S. Miller <davem@davemloft.net> CC: Zeng Xin <xin.zeng@intel.com> Signed-off-by: Gonglei <arei.gonglei@huawei.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
561 lines
16 KiB
Plaintext
561 lines
16 KiB
Plaintext
|
|
menuconfig CRYPTO_HW
|
|
bool "Hardware crypto devices"
|
|
default y
|
|
---help---
|
|
Say Y here to get to see options for hardware crypto devices and
|
|
processors. This option alone does not add any kernel code.
|
|
|
|
If you say N, all options in this submenu will be skipped and disabled.
|
|
|
|
if CRYPTO_HW
|
|
|
|
config CRYPTO_DEV_PADLOCK
|
|
tristate "Support for VIA PadLock ACE"
|
|
depends on X86 && !UML
|
|
help
|
|
Some VIA processors come with an integrated crypto engine
|
|
(so called VIA PadLock ACE, Advanced Cryptography Engine)
|
|
that provides instructions for very fast cryptographic
|
|
operations with supported algorithms.
|
|
|
|
The instructions are used only when the CPU supports them.
|
|
Otherwise software encryption is used.
|
|
|
|
config CRYPTO_DEV_PADLOCK_AES
|
|
tristate "PadLock driver for AES algorithm"
|
|
depends on CRYPTO_DEV_PADLOCK
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_AES
|
|
help
|
|
Use VIA PadLock for AES algorithm.
|
|
|
|
Available in VIA C3 and newer CPUs.
|
|
|
|
If unsure say M. The compiled module will be
|
|
called padlock-aes.
|
|
|
|
config CRYPTO_DEV_PADLOCK_SHA
|
|
tristate "PadLock driver for SHA1 and SHA256 algorithms"
|
|
depends on CRYPTO_DEV_PADLOCK
|
|
select CRYPTO_HASH
|
|
select CRYPTO_SHA1
|
|
select CRYPTO_SHA256
|
|
help
|
|
Use VIA PadLock for SHA1/SHA256 algorithms.
|
|
|
|
Available in VIA C7 and newer processors.
|
|
|
|
If unsure say M. The compiled module will be
|
|
called padlock-sha.
|
|
|
|
config CRYPTO_DEV_GEODE
|
|
tristate "Support for the Geode LX AES engine"
|
|
depends on X86_32 && PCI
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
Say 'Y' here to use the AMD Geode LX processor on-board AES
|
|
engine for the CryptoAPI AES algorithm.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called geode-aes.
|
|
|
|
config ZCRYPT
|
|
tristate "Support for PCI-attached cryptographic adapters"
|
|
depends on S390
|
|
select HW_RANDOM
|
|
help
|
|
Select this option if you want to use a PCI-attached cryptographic
|
|
adapter like:
|
|
+ PCI Cryptographic Accelerator (PCICA)
|
|
+ PCI Cryptographic Coprocessor (PCICC)
|
|
+ PCI-X Cryptographic Coprocessor (PCIXCC)
|
|
+ Crypto Express2 Coprocessor (CEX2C)
|
|
+ Crypto Express2 Accelerator (CEX2A)
|
|
+ Crypto Express3 Coprocessor (CEX3C)
|
|
+ Crypto Express3 Accelerator (CEX3A)
|
|
|
|
config CRYPTO_SHA1_S390
|
|
tristate "SHA1 digest algorithm"
|
|
depends on S390
|
|
select CRYPTO_HASH
|
|
help
|
|
This is the s390 hardware accelerated implementation of the
|
|
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
|
|
|
|
It is available as of z990.
|
|
|
|
config CRYPTO_SHA256_S390
|
|
tristate "SHA256 digest algorithm"
|
|
depends on S390
|
|
select CRYPTO_HASH
|
|
help
|
|
This is the s390 hardware accelerated implementation of the
|
|
SHA256 secure hash standard (DFIPS 180-2).
|
|
|
|
It is available as of z9.
|
|
|
|
config CRYPTO_SHA512_S390
|
|
tristate "SHA384 and SHA512 digest algorithm"
|
|
depends on S390
|
|
select CRYPTO_HASH
|
|
help
|
|
This is the s390 hardware accelerated implementation of the
|
|
SHA512 secure hash standard.
|
|
|
|
It is available as of z10.
|
|
|
|
config CRYPTO_DES_S390
|
|
tristate "DES and Triple DES cipher algorithms"
|
|
depends on S390
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_DES
|
|
help
|
|
This is the s390 hardware accelerated implementation of the
|
|
DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
|
|
|
|
As of z990 the ECB and CBC mode are hardware accelerated.
|
|
As of z196 the CTR mode is hardware accelerated.
|
|
|
|
config CRYPTO_AES_S390
|
|
tristate "AES cipher algorithms"
|
|
depends on S390
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
This is the s390 hardware accelerated implementation of the
|
|
AES cipher algorithms (FIPS-197).
|
|
|
|
As of z9 the ECB and CBC modes are hardware accelerated
|
|
for 128 bit keys.
|
|
As of z10 the ECB and CBC modes are hardware accelerated
|
|
for all AES key sizes.
|
|
As of z196 the CTR mode is hardware accelerated for all AES
|
|
key sizes and XTS mode is hardware accelerated for 256 and
|
|
512 bit keys.
|
|
|
|
config S390_PRNG
|
|
tristate "Pseudo random number generator device driver"
|
|
depends on S390
|
|
default "m"
|
|
help
|
|
Select this option if you want to use the s390 pseudo random number
|
|
generator. The PRNG is part of the cryptographic processor functions
|
|
and uses triple-DES to generate secure random numbers like the
|
|
ANSI X9.17 standard. User-space programs access the
|
|
pseudo-random-number device through the char device /dev/prandom.
|
|
|
|
It is available as of z9.
|
|
|
|
config CRYPTO_GHASH_S390
|
|
tristate "GHASH digest algorithm"
|
|
depends on S390
|
|
select CRYPTO_HASH
|
|
help
|
|
This is the s390 hardware accelerated implementation of the
|
|
GHASH message digest algorithm for GCM (Galois/Counter Mode).
|
|
|
|
It is available as of z196.
|
|
|
|
config CRYPTO_CRC32_S390
|
|
tristate "CRC-32 algorithms"
|
|
depends on S390
|
|
select CRYPTO_HASH
|
|
select CRC32
|
|
help
|
|
Select this option if you want to use hardware accelerated
|
|
implementations of CRC algorithms. With this option, you
|
|
can optimize the computation of CRC-32 (IEEE 802.3 Ethernet)
|
|
and CRC-32C (Castagnoli).
|
|
|
|
It is available with IBM z13 or later.
|
|
|
|
config CRYPTO_DEV_MV_CESA
|
|
tristate "Marvell's Cryptographic Engine"
|
|
depends on PLAT_ORION
|
|
select CRYPTO_AES
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_HASH
|
|
select SRAM
|
|
help
|
|
This driver allows you to utilize the Cryptographic Engines and
|
|
Security Accelerator (CESA) which can be found on the Marvell Orion
|
|
and Kirkwood SoCs, such as QNAP's TS-209.
|
|
|
|
Currently the driver supports AES in ECB and CBC mode without DMA.
|
|
|
|
config CRYPTO_DEV_MARVELL_CESA
|
|
tristate "New Marvell's Cryptographic Engine driver"
|
|
depends on PLAT_ORION || ARCH_MVEBU
|
|
select CRYPTO_AES
|
|
select CRYPTO_DES
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_HASH
|
|
select SRAM
|
|
help
|
|
This driver allows you to utilize the Cryptographic Engines and
|
|
Security Accelerator (CESA) which can be found on the Armada 370.
|
|
This driver supports CPU offload through DMA transfers.
|
|
|
|
This driver is aimed at replacing the mv_cesa driver. This will only
|
|
happen once it has received proper testing.
|
|
|
|
config CRYPTO_DEV_NIAGARA2
|
|
tristate "Niagara2 Stream Processing Unit driver"
|
|
select CRYPTO_DES
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_HASH
|
|
select CRYPTO_MD5
|
|
select CRYPTO_SHA1
|
|
select CRYPTO_SHA256
|
|
depends on SPARC64
|
|
help
|
|
Each core of a Niagara2 processor contains a Stream
|
|
Processing Unit, which itself contains several cryptographic
|
|
sub-units. One set provides the Modular Arithmetic Unit,
|
|
used for SSL offload. The other set provides the Cipher
|
|
Group, which can perform encryption, decryption, hashing,
|
|
checksumming, and raw copies.
|
|
|
|
config CRYPTO_DEV_HIFN_795X
|
|
tristate "Driver HIFN 795x crypto accelerator chips"
|
|
select CRYPTO_DES
|
|
select CRYPTO_BLKCIPHER
|
|
select HW_RANDOM if CRYPTO_DEV_HIFN_795X_RNG
|
|
depends on PCI
|
|
depends on !ARCH_DMA_ADDR_T_64BIT
|
|
help
|
|
This option allows you to have support for HIFN 795x crypto adapters.
|
|
|
|
config CRYPTO_DEV_HIFN_795X_RNG
|
|
bool "HIFN 795x random number generator"
|
|
depends on CRYPTO_DEV_HIFN_795X
|
|
help
|
|
Select this option if you want to enable the random number generator
|
|
on the HIFN 795x crypto adapters.
|
|
|
|
source drivers/crypto/caam/Kconfig
|
|
|
|
config CRYPTO_DEV_TALITOS
|
|
tristate "Talitos Freescale Security Engine (SEC)"
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_AUTHENC
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_HASH
|
|
select HW_RANDOM
|
|
depends on FSL_SOC
|
|
help
|
|
Say 'Y' here to use the Freescale Security Engine (SEC)
|
|
to offload cryptographic algorithm computation.
|
|
|
|
The Freescale SEC is present on PowerQUICC 'E' processors, such
|
|
as the MPC8349E and MPC8548E.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called talitos.
|
|
|
|
config CRYPTO_DEV_TALITOS1
|
|
bool "SEC1 (SEC 1.0 and SEC Lite 1.2)"
|
|
depends on CRYPTO_DEV_TALITOS
|
|
depends on PPC_8xx || PPC_82xx
|
|
default y
|
|
help
|
|
Say 'Y' here to use the Freescale Security Engine (SEC) version 1.0
|
|
found on MPC82xx or the Freescale Security Engine (SEC Lite)
|
|
version 1.2 found on MPC8xx
|
|
|
|
config CRYPTO_DEV_TALITOS2
|
|
bool "SEC2+ (SEC version 2.0 or upper)"
|
|
depends on CRYPTO_DEV_TALITOS
|
|
default y if !PPC_8xx
|
|
help
|
|
Say 'Y' here to use the Freescale Security Engine (SEC)
|
|
version 2 and following as found on MPC83xx, MPC85xx, etc ...
|
|
|
|
config CRYPTO_DEV_IXP4XX
|
|
tristate "Driver for IXP4xx crypto hardware acceleration"
|
|
depends on ARCH_IXP4XX && IXP4XX_QMGR && IXP4XX_NPE
|
|
select CRYPTO_DES
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_AUTHENC
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
Driver for the IXP4xx NPE crypto engine.
|
|
|
|
config CRYPTO_DEV_PPC4XX
|
|
tristate "Driver AMCC PPC4xx crypto accelerator"
|
|
depends on PPC && 4xx
|
|
select CRYPTO_HASH
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
This option allows you to have support for AMCC crypto acceleration.
|
|
|
|
config HW_RANDOM_PPC4XX
|
|
bool "PowerPC 4xx generic true random number generator support"
|
|
depends on CRYPTO_DEV_PPC4XX && HW_RANDOM
|
|
default y
|
|
---help---
|
|
This option provides the kernel-side support for the TRNG hardware
|
|
found in the security function of some PowerPC 4xx SoCs.
|
|
|
|
config CRYPTO_DEV_OMAP_SHAM
|
|
tristate "Support for OMAP MD5/SHA1/SHA2 hw accelerator"
|
|
depends on ARCH_OMAP2PLUS
|
|
select CRYPTO_SHA1
|
|
select CRYPTO_MD5
|
|
select CRYPTO_SHA256
|
|
select CRYPTO_SHA512
|
|
select CRYPTO_HMAC
|
|
help
|
|
OMAP processors have MD5/SHA1/SHA2 hw accelerator. Select this if you
|
|
want to use the OMAP module for MD5/SHA1/SHA2 algorithms.
|
|
|
|
config CRYPTO_DEV_OMAP_AES
|
|
tristate "Support for OMAP AES hw engine"
|
|
depends on ARCH_OMAP2 || ARCH_OMAP3 || ARCH_OMAP2PLUS
|
|
select CRYPTO_AES
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_ENGINE
|
|
select CRYPTO_CBC
|
|
select CRYPTO_ECB
|
|
select CRYPTO_CTR
|
|
help
|
|
OMAP processors have AES module accelerator. Select this if you
|
|
want to use the OMAP module for AES algorithms.
|
|
|
|
config CRYPTO_DEV_OMAP_DES
|
|
tristate "Support for OMAP DES/3DES hw engine"
|
|
depends on ARCH_OMAP2PLUS
|
|
select CRYPTO_DES
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_ENGINE
|
|
help
|
|
OMAP processors have DES/3DES module accelerator. Select this if you
|
|
want to use the OMAP module for DES and 3DES algorithms. Currently
|
|
the ECB and CBC modes of operation are supported by the driver. Also
|
|
accesses made on unaligned boundaries are supported.
|
|
|
|
config CRYPTO_DEV_PICOXCELL
|
|
tristate "Support for picoXcell IPSEC and Layer2 crypto engines"
|
|
depends on ARCH_PICOXCELL && HAVE_CLK
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_AES
|
|
select CRYPTO_AUTHENC
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_DES
|
|
select CRYPTO_CBC
|
|
select CRYPTO_ECB
|
|
select CRYPTO_SEQIV
|
|
help
|
|
This option enables support for the hardware offload engines in the
|
|
Picochip picoXcell SoC devices. Select this for IPSEC ESP offload
|
|
and for 3gpp Layer 2 ciphering support.
|
|
|
|
Saying m here will build a module named pipcoxcell_crypto.
|
|
|
|
config CRYPTO_DEV_SAHARA
|
|
tristate "Support for SAHARA crypto accelerator"
|
|
depends on ARCH_MXC && OF
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_AES
|
|
select CRYPTO_ECB
|
|
help
|
|
This option enables support for the SAHARA HW crypto accelerator
|
|
found in some Freescale i.MX chips.
|
|
|
|
config CRYPTO_DEV_MXC_SCC
|
|
tristate "Support for Freescale Security Controller (SCC)"
|
|
depends on ARCH_MXC && OF
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_DES
|
|
help
|
|
This option enables support for the Security Controller (SCC)
|
|
found in Freescale i.MX25 chips.
|
|
|
|
config CRYPTO_DEV_S5P
|
|
tristate "Support for Samsung S5PV210/Exynos crypto accelerator"
|
|
depends on ARCH_S5PV210 || ARCH_EXYNOS || COMPILE_TEST
|
|
depends on HAS_IOMEM && HAS_DMA
|
|
select CRYPTO_AES
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
This option allows you to have support for S5P crypto acceleration.
|
|
Select this to offload Samsung S5PV210 or S5PC110, Exynos from AES
|
|
algorithms execution.
|
|
|
|
config CRYPTO_DEV_NX
|
|
bool "Support for IBM PowerPC Nest (NX) cryptographic acceleration"
|
|
depends on PPC64
|
|
help
|
|
This enables support for the NX hardware cryptographic accelerator
|
|
coprocessor that is in IBM PowerPC P7+ or later processors. This
|
|
does not actually enable any drivers, it only allows you to select
|
|
which acceleration type (encryption and/or compression) to enable.
|
|
|
|
if CRYPTO_DEV_NX
|
|
source "drivers/crypto/nx/Kconfig"
|
|
endif
|
|
|
|
config CRYPTO_DEV_UX500
|
|
tristate "Driver for ST-Ericsson UX500 crypto hardware acceleration"
|
|
depends on ARCH_U8500
|
|
help
|
|
Driver for ST-Ericsson UX500 crypto engine.
|
|
|
|
if CRYPTO_DEV_UX500
|
|
source "drivers/crypto/ux500/Kconfig"
|
|
endif # if CRYPTO_DEV_UX500
|
|
|
|
config CRYPTO_DEV_BFIN_CRC
|
|
tristate "Support for Blackfin CRC hardware"
|
|
depends on BF60x
|
|
help
|
|
Newer Blackfin processors have CRC hardware. Select this if you
|
|
want to use the Blackfin CRC module.
|
|
|
|
config CRYPTO_DEV_ATMEL_AES
|
|
tristate "Support for Atmel AES hw accelerator"
|
|
depends on HAS_DMA
|
|
depends on AT_XDMAC || AT_HDMAC || COMPILE_TEST
|
|
select CRYPTO_AES
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
Some Atmel processors have AES hw accelerator.
|
|
Select this if you want to use the Atmel module for
|
|
AES algorithms.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called atmel-aes.
|
|
|
|
config CRYPTO_DEV_ATMEL_TDES
|
|
tristate "Support for Atmel DES/TDES hw accelerator"
|
|
depends on ARCH_AT91
|
|
select CRYPTO_DES
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
Some Atmel processors have DES/TDES hw accelerator.
|
|
Select this if you want to use the Atmel module for
|
|
DES/TDES algorithms.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called atmel-tdes.
|
|
|
|
config CRYPTO_DEV_ATMEL_SHA
|
|
tristate "Support for Atmel SHA hw accelerator"
|
|
depends on ARCH_AT91
|
|
select CRYPTO_HASH
|
|
help
|
|
Some Atmel processors have SHA1/SHA224/SHA256/SHA384/SHA512
|
|
hw accelerator.
|
|
Select this if you want to use the Atmel module for
|
|
SHA1/SHA224/SHA256/SHA384/SHA512 algorithms.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called atmel-sha.
|
|
|
|
config CRYPTO_DEV_CCP
|
|
bool "Support for AMD Cryptographic Coprocessor"
|
|
depends on ((X86 && PCI) || (ARM64 && (OF_ADDRESS || ACPI))) && HAS_IOMEM
|
|
help
|
|
The AMD Cryptographic Coprocessor provides hardware offload support
|
|
for encryption, hashing and related operations.
|
|
|
|
if CRYPTO_DEV_CCP
|
|
source "drivers/crypto/ccp/Kconfig"
|
|
endif
|
|
|
|
config CRYPTO_DEV_MXS_DCP
|
|
tristate "Support for Freescale MXS DCP"
|
|
depends on (ARCH_MXS || ARCH_MXC)
|
|
select STMP_DEVICE
|
|
select CRYPTO_CBC
|
|
select CRYPTO_ECB
|
|
select CRYPTO_AES
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_HASH
|
|
help
|
|
The Freescale i.MX23/i.MX28 has SHA1/SHA256 and AES128 CBC/ECB
|
|
co-processor on the die.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called mxs-dcp.
|
|
|
|
source "drivers/crypto/qat/Kconfig"
|
|
|
|
config CRYPTO_DEV_QCE
|
|
tristate "Qualcomm crypto engine accelerator"
|
|
depends on (ARCH_QCOM || COMPILE_TEST) && HAS_DMA && HAS_IOMEM
|
|
select CRYPTO_AES
|
|
select CRYPTO_DES
|
|
select CRYPTO_ECB
|
|
select CRYPTO_CBC
|
|
select CRYPTO_XTS
|
|
select CRYPTO_CTR
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
This driver supports Qualcomm crypto engine accelerator
|
|
hardware. To compile this driver as a module, choose M here. The
|
|
module will be called qcrypto.
|
|
|
|
config CRYPTO_DEV_VMX
|
|
bool "Support for VMX cryptographic acceleration instructions"
|
|
depends on PPC64 && VSX
|
|
help
|
|
Support for VMX cryptographic acceleration instructions.
|
|
|
|
source "drivers/crypto/vmx/Kconfig"
|
|
|
|
config CRYPTO_DEV_IMGTEC_HASH
|
|
tristate "Imagination Technologies hardware hash accelerator"
|
|
depends on MIPS || COMPILE_TEST
|
|
depends on HAS_DMA
|
|
select CRYPTO_MD5
|
|
select CRYPTO_SHA1
|
|
select CRYPTO_SHA256
|
|
select CRYPTO_HASH
|
|
help
|
|
This driver interfaces with the Imagination Technologies
|
|
hardware hash accelerator. Supporting MD5/SHA1/SHA224/SHA256
|
|
hashing algorithms.
|
|
|
|
config CRYPTO_DEV_SUN4I_SS
|
|
tristate "Support for Allwinner Security System cryptographic accelerator"
|
|
depends on ARCH_SUNXI && !64BIT
|
|
select CRYPTO_MD5
|
|
select CRYPTO_SHA1
|
|
select CRYPTO_AES
|
|
select CRYPTO_DES
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
Some Allwinner SoC have a crypto accelerator named
|
|
Security System. Select this if you want to use it.
|
|
The Security System handle AES/DES/3DES ciphers in CBC mode
|
|
and SHA1 and MD5 hash algorithms.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called sun4i-ss.
|
|
|
|
config CRYPTO_DEV_ROCKCHIP
|
|
tristate "Rockchip's Cryptographic Engine driver"
|
|
depends on OF && ARCH_ROCKCHIP
|
|
select CRYPTO_AES
|
|
select CRYPTO_DES
|
|
select CRYPTO_MD5
|
|
select CRYPTO_SHA1
|
|
select CRYPTO_SHA256
|
|
select CRYPTO_HASH
|
|
select CRYPTO_BLKCIPHER
|
|
|
|
help
|
|
This driver interfaces with the hardware crypto accelerator.
|
|
Supporting cbc/ecb chainmode, and aes/des/des3_ede cipher mode.
|
|
|
|
source "drivers/crypto/chelsio/Kconfig"
|
|
|
|
source "drivers/crypto/virtio/Kconfig"
|
|
|
|
endif # CRYPTO_HW
|