linux/fs/bcachefs/buckets.c
Kent Overstreet 6309589468 bcachefs: Improved bch2_fcollapse()
Move extents instead of copying them - this way, we can iterate over
only live extents, not the entire keyspace. Also, this means we can
mostly skip running triggers.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:08:26 -04:00

2029 lines
49 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Code for manipulating bucket marks for garbage collection.
*
* Copyright 2014 Datera, Inc.
*
* Bucket states:
* - free bucket: mark == 0
* The bucket contains no data and will not be read
*
* - allocator bucket: owned_by_allocator == 1
* The bucket is on a free list, or it is an open bucket
*
* - cached bucket: owned_by_allocator == 0 &&
* dirty_sectors == 0 &&
* cached_sectors > 0
* The bucket contains data but may be safely discarded as there are
* enough replicas of the data on other cache devices, or it has been
* written back to the backing device
*
* - dirty bucket: owned_by_allocator == 0 &&
* dirty_sectors > 0
* The bucket contains data that we must not discard (either only copy,
* or one of the 'main copies' for data requiring multiple replicas)
*
* - metadata bucket: owned_by_allocator == 0 && is_metadata == 1
* This is a btree node, journal or gen/prio bucket
*
* Lifecycle:
*
* bucket invalidated => bucket on freelist => open bucket =>
* [dirty bucket =>] cached bucket => bucket invalidated => ...
*
* Note that cache promotion can skip the dirty bucket step, as data
* is copied from a deeper tier to a shallower tier, onto a cached
* bucket.
* Note also that a cached bucket can spontaneously become dirty --
* see below.
*
* Only a traversal of the key space can determine whether a bucket is
* truly dirty or cached.
*
* Transitions:
*
* - free => allocator: bucket was invalidated
* - cached => allocator: bucket was invalidated
*
* - allocator => dirty: open bucket was filled up
* - allocator => cached: open bucket was filled up
* - allocator => metadata: metadata was allocated
*
* - dirty => cached: dirty sectors were copied to a deeper tier
* - dirty => free: dirty sectors were overwritten or moved (copy gc)
* - cached => free: cached sectors were overwritten
*
* - metadata => free: metadata was freed
*
* Oddities:
* - cached => dirty: a device was removed so formerly replicated data
* is no longer sufficiently replicated
* - free => cached: cannot happen
* - free => dirty: cannot happen
* - free => metadata: cannot happen
*/
#include "bcachefs.h"
#include "alloc_background.h"
#include "bset.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "buckets.h"
#include "ec.h"
#include "error.h"
#include "movinggc.h"
#include "replicas.h"
#include "trace.h"
#include <linux/preempt.h>
/*
* Clear journal_seq_valid for buckets for which it's not needed, to prevent
* wraparound:
*/
void bch2_bucket_seq_cleanup(struct bch_fs *c)
{
u64 journal_seq = atomic64_read(&c->journal.seq);
u16 last_seq_ondisk = c->journal.last_seq_ondisk;
struct bch_dev *ca;
struct bucket_array *buckets;
struct bucket *g;
struct bucket_mark m;
unsigned i;
if (journal_seq - c->last_bucket_seq_cleanup <
(1U << (BUCKET_JOURNAL_SEQ_BITS - 2)))
return;
c->last_bucket_seq_cleanup = journal_seq;
for_each_member_device(ca, c, i) {
down_read(&ca->bucket_lock);
buckets = bucket_array(ca);
for_each_bucket(g, buckets) {
bucket_cmpxchg(g, m, ({
if (!m.journal_seq_valid ||
bucket_needs_journal_commit(m, last_seq_ondisk))
break;
m.journal_seq_valid = 0;
}));
}
up_read(&ca->bucket_lock);
}
}
void bch2_fs_usage_initialize(struct bch_fs *c)
{
struct bch_fs_usage *usage;
unsigned i;
percpu_down_write(&c->mark_lock);
usage = c->usage_base;
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
bch2_fs_usage_acc_to_base(c, i);
for (i = 0; i < BCH_REPLICAS_MAX; i++)
usage->reserved += usage->persistent_reserved[i];
for (i = 0; i < c->replicas.nr; i++) {
struct bch_replicas_entry *e =
cpu_replicas_entry(&c->replicas, i);
switch (e->data_type) {
case BCH_DATA_BTREE:
usage->btree += usage->replicas[i];
break;
case BCH_DATA_USER:
usage->data += usage->replicas[i];
break;
case BCH_DATA_CACHED:
usage->cached += usage->replicas[i];
break;
}
}
percpu_up_write(&c->mark_lock);
}
void bch2_fs_usage_scratch_put(struct bch_fs *c, struct bch_fs_usage_online *fs_usage)
{
if (fs_usage == c->usage_scratch)
mutex_unlock(&c->usage_scratch_lock);
else
kfree(fs_usage);
}
struct bch_fs_usage_online *bch2_fs_usage_scratch_get(struct bch_fs *c)
{
struct bch_fs_usage_online *ret;
unsigned bytes = sizeof(struct bch_fs_usage_online) + sizeof(u64) *
READ_ONCE(c->replicas.nr);
ret = kzalloc(bytes, GFP_NOWAIT|__GFP_NOWARN);
if (ret)
return ret;
if (mutex_trylock(&c->usage_scratch_lock))
goto out_pool;
ret = kzalloc(bytes, GFP_NOFS);
if (ret)
return ret;
mutex_lock(&c->usage_scratch_lock);
out_pool:
ret = c->usage_scratch;
memset(ret, 0, bytes);
return ret;
}
struct bch_dev_usage bch2_dev_usage_read(struct bch_fs *c, struct bch_dev *ca)
{
struct bch_dev_usage ret;
memset(&ret, 0, sizeof(ret));
acc_u64s_percpu((u64 *) &ret,
(u64 __percpu *) ca->usage[0],
sizeof(ret) / sizeof(u64));
return ret;
}
static inline struct bch_fs_usage *fs_usage_ptr(struct bch_fs *c,
unsigned journal_seq,
bool gc)
{
return this_cpu_ptr(gc
? c->usage_gc
: c->usage[journal_seq & 1]);
}
u64 bch2_fs_usage_read_one(struct bch_fs *c, u64 *v)
{
ssize_t offset = v - (u64 *) c->usage_base;
unsigned seq;
u64 ret;
BUG_ON(offset < 0 || offset >= fs_usage_u64s(c));
percpu_rwsem_assert_held(&c->mark_lock);
do {
seq = read_seqcount_begin(&c->usage_lock);
ret = *v +
percpu_u64_get((u64 __percpu *) c->usage[0] + offset) +
percpu_u64_get((u64 __percpu *) c->usage[1] + offset);
} while (read_seqcount_retry(&c->usage_lock, seq));
return ret;
}
struct bch_fs_usage_online *bch2_fs_usage_read(struct bch_fs *c)
{
struct bch_fs_usage_online *ret;
unsigned seq, i, u64s;
percpu_down_read(&c->mark_lock);
ret = kmalloc(sizeof(struct bch_fs_usage_online) +
sizeof(u64) + c->replicas.nr, GFP_NOFS);
if (unlikely(!ret)) {
percpu_up_read(&c->mark_lock);
return NULL;
}
ret->online_reserved = percpu_u64_get(c->online_reserved);
u64s = fs_usage_u64s(c);
do {
seq = read_seqcount_begin(&c->usage_lock);
memcpy(&ret->u, c->usage_base, u64s * sizeof(u64));
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
acc_u64s_percpu((u64 *) &ret->u, (u64 __percpu *) c->usage[i], u64s);
} while (read_seqcount_retry(&c->usage_lock, seq));
return ret;
}
void bch2_fs_usage_acc_to_base(struct bch_fs *c, unsigned idx)
{
unsigned u64s = fs_usage_u64s(c);
BUG_ON(idx >= ARRAY_SIZE(c->usage));
preempt_disable();
write_seqcount_begin(&c->usage_lock);
acc_u64s_percpu((u64 *) c->usage_base,
(u64 __percpu *) c->usage[idx], u64s);
percpu_memset(c->usage[idx], 0, u64s * sizeof(u64));
write_seqcount_end(&c->usage_lock);
preempt_enable();
}
void bch2_fs_usage_to_text(struct printbuf *out,
struct bch_fs *c,
struct bch_fs_usage_online *fs_usage)
{
unsigned i;
pr_buf(out, "capacity:\t\t\t%llu\n", c->capacity);
pr_buf(out, "hidden:\t\t\t\t%llu\n",
fs_usage->u.hidden);
pr_buf(out, "data:\t\t\t\t%llu\n",
fs_usage->u.data);
pr_buf(out, "cached:\t\t\t\t%llu\n",
fs_usage->u.cached);
pr_buf(out, "reserved:\t\t\t%llu\n",
fs_usage->u.reserved);
pr_buf(out, "nr_inodes:\t\t\t%llu\n",
fs_usage->u.nr_inodes);
pr_buf(out, "online reserved:\t\t%llu\n",
fs_usage->online_reserved);
for (i = 0;
i < ARRAY_SIZE(fs_usage->u.persistent_reserved);
i++) {
pr_buf(out, "%u replicas:\n", i + 1);
pr_buf(out, "\treserved:\t\t%llu\n",
fs_usage->u.persistent_reserved[i]);
}
for (i = 0; i < c->replicas.nr; i++) {
struct bch_replicas_entry *e =
cpu_replicas_entry(&c->replicas, i);
pr_buf(out, "\t");
bch2_replicas_entry_to_text(out, e);
pr_buf(out, ":\t%llu\n", fs_usage->u.replicas[i]);
}
}
#define RESERVE_FACTOR 6
static u64 reserve_factor(u64 r)
{
return r + (round_up(r, (1 << RESERVE_FACTOR)) >> RESERVE_FACTOR);
}
static u64 avail_factor(u64 r)
{
return (r << RESERVE_FACTOR) / ((1 << RESERVE_FACTOR) + 1);
}
u64 bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage_online *fs_usage)
{
return min(fs_usage->u.hidden +
fs_usage->u.btree +
fs_usage->u.data +
reserve_factor(fs_usage->u.reserved +
fs_usage->online_reserved),
c->capacity);
}
static struct bch_fs_usage_short
__bch2_fs_usage_read_short(struct bch_fs *c)
{
struct bch_fs_usage_short ret;
u64 data, reserved;
ret.capacity = c->capacity -
bch2_fs_usage_read_one(c, &c->usage_base->hidden);
data = bch2_fs_usage_read_one(c, &c->usage_base->data) +
bch2_fs_usage_read_one(c, &c->usage_base->btree);
reserved = bch2_fs_usage_read_one(c, &c->usage_base->reserved) +
percpu_u64_get(c->online_reserved);
ret.used = min(ret.capacity, data + reserve_factor(reserved));
ret.free = ret.capacity - ret.used;
ret.nr_inodes = bch2_fs_usage_read_one(c, &c->usage_base->nr_inodes);
return ret;
}
struct bch_fs_usage_short
bch2_fs_usage_read_short(struct bch_fs *c)
{
struct bch_fs_usage_short ret;
percpu_down_read(&c->mark_lock);
ret = __bch2_fs_usage_read_short(c);
percpu_up_read(&c->mark_lock);
return ret;
}
static inline int is_unavailable_bucket(struct bucket_mark m)
{
return !is_available_bucket(m);
}
static inline int is_fragmented_bucket(struct bucket_mark m,
struct bch_dev *ca)
{
if (!m.owned_by_allocator &&
m.data_type == BCH_DATA_USER &&
bucket_sectors_used(m))
return max_t(int, 0, (int) ca->mi.bucket_size -
bucket_sectors_used(m));
return 0;
}
static inline enum bch_data_type bucket_type(struct bucket_mark m)
{
return m.cached_sectors && !m.dirty_sectors
? BCH_DATA_CACHED
: m.data_type;
}
static bool bucket_became_unavailable(struct bucket_mark old,
struct bucket_mark new)
{
return is_available_bucket(old) &&
!is_available_bucket(new);
}
int bch2_fs_usage_apply(struct bch_fs *c,
struct bch_fs_usage_online *src,
struct disk_reservation *disk_res,
unsigned journal_seq)
{
struct bch_fs_usage *dst = fs_usage_ptr(c, journal_seq, false);
s64 added = src->u.data + src->u.reserved;
s64 should_not_have_added;
int ret = 0;
percpu_rwsem_assert_held(&c->mark_lock);
/*
* Not allowed to reduce sectors_available except by getting a
* reservation:
*/
should_not_have_added = added - (s64) (disk_res ? disk_res->sectors : 0);
if (WARN_ONCE(should_not_have_added > 0,
"disk usage increased by %lli more than reservation of %llu",
added, disk_res ? disk_res->sectors : 0)) {
atomic64_sub(should_not_have_added, &c->sectors_available);
added -= should_not_have_added;
ret = -1;
}
if (added > 0) {
disk_res->sectors -= added;
src->online_reserved -= added;
}
this_cpu_add(*c->online_reserved, src->online_reserved);
preempt_disable();
acc_u64s((u64 *) dst, (u64 *) &src->u, fs_usage_u64s(c));
preempt_enable();
return ret;
}
static inline void account_bucket(struct bch_fs_usage *fs_usage,
struct bch_dev_usage *dev_usage,
enum bch_data_type type,
int nr, s64 size)
{
if (type == BCH_DATA_SB || type == BCH_DATA_JOURNAL)
fs_usage->hidden += size;
dev_usage->buckets[type] += nr;
}
static void bch2_dev_usage_update(struct bch_fs *c, struct bch_dev *ca,
struct bch_fs_usage *fs_usage,
struct bucket_mark old, struct bucket_mark new,
bool gc)
{
struct bch_dev_usage *dev_usage;
percpu_rwsem_assert_held(&c->mark_lock);
preempt_disable();
dev_usage = this_cpu_ptr(ca->usage[gc]);
if (bucket_type(old))
account_bucket(fs_usage, dev_usage, bucket_type(old),
-1, -ca->mi.bucket_size);
if (bucket_type(new))
account_bucket(fs_usage, dev_usage, bucket_type(new),
1, ca->mi.bucket_size);
dev_usage->buckets_ec += (int) new.stripe - (int) old.stripe;
dev_usage->buckets_unavailable +=
is_unavailable_bucket(new) - is_unavailable_bucket(old);
dev_usage->sectors[old.data_type] -= old.dirty_sectors;
dev_usage->sectors[new.data_type] += new.dirty_sectors;
dev_usage->sectors[BCH_DATA_CACHED] +=
(int) new.cached_sectors - (int) old.cached_sectors;
dev_usage->sectors_fragmented +=
is_fragmented_bucket(new, ca) - is_fragmented_bucket(old, ca);
preempt_enable();
if (!is_available_bucket(old) && is_available_bucket(new))
bch2_wake_allocator(ca);
}
void bch2_dev_usage_from_buckets(struct bch_fs *c)
{
struct bch_dev *ca;
struct bucket_mark old = { .v.counter = 0 };
struct bucket_array *buckets;
struct bucket *g;
unsigned i;
int cpu;
c->usage_base->hidden = 0;
for_each_member_device(ca, c, i) {
for_each_possible_cpu(cpu)
memset(per_cpu_ptr(ca->usage[0], cpu), 0,
sizeof(*ca->usage[0]));
buckets = bucket_array(ca);
for_each_bucket(g, buckets)
bch2_dev_usage_update(c, ca, c->usage_base,
old, g->mark, false);
}
}
static inline void update_replicas(struct bch_fs *c,
struct bch_fs_usage *fs_usage,
struct bch_replicas_entry *r,
s64 sectors)
{
int idx = bch2_replicas_entry_idx(c, r);
BUG_ON(idx < 0);
switch (r->data_type) {
case BCH_DATA_BTREE:
fs_usage->btree += sectors;
break;
case BCH_DATA_USER:
fs_usage->data += sectors;
break;
case BCH_DATA_CACHED:
fs_usage->cached += sectors;
break;
}
fs_usage->replicas[idx] += sectors;
}
static inline void update_cached_sectors(struct bch_fs *c,
struct bch_fs_usage *fs_usage,
unsigned dev, s64 sectors)
{
struct bch_replicas_padded r;
bch2_replicas_entry_cached(&r.e, dev);
update_replicas(c, fs_usage, &r.e, sectors);
}
static struct replicas_delta_list *
replicas_deltas_realloc(struct btree_trans *trans, unsigned more)
{
struct replicas_delta_list *d = trans->fs_usage_deltas;
unsigned new_size = d ? (d->size + more) * 2 : 128;
if (!d || d->used + more > d->size) {
d = krealloc(d, sizeof(*d) + new_size, GFP_NOIO|__GFP_ZERO);
BUG_ON(!d);
d->size = new_size;
trans->fs_usage_deltas = d;
}
return d;
}
static inline void update_replicas_list(struct btree_trans *trans,
struct bch_replicas_entry *r,
s64 sectors)
{
struct replicas_delta_list *d;
struct replicas_delta *n;
unsigned b;
if (!sectors)
return;
b = replicas_entry_bytes(r) + 8;
d = replicas_deltas_realloc(trans, b);
n = (void *) d->d + d->used;
n->delta = sectors;
memcpy((void *) n + offsetof(struct replicas_delta, r),
r, replicas_entry_bytes(r));
d->used += b;
}
static inline void update_cached_sectors_list(struct btree_trans *trans,
unsigned dev, s64 sectors)
{
struct bch_replicas_padded r;
bch2_replicas_entry_cached(&r.e, dev);
update_replicas_list(trans, &r.e, sectors);
}
void bch2_replicas_delta_list_apply(struct bch_fs *c,
struct bch_fs_usage *fs_usage,
struct replicas_delta_list *r)
{
struct replicas_delta *d = r->d;
struct replicas_delta *top = (void *) r->d + r->used;
acc_u64s((u64 *) fs_usage,
(u64 *) &r->fs_usage, sizeof(*fs_usage) / sizeof(u64));
while (d != top) {
BUG_ON((void *) d > (void *) top);
update_replicas(c, fs_usage, &d->r, d->delta);
d = (void *) d + replicas_entry_bytes(&d->r) + 8;
}
}
#define do_mark_fn(fn, c, pos, flags, ...) \
({ \
int gc, ret = 0; \
\
percpu_rwsem_assert_held(&c->mark_lock); \
\
for (gc = 0; gc < 2 && !ret; gc++) \
if (!gc == !(flags & BCH_BUCKET_MARK_GC) || \
(gc && gc_visited(c, pos))) \
ret = fn(c, __VA_ARGS__, gc); \
ret; \
})
static int __bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, struct bucket_mark *ret,
bool gc)
{
struct bch_fs_usage *fs_usage = fs_usage_ptr(c, 0, gc);
struct bucket *g = __bucket(ca, b, gc);
struct bucket_mark old, new;
old = bucket_cmpxchg(g, new, ({
BUG_ON(!is_available_bucket(new));
new.owned_by_allocator = true;
new.data_type = 0;
new.cached_sectors = 0;
new.dirty_sectors = 0;
new.gen++;
}));
bch2_dev_usage_update(c, ca, fs_usage, old, new, gc);
if (old.cached_sectors)
update_cached_sectors(c, fs_usage, ca->dev_idx,
-((s64) old.cached_sectors));
if (!gc)
*ret = old;
return 0;
}
void bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, struct bucket_mark *old)
{
do_mark_fn(__bch2_invalidate_bucket, c, gc_phase(GC_PHASE_START), 0,
ca, b, old);
if (!old->owned_by_allocator && old->cached_sectors)
trace_invalidate(ca, bucket_to_sector(ca, b),
old->cached_sectors);
}
static int __bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, bool owned_by_allocator,
bool gc)
{
struct bch_fs_usage *fs_usage = fs_usage_ptr(c, 0, gc);
struct bucket *g = __bucket(ca, b, gc);
struct bucket_mark old, new;
old = bucket_cmpxchg(g, new, ({
new.owned_by_allocator = owned_by_allocator;
}));
bch2_dev_usage_update(c, ca, fs_usage, old, new, gc);
BUG_ON(!gc &&
!owned_by_allocator && !old.owned_by_allocator);
return 0;
}
void bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, bool owned_by_allocator,
struct gc_pos pos, unsigned flags)
{
preempt_disable();
do_mark_fn(__bch2_mark_alloc_bucket, c, pos, flags,
ca, b, owned_by_allocator);
preempt_enable();
}
static int bch2_mark_alloc(struct bch_fs *c, struct bkey_s_c k,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags)
{
bool gc = flags & BCH_BUCKET_MARK_GC;
struct bkey_alloc_unpacked u;
struct bch_dev *ca;
struct bucket *g;
struct bucket_mark old, m;
/*
* alloc btree is read in by bch2_alloc_read, not gc:
*/
if ((flags & BCH_BUCKET_MARK_GC) &&
!(flags & BCH_BUCKET_MARK_BUCKET_INVALIDATE))
return 0;
ca = bch_dev_bkey_exists(c, k.k->p.inode);
if (k.k->p.offset >= ca->mi.nbuckets)
return 0;
g = __bucket(ca, k.k->p.offset, gc);
u = bch2_alloc_unpack(k);
old = bucket_cmpxchg(g, m, ({
m.gen = u.gen;
m.data_type = u.data_type;
m.dirty_sectors = u.dirty_sectors;
m.cached_sectors = u.cached_sectors;
if (journal_seq) {
m.journal_seq_valid = 1;
m.journal_seq = journal_seq;
}
}));
if (!(flags & BCH_BUCKET_MARK_ALLOC_READ))
bch2_dev_usage_update(c, ca, fs_usage, old, m, gc);
g->io_time[READ] = u.read_time;
g->io_time[WRITE] = u.write_time;
g->oldest_gen = u.oldest_gen;
g->gen_valid = 1;
/*
* need to know if we're getting called from the invalidate path or
* not:
*/
if ((flags & BCH_BUCKET_MARK_BUCKET_INVALIDATE) &&
old.cached_sectors) {
update_cached_sectors(c, fs_usage, ca->dev_idx,
-old.cached_sectors);
trace_invalidate(ca, bucket_to_sector(ca, k.k->p.offset),
old.cached_sectors);
}
return 0;
}
#define checked_add(a, b) \
({ \
unsigned _res = (unsigned) (a) + (b); \
bool overflow = _res > U16_MAX; \
if (overflow) \
_res = U16_MAX; \
(a) = _res; \
overflow; \
})
static int __bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, enum bch_data_type type,
unsigned sectors, bool gc)
{
struct bucket *g = __bucket(ca, b, gc);
struct bucket_mark old, new;
bool overflow;
BUG_ON(type != BCH_DATA_SB &&
type != BCH_DATA_JOURNAL);
old = bucket_cmpxchg(g, new, ({
new.data_type = type;
overflow = checked_add(new.dirty_sectors, sectors);
}));
bch2_fs_inconsistent_on(old.data_type &&
old.data_type != type, c,
"different types of data in same bucket: %s, %s",
bch2_data_types[old.data_type],
bch2_data_types[type]);
bch2_fs_inconsistent_on(overflow, c,
"bucket sector count overflow: %u + %u > U16_MAX",
old.dirty_sectors, sectors);
if (c)
bch2_dev_usage_update(c, ca, fs_usage_ptr(c, 0, gc),
old, new, gc);
return 0;
}
void bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca,
size_t b, enum bch_data_type type,
unsigned sectors, struct gc_pos pos,
unsigned flags)
{
BUG_ON(type != BCH_DATA_SB &&
type != BCH_DATA_JOURNAL);
preempt_disable();
if (likely(c)) {
do_mark_fn(__bch2_mark_metadata_bucket, c, pos, flags,
ca, b, type, sectors);
} else {
__bch2_mark_metadata_bucket(c, ca, b, type, sectors, 0);
}
preempt_enable();
}
static s64 ptr_disk_sectors_delta(struct extent_ptr_decoded p,
unsigned offset, s64 delta,
unsigned flags)
{
if (flags & BCH_BUCKET_MARK_OVERWRITE_SPLIT) {
BUG_ON(offset + -delta > p.crc.live_size);
return -((s64) ptr_disk_sectors(p)) +
__ptr_disk_sectors(p, offset) +
__ptr_disk_sectors(p, p.crc.live_size -
offset + delta);
} else if (flags & BCH_BUCKET_MARK_OVERWRITE) {
BUG_ON(offset + -delta > p.crc.live_size);
return -((s64) ptr_disk_sectors(p)) +
__ptr_disk_sectors(p, p.crc.live_size +
delta);
} else {
return ptr_disk_sectors(p);
}
}
static void bucket_set_stripe(struct bch_fs *c,
const struct bch_stripe *v,
struct bch_fs_usage *fs_usage,
u64 journal_seq,
unsigned flags)
{
bool enabled = !(flags & BCH_BUCKET_MARK_OVERWRITE);
bool gc = flags & BCH_BUCKET_MARK_GC;
unsigned i;
for (i = 0; i < v->nr_blocks; i++) {
const struct bch_extent_ptr *ptr = v->ptrs + i;
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
struct bucket *g = PTR_BUCKET(ca, ptr, gc);
struct bucket_mark new, old;
old = bucket_cmpxchg(g, new, ({
new.stripe = enabled;
if (journal_seq) {
new.journal_seq_valid = 1;
new.journal_seq = journal_seq;
}
}));
bch2_dev_usage_update(c, ca, fs_usage, old, new, gc);
/*
* XXX write repair code for these, flag stripe as possibly bad
*/
if (old.gen != ptr->gen)
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
"stripe with stale pointer");
#if 0
/*
* We'd like to check for these, but these checks don't work
* yet:
*/
if (old.stripe && enabled)
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
"multiple stripes using same bucket");
if (!old.stripe && !enabled)
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
"deleting stripe but bucket not marked as stripe bucket");
#endif
}
}
static bool bch2_mark_pointer(struct bch_fs *c,
struct extent_ptr_decoded p,
s64 sectors, enum bch_data_type data_type,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags)
{
bool gc = flags & BCH_BUCKET_MARK_GC;
struct bucket_mark old, new;
struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
struct bucket *g = PTR_BUCKET(ca, &p.ptr, gc);
bool overflow;
u64 v;
v = atomic64_read(&g->_mark.v);
do {
new.v.counter = old.v.counter = v;
/*
* Check this after reading bucket mark to guard against
* the allocator invalidating a bucket after we've already
* checked the gen
*/
if (gen_after(p.ptr.gen, new.gen)) {
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
"pointer gen in the future");
return true;
}
if (new.gen != p.ptr.gen) {
/* XXX write repair code for this */
if (!p.ptr.cached &&
test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
"stale dirty pointer");
return true;
}
if (!p.ptr.cached)
overflow = checked_add(new.dirty_sectors, sectors);
else
overflow = checked_add(new.cached_sectors, sectors);
if (!new.dirty_sectors &&
!new.cached_sectors) {
new.data_type = 0;
if (journal_seq) {
new.journal_seq_valid = 1;
new.journal_seq = journal_seq;
}
} else {
new.data_type = data_type;
}
if (flags & BCH_BUCKET_MARK_NOATOMIC) {
g->_mark = new;
break;
}
} while ((v = atomic64_cmpxchg(&g->_mark.v,
old.v.counter,
new.v.counter)) != old.v.counter);
if (old.data_type && old.data_type != data_type)
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
"bucket %u:%zu gen %u different types of data in same bucket: %s, %s",
p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
new.gen,
bch2_data_types[old.data_type],
bch2_data_types[data_type]);
bch2_fs_inconsistent_on(overflow, c,
"bucket sector count overflow: %u + %lli > U16_MAX",
!p.ptr.cached
? old.dirty_sectors
: old.cached_sectors, sectors);
bch2_dev_usage_update(c, ca, fs_usage, old, new, gc);
BUG_ON(!gc && bucket_became_unavailable(old, new));
return false;
}
static int bch2_mark_stripe_ptr(struct bch_fs *c,
struct bch_extent_stripe_ptr p,
enum bch_data_type data_type,
struct bch_fs_usage *fs_usage,
s64 sectors, unsigned flags)
{
bool gc = flags & BCH_BUCKET_MARK_GC;
struct stripe *m;
unsigned old, new, nr_data;
int blocks_nonempty_delta;
s64 parity_sectors;
BUG_ON(!sectors);
m = genradix_ptr(&c->stripes[gc], p.idx);
spin_lock(&c->ec_stripes_heap_lock);
if (!m || !m->alive) {
spin_unlock(&c->ec_stripes_heap_lock);
bch_err_ratelimited(c, "pointer to nonexistent stripe %llu",
(u64) p.idx);
return -EIO;
}
BUG_ON(m->r.e.data_type != data_type);
nr_data = m->nr_blocks - m->nr_redundant;
parity_sectors = DIV_ROUND_UP(abs(sectors) * m->nr_redundant, nr_data);
if (sectors < 0)
parity_sectors = -parity_sectors;
sectors += parity_sectors;
old = m->block_sectors[p.block];
m->block_sectors[p.block] += sectors;
new = m->block_sectors[p.block];
blocks_nonempty_delta = (int) !!new - (int) !!old;
if (blocks_nonempty_delta) {
m->blocks_nonempty += blocks_nonempty_delta;
if (!gc)
bch2_stripes_heap_update(c, m, p.idx);
}
m->dirty = true;
spin_unlock(&c->ec_stripes_heap_lock);
update_replicas(c, fs_usage, &m->r.e, sectors);
return 0;
}
static int bch2_mark_extent(struct bch_fs *c, struct bkey_s_c k,
unsigned offset, s64 sectors,
enum bch_data_type data_type,
struct bch_fs_usage *fs_usage,
unsigned journal_seq, unsigned flags)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
struct bch_replicas_padded r;
s64 dirty_sectors = 0;
unsigned i;
int ret;
r.e.data_type = data_type;
r.e.nr_devs = 0;
r.e.nr_required = 1;
BUG_ON(!sectors);
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
s64 disk_sectors = data_type == BCH_DATA_BTREE
? sectors
: ptr_disk_sectors_delta(p, offset, sectors, flags);
bool stale = bch2_mark_pointer(c, p, disk_sectors, data_type,
fs_usage, journal_seq, flags);
if (p.ptr.cached) {
if (!stale)
update_cached_sectors(c, fs_usage, p.ptr.dev,
disk_sectors);
} else if (!p.ec_nr) {
dirty_sectors += disk_sectors;
r.e.devs[r.e.nr_devs++] = p.ptr.dev;
} else {
for (i = 0; i < p.ec_nr; i++) {
ret = bch2_mark_stripe_ptr(c, p.ec[i],
data_type, fs_usage,
disk_sectors, flags);
if (ret)
return ret;
}
r.e.nr_required = 0;
}
}
update_replicas(c, fs_usage, &r.e, dirty_sectors);
return 0;
}
static int bch2_mark_stripe(struct bch_fs *c, struct bkey_s_c k,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags)
{
bool gc = flags & BCH_BUCKET_MARK_GC;
struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k);
size_t idx = s.k->p.offset;
struct stripe *m = genradix_ptr(&c->stripes[gc], idx);
unsigned i;
spin_lock(&c->ec_stripes_heap_lock);
if (!m || ((flags & BCH_BUCKET_MARK_OVERWRITE) && !m->alive)) {
spin_unlock(&c->ec_stripes_heap_lock);
bch_err_ratelimited(c, "error marking nonexistent stripe %zu",
idx);
return -1;
}
if (!(flags & BCH_BUCKET_MARK_OVERWRITE)) {
m->sectors = le16_to_cpu(s.v->sectors);
m->algorithm = s.v->algorithm;
m->nr_blocks = s.v->nr_blocks;
m->nr_redundant = s.v->nr_redundant;
bch2_bkey_to_replicas(&m->r.e, k);
/*
* XXX: account for stripes somehow here
*/
#if 0
update_replicas(c, fs_usage, &m->r.e, stripe_sectors);
#endif
/* gc recalculates these fields: */
if (!(flags & BCH_BUCKET_MARK_GC)) {
for (i = 0; i < s.v->nr_blocks; i++) {
m->block_sectors[i] =
stripe_blockcount_get(s.v, i);
m->blocks_nonempty += !!m->block_sectors[i];
}
}
if (!gc)
bch2_stripes_heap_update(c, m, idx);
m->alive = true;
} else {
if (!gc)
bch2_stripes_heap_del(c, m, idx);
memset(m, 0, sizeof(*m));
}
spin_unlock(&c->ec_stripes_heap_lock);
bucket_set_stripe(c, s.v, fs_usage, 0, flags);
return 0;
}
int bch2_mark_key_locked(struct bch_fs *c,
struct bkey_s_c k,
unsigned offset, s64 sectors,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags)
{
int ret = 0;
preempt_disable();
if (!fs_usage || (flags & BCH_BUCKET_MARK_GC))
fs_usage = fs_usage_ptr(c, journal_seq,
flags & BCH_BUCKET_MARK_GC);
switch (k.k->type) {
case KEY_TYPE_alloc:
ret = bch2_mark_alloc(c, k, fs_usage, journal_seq, flags);
break;
case KEY_TYPE_btree_ptr:
sectors = !(flags & BCH_BUCKET_MARK_OVERWRITE)
? c->opts.btree_node_size
: -c->opts.btree_node_size;
ret = bch2_mark_extent(c, k, offset, sectors, BCH_DATA_BTREE,
fs_usage, journal_seq, flags);
break;
case KEY_TYPE_extent:
case KEY_TYPE_reflink_v:
ret = bch2_mark_extent(c, k, offset, sectors, BCH_DATA_USER,
fs_usage, journal_seq, flags);
break;
case KEY_TYPE_stripe:
ret = bch2_mark_stripe(c, k, fs_usage, journal_seq, flags);
break;
case KEY_TYPE_inode:
if (!(flags & BCH_BUCKET_MARK_OVERWRITE))
fs_usage->nr_inodes++;
else
fs_usage->nr_inodes--;
break;
case KEY_TYPE_reservation: {
unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas;
sectors *= replicas;
replicas = clamp_t(unsigned, replicas, 1,
ARRAY_SIZE(fs_usage->persistent_reserved));
fs_usage->reserved += sectors;
fs_usage->persistent_reserved[replicas - 1] += sectors;
break;
}
}
preempt_enable();
return ret;
}
int bch2_mark_key(struct bch_fs *c, struct bkey_s_c k,
unsigned offset, s64 sectors,
struct bch_fs_usage *fs_usage,
u64 journal_seq, unsigned flags)
{
int ret;
percpu_down_read(&c->mark_lock);
ret = bch2_mark_key_locked(c, k, offset, sectors,
fs_usage, journal_seq, flags);
percpu_up_read(&c->mark_lock);
return ret;
}
inline int bch2_mark_overwrite(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_s_c old,
struct bkey_i *new,
struct bch_fs_usage *fs_usage,
unsigned flags)
{
struct bch_fs *c = trans->c;
struct btree *b = iter->l[0].b;
unsigned offset = 0;
s64 sectors = 0;
flags |= BCH_BUCKET_MARK_OVERWRITE;
if (btree_node_is_extents(b)
? bkey_cmp(new->k.p, bkey_start_pos(old.k)) <= 0
: bkey_cmp(new->k.p, old.k->p))
return 0;
if (btree_node_is_extents(b)) {
switch (bch2_extent_overlap(&new->k, old.k)) {
case BCH_EXTENT_OVERLAP_ALL:
offset = 0;
sectors = -((s64) old.k->size);
break;
case BCH_EXTENT_OVERLAP_BACK:
offset = bkey_start_offset(&new->k) -
bkey_start_offset(old.k);
sectors = bkey_start_offset(&new->k) -
old.k->p.offset;
break;
case BCH_EXTENT_OVERLAP_FRONT:
offset = 0;
sectors = bkey_start_offset(old.k) -
new->k.p.offset;
break;
case BCH_EXTENT_OVERLAP_MIDDLE:
offset = bkey_start_offset(&new->k) -
bkey_start_offset(old.k);
sectors = -((s64) new->k.size);
flags |= BCH_BUCKET_MARK_OVERWRITE_SPLIT;
break;
}
BUG_ON(sectors >= 0);
}
return bch2_mark_key_locked(c, old, offset, sectors, fs_usage,
trans->journal_res.seq, flags) ?: 1;
}
int bch2_mark_update(struct btree_trans *trans,
struct btree_insert_entry *insert,
struct bch_fs_usage *fs_usage,
unsigned flags)
{
struct bch_fs *c = trans->c;
struct btree_iter *iter = insert->iter;
struct btree *b = iter->l[0].b;
struct btree_node_iter node_iter = iter->l[0].iter;
struct bkey_packed *_k;
int ret = 0;
if (!btree_node_type_needs_gc(iter->btree_id))
return 0;
bch2_mark_key_locked(c, bkey_i_to_s_c(insert->k),
0, insert->k->k.size,
fs_usage, trans->journal_res.seq,
BCH_BUCKET_MARK_INSERT|flags);
if (unlikely(trans->flags & BTREE_INSERT_NOMARK_OVERWRITES))
return 0;
/*
* For non extents, we only mark the new key, not the key being
* overwritten - unless we're actually deleting:
*/
if ((iter->btree_id == BTREE_ID_ALLOC ||
iter->btree_id == BTREE_ID_EC) &&
!bkey_deleted(&insert->k->k))
return 0;
while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b,
KEY_TYPE_discard))) {
struct bkey unpacked;
struct bkey_s_c k = bkey_disassemble(b, _k, &unpacked);
ret = bch2_mark_overwrite(trans, iter, k, insert->k,
fs_usage, flags);
if (ret <= 0)
break;
bch2_btree_node_iter_advance(&node_iter, b);
}
return ret;
}
void bch2_trans_fs_usage_apply(struct btree_trans *trans,
struct bch_fs_usage_online *fs_usage)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i;
static int warned_disk_usage = 0;
u64 disk_res_sectors = trans->disk_res ? trans->disk_res->sectors : 0;
char buf[200];
if (!bch2_fs_usage_apply(c, fs_usage, trans->disk_res,
trans->journal_res.seq) ||
warned_disk_usage ||
xchg(&warned_disk_usage, 1))
return;
bch_err(c, "disk usage increased more than %llu sectors reserved",
disk_res_sectors);
trans_for_each_update_iter(trans, i) {
struct btree_iter *iter = i->iter;
struct btree *b = iter->l[0].b;
struct btree_node_iter node_iter = iter->l[0].iter;
struct bkey_packed *_k;
pr_err("while inserting");
bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(i->k));
pr_err("%s", buf);
pr_err("overlapping with");
node_iter = iter->l[0].iter;
while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b,
KEY_TYPE_discard))) {
struct bkey unpacked;
struct bkey_s_c k;
k = bkey_disassemble(b, _k, &unpacked);
if (btree_node_is_extents(b)
? bkey_cmp(i->k->k.p, bkey_start_pos(k.k)) <= 0
: bkey_cmp(i->k->k.p, k.k->p))
break;
bch2_bkey_val_to_text(&PBUF(buf), c, k);
pr_err("%s", buf);
bch2_btree_node_iter_advance(&node_iter, b);
}
}
}
/* trans_mark: */
static int trans_get_key(struct btree_trans *trans,
enum btree_id btree_id, struct bpos pos,
struct btree_iter **iter,
struct bkey_s_c *k)
{
struct btree_insert_entry *i;
int ret;
trans_for_each_update_iter(trans, i)
if (i->iter->btree_id == btree_id &&
(btree_node_type_is_extents(btree_id)
? bkey_cmp(pos, bkey_start_pos(&i->k->k)) >= 0 &&
bkey_cmp(pos, i->k->k.p) < 0
: !bkey_cmp(pos, i->iter->pos))) {
*iter = i->iter;
*k = bkey_i_to_s_c(i->k);
return 1;
}
*iter = __bch2_trans_get_iter(trans, btree_id, pos,
BTREE_ITER_SLOTS|BTREE_ITER_INTENT, 0);
if (IS_ERR(*iter))
return PTR_ERR(*iter);
bch2_trans_iter_free_on_commit(trans, *iter);
*k = bch2_btree_iter_peek_slot(*iter);
ret = bkey_err(*k);
if (ret)
bch2_trans_iter_put(trans, *iter);
return ret;
}
static void *trans_update_key(struct btree_trans *trans,
struct btree_iter *iter,
unsigned u64s)
{
struct btree_insert_entry *i;
struct bkey_i *new_k;
new_k = bch2_trans_kmalloc(trans, u64s * sizeof(u64));
if (IS_ERR(new_k))
return new_k;
bkey_init(&new_k->k);
new_k->k.p = iter->pos;
trans_for_each_update_iter(trans, i)
if (i->iter == iter) {
i->k = new_k;
return new_k;
}
bch2_trans_update(trans, BTREE_INSERT_ENTRY(iter, new_k));
return new_k;
}
static int bch2_trans_mark_pointer(struct btree_trans *trans,
struct extent_ptr_decoded p,
s64 sectors, enum bch_data_type data_type)
{
struct bch_fs *c = trans->c;
struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
struct btree_iter *iter;
struct bkey_s_c k;
struct bkey_alloc_unpacked u;
struct bkey_i_alloc *a;
unsigned old;
bool overflow;
int ret;
ret = trans_get_key(trans, BTREE_ID_ALLOC,
POS(p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr)),
&iter, &k);
if (ret < 0)
return ret;
if (!ret) {
/*
* During journal replay, and if gc repairs alloc info at
* runtime, the alloc info in the btree might not be up to date
* yet - so, trust the in memory mark:
*/
struct bucket *g;
struct bucket_mark m;
percpu_down_read(&c->mark_lock);
g = bucket(ca, iter->pos.offset);
m = READ_ONCE(g->mark);
u = alloc_mem_to_key(g, m);
percpu_up_read(&c->mark_lock);
} else {
/*
* Unless we're already updating that key:
*/
if (k.k->type != KEY_TYPE_alloc) {
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
"pointer to nonexistent bucket %llu:%llu",
iter->pos.inode, iter->pos.offset);
ret = -1;
goto out;
}
u = bch2_alloc_unpack(k);
}
if (gen_after(u.gen, p.ptr.gen)) {
ret = 1;
goto out;
}
if (u.data_type && u.data_type != data_type) {
bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
"bucket %llu:%llu gen %u different types of data in same bucket: %s, %s",
iter->pos.inode, iter->pos.offset,
u.gen,
bch2_data_types[u.data_type],
bch2_data_types[data_type]);
ret = -1;
goto out;
}
if (!p.ptr.cached) {
old = u.dirty_sectors;
overflow = checked_add(u.dirty_sectors, sectors);
} else {
old = u.cached_sectors;
overflow = checked_add(u.cached_sectors, sectors);
}
u.data_type = u.dirty_sectors || u.cached_sectors
? data_type : 0;
bch2_fs_inconsistent_on(overflow, c,
"bucket sector count overflow: %u + %lli > U16_MAX",
old, sectors);
BUG_ON(overflow);
a = trans_update_key(trans, iter, BKEY_ALLOC_U64s_MAX);
ret = PTR_ERR_OR_ZERO(a);
if (ret)
goto out;
bkey_alloc_init(&a->k_i);
a->k.p = iter->pos;
bch2_alloc_pack(a, u);
out:
bch2_trans_iter_put(trans, iter);
return ret;
}
static int bch2_trans_mark_stripe_ptr(struct btree_trans *trans,
struct bch_extent_stripe_ptr p,
s64 sectors, enum bch_data_type data_type)
{
struct bch_fs *c = trans->c;
struct bch_replicas_padded r;
struct btree_iter *iter;
struct bkey_i *new_k;
struct bkey_s_c k;
struct bkey_s_stripe s;
unsigned nr_data;
s64 parity_sectors;
int ret = 0;
ret = trans_get_key(trans, BTREE_ID_EC, POS(0, p.idx), &iter, &k);
if (ret < 0)
return ret;
if (k.k->type != KEY_TYPE_stripe) {
bch2_fs_inconsistent(c,
"pointer to nonexistent stripe %llu",
(u64) p.idx);
ret = -EIO;
goto out;
}
new_k = trans_update_key(trans, iter, k.k->u64s);
ret = PTR_ERR_OR_ZERO(new_k);
if (ret)
goto out;
bkey_reassemble(new_k, k);
s = bkey_i_to_s_stripe(new_k);
nr_data = s.v->nr_blocks - s.v->nr_redundant;
parity_sectors = DIV_ROUND_UP(abs(sectors) * s.v->nr_redundant, nr_data);
if (sectors < 0)
parity_sectors = -parity_sectors;
stripe_blockcount_set(s.v, p.block,
stripe_blockcount_get(s.v, p.block) +
sectors + parity_sectors);
bch2_bkey_to_replicas(&r.e, s.s_c);
update_replicas_list(trans, &r.e, sectors);
out:
bch2_trans_iter_put(trans, iter);
return ret;
}
static int bch2_trans_mark_extent(struct btree_trans *trans,
struct bkey_s_c k, unsigned offset,
s64 sectors, unsigned flags,
enum bch_data_type data_type)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
struct bch_replicas_padded r;
s64 dirty_sectors = 0;
bool stale;
unsigned i;
int ret;
r.e.data_type = data_type;
r.e.nr_devs = 0;
r.e.nr_required = 1;
BUG_ON(!sectors);
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
s64 disk_sectors = data_type == BCH_DATA_BTREE
? sectors
: ptr_disk_sectors_delta(p, offset, sectors, flags);
ret = bch2_trans_mark_pointer(trans, p, disk_sectors,
data_type);
if (ret < 0)
return ret;
stale = ret > 0;
if (p.ptr.cached) {
if (!stale)
update_cached_sectors_list(trans, p.ptr.dev,
disk_sectors);
} else if (!p.ec_nr) {
dirty_sectors += disk_sectors;
r.e.devs[r.e.nr_devs++] = p.ptr.dev;
} else {
for (i = 0; i < p.ec_nr; i++) {
ret = bch2_trans_mark_stripe_ptr(trans, p.ec[i],
disk_sectors, data_type);
if (ret)
return ret;
}
r.e.nr_required = 0;
}
}
update_replicas_list(trans, &r.e, dirty_sectors);
return 0;
}
static int __bch2_trans_mark_reflink_p(struct btree_trans *trans,
struct bkey_s_c_reflink_p p,
u64 idx, unsigned sectors,
unsigned flags)
{
struct bch_fs *c = trans->c;
struct btree_iter *iter;
struct bkey_i *new_k;
struct bkey_s_c k;
struct bkey_i_reflink_v *r_v;
s64 ret;
ret = trans_get_key(trans, BTREE_ID_REFLINK,
POS(0, idx), &iter, &k);
if (ret < 0)
return ret;
if (k.k->type != KEY_TYPE_reflink_v) {
bch2_fs_inconsistent(c,
"%llu:%llu len %u points to nonexistent indirect extent %llu",
p.k->p.inode, p.k->p.offset, p.k->size, idx);
ret = -EIO;
goto err;
}
if ((flags & BCH_BUCKET_MARK_OVERWRITE) &&
(bkey_start_offset(k.k) < idx ||
k.k->p.offset > idx + sectors))
goto out;
bch2_btree_iter_set_pos(iter, bkey_start_pos(k.k));
BUG_ON(iter->uptodate > BTREE_ITER_NEED_PEEK);
new_k = trans_update_key(trans, iter, k.k->u64s);
ret = PTR_ERR_OR_ZERO(new_k);
if (ret)
goto err;
bkey_reassemble(new_k, k);
r_v = bkey_i_to_reflink_v(new_k);
le64_add_cpu(&r_v->v.refcount,
!(flags & BCH_BUCKET_MARK_OVERWRITE) ? 1 : -1);
if (!r_v->v.refcount) {
r_v->k.type = KEY_TYPE_deleted;
set_bkey_val_u64s(&r_v->k, 0);
}
out:
ret = k.k->p.offset - idx;
err:
bch2_trans_iter_put(trans, iter);
return ret;
}
static int bch2_trans_mark_reflink_p(struct btree_trans *trans,
struct bkey_s_c_reflink_p p, unsigned offset,
s64 sectors, unsigned flags)
{
u64 idx = le64_to_cpu(p.v->idx) + offset;
s64 ret = 0;
sectors = abs(sectors);
BUG_ON(offset + sectors > p.k->size);
while (sectors) {
ret = __bch2_trans_mark_reflink_p(trans, p, idx, sectors, flags);
if (ret < 0)
break;
idx += ret;
sectors = max_t(s64, 0LL, sectors - ret);
ret = 0;
}
return ret;
}
int bch2_trans_mark_key(struct btree_trans *trans, struct bkey_s_c k,
unsigned offset, s64 sectors, unsigned flags)
{
struct replicas_delta_list *d;
struct bch_fs *c = trans->c;
switch (k.k->type) {
case KEY_TYPE_btree_ptr:
sectors = !(flags & BCH_BUCKET_MARK_OVERWRITE)
? c->opts.btree_node_size
: -c->opts.btree_node_size;
return bch2_trans_mark_extent(trans, k, offset, sectors,
flags, BCH_DATA_BTREE);
case KEY_TYPE_extent:
case KEY_TYPE_reflink_v:
return bch2_trans_mark_extent(trans, k, offset, sectors,
flags, BCH_DATA_USER);
case KEY_TYPE_inode:
d = replicas_deltas_realloc(trans, 0);
if (!(flags & BCH_BUCKET_MARK_OVERWRITE))
d->fs_usage.nr_inodes++;
else
d->fs_usage.nr_inodes--;
return 0;
case KEY_TYPE_reservation: {
unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas;
d = replicas_deltas_realloc(trans, 0);
sectors *= replicas;
replicas = clamp_t(unsigned, replicas, 1,
ARRAY_SIZE(d->fs_usage.persistent_reserved));
d->fs_usage.reserved += sectors;
d->fs_usage.persistent_reserved[replicas - 1] += sectors;
return 0;
}
case KEY_TYPE_reflink_p:
return bch2_trans_mark_reflink_p(trans,
bkey_s_c_to_reflink_p(k),
offset, sectors, flags);
default:
return 0;
}
}
int bch2_trans_mark_update(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_i *insert)
{
struct btree *b = iter->l[0].b;
struct btree_node_iter node_iter = iter->l[0].iter;
struct bkey_packed *_k;
int ret;
if (!btree_node_type_needs_gc(iter->btree_id))
return 0;
ret = bch2_trans_mark_key(trans, bkey_i_to_s_c(insert),
0, insert->k.size, BCH_BUCKET_MARK_INSERT);
if (ret)
return ret;
if (unlikely(trans->flags & BTREE_INSERT_NOMARK_OVERWRITES))
return 0;
while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b,
KEY_TYPE_discard))) {
struct bkey unpacked;
struct bkey_s_c k;
unsigned offset = 0;
s64 sectors = 0;
unsigned flags = BCH_BUCKET_MARK_OVERWRITE;
k = bkey_disassemble(b, _k, &unpacked);
if (btree_node_is_extents(b)
? bkey_cmp(insert->k.p, bkey_start_pos(k.k)) <= 0
: bkey_cmp(insert->k.p, k.k->p))
break;
if (btree_node_is_extents(b)) {
switch (bch2_extent_overlap(&insert->k, k.k)) {
case BCH_EXTENT_OVERLAP_ALL:
offset = 0;
sectors = -((s64) k.k->size);
break;
case BCH_EXTENT_OVERLAP_BACK:
offset = bkey_start_offset(&insert->k) -
bkey_start_offset(k.k);
sectors = bkey_start_offset(&insert->k) -
k.k->p.offset;
break;
case BCH_EXTENT_OVERLAP_FRONT:
offset = 0;
sectors = bkey_start_offset(k.k) -
insert->k.p.offset;
break;
case BCH_EXTENT_OVERLAP_MIDDLE:
offset = bkey_start_offset(&insert->k) -
bkey_start_offset(k.k);
sectors = -((s64) insert->k.size);
flags |= BCH_BUCKET_MARK_OVERWRITE_SPLIT;
break;
}
BUG_ON(sectors >= 0);
}
ret = bch2_trans_mark_key(trans, k, offset, sectors, flags);
if (ret)
return ret;
bch2_btree_node_iter_advance(&node_iter, b);
}
return 0;
}
/* Disk reservations: */
#define SECTORS_CACHE 1024
int bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res,
unsigned sectors, int flags)
{
struct bch_fs_pcpu *pcpu;
u64 old, v, get;
s64 sectors_available;
int ret;
percpu_down_read(&c->mark_lock);
preempt_disable();
pcpu = this_cpu_ptr(c->pcpu);
if (sectors <= pcpu->sectors_available)
goto out;
v = atomic64_read(&c->sectors_available);
do {
old = v;
get = min((u64) sectors + SECTORS_CACHE, old);
if (get < sectors) {
preempt_enable();
goto recalculate;
}
} while ((v = atomic64_cmpxchg(&c->sectors_available,
old, old - get)) != old);
pcpu->sectors_available += get;
out:
pcpu->sectors_available -= sectors;
this_cpu_add(*c->online_reserved, sectors);
res->sectors += sectors;
preempt_enable();
percpu_up_read(&c->mark_lock);
return 0;
recalculate:
mutex_lock(&c->sectors_available_lock);
percpu_u64_set(&c->pcpu->sectors_available, 0);
sectors_available = avail_factor(__bch2_fs_usage_read_short(c).free);
if (sectors <= sectors_available ||
(flags & BCH_DISK_RESERVATION_NOFAIL)) {
atomic64_set(&c->sectors_available,
max_t(s64, 0, sectors_available - sectors));
this_cpu_add(*c->online_reserved, sectors);
res->sectors += sectors;
ret = 0;
} else {
atomic64_set(&c->sectors_available, sectors_available);
ret = -ENOSPC;
}
mutex_unlock(&c->sectors_available_lock);
percpu_up_read(&c->mark_lock);
return ret;
}
/* Startup/shutdown: */
static void buckets_free_rcu(struct rcu_head *rcu)
{
struct bucket_array *buckets =
container_of(rcu, struct bucket_array, rcu);
kvpfree(buckets,
sizeof(struct bucket_array) +
buckets->nbuckets * sizeof(struct bucket));
}
int bch2_dev_buckets_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
{
struct bucket_array *buckets = NULL, *old_buckets = NULL;
unsigned long *buckets_nouse = NULL;
alloc_fifo free[RESERVE_NR];
alloc_fifo free_inc;
alloc_heap alloc_heap;
copygc_heap copygc_heap;
size_t btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
ca->mi.bucket_size / c->opts.btree_node_size);
/* XXX: these should be tunable */
size_t reserve_none = max_t(size_t, 1, nbuckets >> 9);
size_t copygc_reserve = max_t(size_t, 2, nbuckets >> 7);
size_t free_inc_nr = max(max_t(size_t, 1, nbuckets >> 12),
btree_reserve * 2);
bool resize = ca->buckets[0] != NULL,
start_copygc = ca->copygc_thread != NULL;
int ret = -ENOMEM;
unsigned i;
memset(&free, 0, sizeof(free));
memset(&free_inc, 0, sizeof(free_inc));
memset(&alloc_heap, 0, sizeof(alloc_heap));
memset(&copygc_heap, 0, sizeof(copygc_heap));
if (!(buckets = kvpmalloc(sizeof(struct bucket_array) +
nbuckets * sizeof(struct bucket),
GFP_KERNEL|__GFP_ZERO)) ||
!(buckets_nouse = kvpmalloc(BITS_TO_LONGS(nbuckets) *
sizeof(unsigned long),
GFP_KERNEL|__GFP_ZERO)) ||
!init_fifo(&free[RESERVE_BTREE], btree_reserve, GFP_KERNEL) ||
!init_fifo(&free[RESERVE_MOVINGGC],
copygc_reserve, GFP_KERNEL) ||
!init_fifo(&free[RESERVE_NONE], reserve_none, GFP_KERNEL) ||
!init_fifo(&free_inc, free_inc_nr, GFP_KERNEL) ||
!init_heap(&alloc_heap, ALLOC_SCAN_BATCH(ca) << 1, GFP_KERNEL) ||
!init_heap(&copygc_heap, copygc_reserve, GFP_KERNEL))
goto err;
buckets->first_bucket = ca->mi.first_bucket;
buckets->nbuckets = nbuckets;
bch2_copygc_stop(ca);
if (resize) {
down_write(&c->gc_lock);
down_write(&ca->bucket_lock);
percpu_down_write(&c->mark_lock);
}
old_buckets = bucket_array(ca);
if (resize) {
size_t n = min(buckets->nbuckets, old_buckets->nbuckets);
memcpy(buckets->b,
old_buckets->b,
n * sizeof(struct bucket));
memcpy(buckets_nouse,
ca->buckets_nouse,
BITS_TO_LONGS(n) * sizeof(unsigned long));
}
rcu_assign_pointer(ca->buckets[0], buckets);
buckets = old_buckets;
swap(ca->buckets_nouse, buckets_nouse);
if (resize)
percpu_up_write(&c->mark_lock);
spin_lock(&c->freelist_lock);
for (i = 0; i < RESERVE_NR; i++) {
fifo_move(&free[i], &ca->free[i]);
swap(ca->free[i], free[i]);
}
fifo_move(&free_inc, &ca->free_inc);
swap(ca->free_inc, free_inc);
spin_unlock(&c->freelist_lock);
/* with gc lock held, alloc_heap can't be in use: */
swap(ca->alloc_heap, alloc_heap);
/* and we shut down copygc: */
swap(ca->copygc_heap, copygc_heap);
nbuckets = ca->mi.nbuckets;
if (resize) {
up_write(&ca->bucket_lock);
up_write(&c->gc_lock);
}
if (start_copygc &&
bch2_copygc_start(c, ca))
bch_err(ca, "error restarting copygc thread");
ret = 0;
err:
free_heap(&copygc_heap);
free_heap(&alloc_heap);
free_fifo(&free_inc);
for (i = 0; i < RESERVE_NR; i++)
free_fifo(&free[i]);
kvpfree(buckets_nouse,
BITS_TO_LONGS(nbuckets) * sizeof(unsigned long));
if (buckets)
call_rcu(&old_buckets->rcu, buckets_free_rcu);
return ret;
}
void bch2_dev_buckets_free(struct bch_dev *ca)
{
unsigned i;
free_heap(&ca->copygc_heap);
free_heap(&ca->alloc_heap);
free_fifo(&ca->free_inc);
for (i = 0; i < RESERVE_NR; i++)
free_fifo(&ca->free[i]);
kvpfree(ca->buckets_nouse,
BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long));
kvpfree(rcu_dereference_protected(ca->buckets[0], 1),
sizeof(struct bucket_array) +
ca->mi.nbuckets * sizeof(struct bucket));
free_percpu(ca->usage[0]);
}
int bch2_dev_buckets_alloc(struct bch_fs *c, struct bch_dev *ca)
{
if (!(ca->usage[0] = alloc_percpu(struct bch_dev_usage)))
return -ENOMEM;
return bch2_dev_buckets_resize(c, ca, ca->mi.nbuckets);;
}