linux/include
Yang Shi 5db4f15c4f mm: memory: add orig_pmd to struct vm_fault
Pach series "mm: thp: use generic THP migration for NUMA hinting fault", v3.

When the THP NUMA fault support was added THP migration was not supported
yet.  So the ad hoc THP migration was implemented in NUMA fault handling.
Since v4.14 THP migration has been supported so it doesn't make too much
sense to still keep another THP migration implementation rather than using
the generic migration code.  It is definitely a maintenance burden to keep
two THP migration implementation for different code paths and it is more
error prone.  Using the generic THP migration implementation allows us
remove the duplicate code and some hacks needed by the old ad hoc
implementation.

A quick grep shows x86_64, PowerPC (book3s), ARM64 ans S390 support both
THP and NUMA balancing.  The most of them support THP migration except for
S390.  Zi Yan tried to add THP migration support for S390 before but it
was not accepted due to the design of S390 PMD.  For the discussion,
please see: https://lkml.org/lkml/2018/4/27/953.

Per the discussion with Gerald Schaefer in v1 it is acceptible to skip
huge PMD for S390 for now.

I saw there were some hacks about gup from git history, but I didn't
figure out if they have been removed or not since I just found FOLL_NUMA
code in the current gup implementation and they seems useful.

Patch #1 ~ #2 are preparation patches.
Patch #3 is the real meat.
Patch #4 ~ #6 keep consistent counters and behaviors with before.
Patch #7 skips change huge PMD to prot_none if thp migration is not supported.

Test
----
Did some tests to measure the latency of do_huge_pmd_numa_page.  The test
VM has 80 vcpus and 64G memory.  The test would create 2 processes to
consume 128G memory together which would incur memory pressure to cause
THP splits.  And it also creates 80 processes to hog cpu, and the memory
consumer processes are bound to different nodes periodically in order to
increase NUMA faults.

The below test script is used:

echo 3 > /proc/sys/vm/drop_caches

# Run stress-ng for 24 hours
./stress-ng/stress-ng --vm 2 --vm-bytes 64G --timeout 24h &
PID=$!

./stress-ng/stress-ng --cpu $NR_CPUS --timeout 24h &

# Wait for vm stressors forked
sleep 5

PID_1=`pgrep -P $PID | awk 'NR == 1'`
PID_2=`pgrep -P $PID | awk 'NR == 2'`

JOB1=`pgrep -P $PID_1`
JOB2=`pgrep -P $PID_2`

# Bind load jobs to different nodes periodically to force generate
# cross node memory access
while [ -d "/proc/$PID" ]
do
        taskset -apc 8 $JOB1
        taskset -apc 8 $JOB2
        sleep 300
        taskset -apc 58 $JOB1
        taskset -apc 58 $JOB2
        sleep 300
done

With the above test the histogram of latency of do_huge_pmd_numa_page is
as shown below.  Since the number of do_huge_pmd_numa_page varies
drastically for each run (should be due to scheduler), so I converted the
raw number to percentage.

                             patched               base
@us[stress-ng]:
[0]                          3.57%                 0.16%
[1]                          55.68%                18.36%
[2, 4)                       10.46%                40.44%
[4, 8)                       7.26%                 17.82%
[8, 16)                      21.12%                13.41%
[16, 32)                     1.06%                 4.27%
[32, 64)                     0.56%                 4.07%
[64, 128)                    0.16%                 0.35%
[128, 256)                   < 0.1%                < 0.1%
[256, 512)                   < 0.1%                < 0.1%
[512, 1K)                    < 0.1%                < 0.1%
[1K, 2K)                     < 0.1%                < 0.1%
[2K, 4K)                     < 0.1%                < 0.1%
[4K, 8K)                     < 0.1%                < 0.1%
[8K, 16K)                    < 0.1%                < 0.1%
[16K, 32K)                   < 0.1%                < 0.1%
[32K, 64K)                   < 0.1%                < 0.1%

Per the result, patched kernel is even slightly better than the base
kernel.  I think this is because the lock contention against THP split is
less than base kernel due to the refactor.

To exclude the affect from THP split, I also did test w/o memory pressure.
No obvious regression is spotted.  The below is the test result *w/o*
memory pressure.

                           patched                  base
@us[stress-ng]:
[0]                        7.97%                   18.4%
[1]                        69.63%                  58.24%
[2, 4)                     4.18%                   2.63%
[4, 8)                     0.22%                   0.17%
[8, 16)                    1.03%                   0.92%
[16, 32)                   0.14%                   < 0.1%
[32, 64)                   < 0.1%                  < 0.1%
[64, 128)                  < 0.1%                  < 0.1%
[128, 256)                 < 0.1%                  < 0.1%
[256, 512)                 0.45%                   1.19%
[512, 1K)                  15.45%                  17.27%
[1K, 2K)                   < 0.1%                  < 0.1%
[2K, 4K)                   < 0.1%                  < 0.1%
[4K, 8K)                   < 0.1%                  < 0.1%
[8K, 16K)                  0.86%                   0.88%
[16K, 32K)                 < 0.1%                  0.15%
[32K, 64K)                 < 0.1%                  < 0.1%
[64K, 128K)                < 0.1%                  < 0.1%
[128K, 256K)               < 0.1%                  < 0.1%

The series also survived a series of tests that exercise NUMA balancing
migrations by Mel.

This patch (of 7):

Add orig_pmd to struct vm_fault so the "orig_pmd" parameter used by huge
page fault could be removed, just like its PTE counterpart does.

Link: https://lkml.kernel.org/r/20210518200801.7413-1-shy828301@gmail.com
Link: https://lkml.kernel.org/r/20210518200801.7413-2-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:30 -07:00
..
acpi Merge branches 'acpi-cppc', 'acpi-video' and 'acpi-utils' 2021-04-26 17:04:27 +02:00
asm-generic mm: replace CONFIG_NEED_MULTIPLE_NODES with CONFIG_NUMA 2021-06-29 10:53:55 -07:00
clocksource ARM: platform support for Apple M1 2021-04-26 12:30:36 -07:00
crypto
drm
dt-bindings dt-bindings: connector: Add PD rev 2.0 VDO definition 2021-06-04 11:43:01 +02:00
keys integrity-v5.13 2021-05-01 15:32:18 -07:00
kunit kunit: make test->lock irq safe 2021-06-29 10:53:46 -07:00
kvm
linux mm: memory: add orig_pmd to struct vm_fault 2021-06-30 20:47:30 -07:00
math-emu
media media updates for v5.13-rc1 2021-04-28 09:24:36 -07:00
memory
misc
net net: inline function get_net_ns_by_fd if NET_NS is disabled 2021-06-15 11:00:45 -07:00
pcmcia
ras
rdma
scsi SCSI misc on 20210428 2021-04-28 17:22:10 -07:00
soc Networking changes for 5.13. 2021-04-29 11:57:23 -07:00
sound ASoC: Fixes for v5.13 2021-05-25 08:58:01 +02:00
target
trace include/trace/events/vmscan.h: remove mm_vmscan_inactive_list_is_low 2021-06-30 20:47:28 -07:00
uapi mm/mempolicy: don't handle MPOL_LOCAL like a fake MPOL_PREFERRED policy 2021-06-30 20:47:29 -07:00
vdso
video
xen xen/arm: move xen_swiotlb_detect to arm/swiotlb-xen.h 2021-05-14 15:52:05 +02:00