mirror of
https://github.com/torvalds/linux.git
synced 2024-11-08 21:21:47 +00:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
680 lines
18 KiB
C
680 lines
18 KiB
C
/**
|
|
* \file drm_vm.c
|
|
* Memory mapping for DRM
|
|
*
|
|
* \author Rickard E. (Rik) Faith <faith@valinux.com>
|
|
* \author Gareth Hughes <gareth@valinux.com>
|
|
*/
|
|
|
|
/*
|
|
* Created: Mon Jan 4 08:58:31 1999 by faith@valinux.com
|
|
*
|
|
* Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
|
|
* Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "drmP.h"
|
|
#if defined(__ia64__)
|
|
#include <linux/efi.h>
|
|
#include <linux/slab.h>
|
|
#endif
|
|
|
|
static void drm_vm_open(struct vm_area_struct *vma);
|
|
static void drm_vm_close(struct vm_area_struct *vma);
|
|
|
|
static pgprot_t drm_io_prot(uint32_t map_type, struct vm_area_struct *vma)
|
|
{
|
|
pgprot_t tmp = vm_get_page_prot(vma->vm_flags);
|
|
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
if (boot_cpu_data.x86 > 3 && map_type != _DRM_AGP) {
|
|
pgprot_val(tmp) |= _PAGE_PCD;
|
|
pgprot_val(tmp) &= ~_PAGE_PWT;
|
|
}
|
|
#elif defined(__powerpc__)
|
|
pgprot_val(tmp) |= _PAGE_NO_CACHE;
|
|
if (map_type == _DRM_REGISTERS)
|
|
pgprot_val(tmp) |= _PAGE_GUARDED;
|
|
#elif defined(__ia64__)
|
|
if (efi_range_is_wc(vma->vm_start, vma->vm_end -
|
|
vma->vm_start))
|
|
tmp = pgprot_writecombine(tmp);
|
|
else
|
|
tmp = pgprot_noncached(tmp);
|
|
#elif defined(__sparc__)
|
|
tmp = pgprot_noncached(tmp);
|
|
#endif
|
|
return tmp;
|
|
}
|
|
|
|
static pgprot_t drm_dma_prot(uint32_t map_type, struct vm_area_struct *vma)
|
|
{
|
|
pgprot_t tmp = vm_get_page_prot(vma->vm_flags);
|
|
|
|
#if defined(__powerpc__) && defined(CONFIG_NOT_COHERENT_CACHE)
|
|
tmp |= _PAGE_NO_CACHE;
|
|
#endif
|
|
return tmp;
|
|
}
|
|
|
|
/**
|
|
* \c fault method for AGP virtual memory.
|
|
*
|
|
* \param vma virtual memory area.
|
|
* \param address access address.
|
|
* \return pointer to the page structure.
|
|
*
|
|
* Find the right map and if it's AGP memory find the real physical page to
|
|
* map, get the page, increment the use count and return it.
|
|
*/
|
|
#if __OS_HAS_AGP
|
|
static int drm_do_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct drm_file *priv = vma->vm_file->private_data;
|
|
struct drm_device *dev = priv->minor->dev;
|
|
struct drm_local_map *map = NULL;
|
|
struct drm_map_list *r_list;
|
|
struct drm_hash_item *hash;
|
|
|
|
/*
|
|
* Find the right map
|
|
*/
|
|
if (!drm_core_has_AGP(dev))
|
|
goto vm_fault_error;
|
|
|
|
if (!dev->agp || !dev->agp->cant_use_aperture)
|
|
goto vm_fault_error;
|
|
|
|
if (drm_ht_find_item(&dev->map_hash, vma->vm_pgoff, &hash))
|
|
goto vm_fault_error;
|
|
|
|
r_list = drm_hash_entry(hash, struct drm_map_list, hash);
|
|
map = r_list->map;
|
|
|
|
if (map && map->type == _DRM_AGP) {
|
|
/*
|
|
* Using vm_pgoff as a selector forces us to use this unusual
|
|
* addressing scheme.
|
|
*/
|
|
resource_size_t offset = (unsigned long)vmf->virtual_address -
|
|
vma->vm_start;
|
|
resource_size_t baddr = map->offset + offset;
|
|
struct drm_agp_mem *agpmem;
|
|
struct page *page;
|
|
|
|
#ifdef __alpha__
|
|
/*
|
|
* Adjust to a bus-relative address
|
|
*/
|
|
baddr -= dev->hose->mem_space->start;
|
|
#endif
|
|
|
|
/*
|
|
* It's AGP memory - find the real physical page to map
|
|
*/
|
|
list_for_each_entry(agpmem, &dev->agp->memory, head) {
|
|
if (agpmem->bound <= baddr &&
|
|
agpmem->bound + agpmem->pages * PAGE_SIZE > baddr)
|
|
break;
|
|
}
|
|
|
|
if (!agpmem)
|
|
goto vm_fault_error;
|
|
|
|
/*
|
|
* Get the page, inc the use count, and return it
|
|
*/
|
|
offset = (baddr - agpmem->bound) >> PAGE_SHIFT;
|
|
page = agpmem->memory->pages[offset];
|
|
get_page(page);
|
|
vmf->page = page;
|
|
|
|
DRM_DEBUG
|
|
("baddr = 0x%llx page = 0x%p, offset = 0x%llx, count=%d\n",
|
|
(unsigned long long)baddr,
|
|
agpmem->memory->pages[offset],
|
|
(unsigned long long)offset,
|
|
page_count(page));
|
|
return 0;
|
|
}
|
|
vm_fault_error:
|
|
return VM_FAULT_SIGBUS; /* Disallow mremap */
|
|
}
|
|
#else /* __OS_HAS_AGP */
|
|
static int drm_do_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
#endif /* __OS_HAS_AGP */
|
|
|
|
/**
|
|
* \c nopage method for shared virtual memory.
|
|
*
|
|
* \param vma virtual memory area.
|
|
* \param address access address.
|
|
* \return pointer to the page structure.
|
|
*
|
|
* Get the mapping, find the real physical page to map, get the page, and
|
|
* return it.
|
|
*/
|
|
static int drm_do_vm_shm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct drm_local_map *map = vma->vm_private_data;
|
|
unsigned long offset;
|
|
unsigned long i;
|
|
struct page *page;
|
|
|
|
if (!map)
|
|
return VM_FAULT_SIGBUS; /* Nothing allocated */
|
|
|
|
offset = (unsigned long)vmf->virtual_address - vma->vm_start;
|
|
i = (unsigned long)map->handle + offset;
|
|
page = vmalloc_to_page((void *)i);
|
|
if (!page)
|
|
return VM_FAULT_SIGBUS;
|
|
get_page(page);
|
|
vmf->page = page;
|
|
|
|
DRM_DEBUG("shm_fault 0x%lx\n", offset);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* \c close method for shared virtual memory.
|
|
*
|
|
* \param vma virtual memory area.
|
|
*
|
|
* Deletes map information if we are the last
|
|
* person to close a mapping and it's not in the global maplist.
|
|
*/
|
|
static void drm_vm_shm_close(struct vm_area_struct *vma)
|
|
{
|
|
struct drm_file *priv = vma->vm_file->private_data;
|
|
struct drm_device *dev = priv->minor->dev;
|
|
struct drm_vma_entry *pt, *temp;
|
|
struct drm_local_map *map;
|
|
struct drm_map_list *r_list;
|
|
int found_maps = 0;
|
|
|
|
DRM_DEBUG("0x%08lx,0x%08lx\n",
|
|
vma->vm_start, vma->vm_end - vma->vm_start);
|
|
atomic_dec(&dev->vma_count);
|
|
|
|
map = vma->vm_private_data;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
list_for_each_entry_safe(pt, temp, &dev->vmalist, head) {
|
|
if (pt->vma->vm_private_data == map)
|
|
found_maps++;
|
|
if (pt->vma == vma) {
|
|
list_del(&pt->head);
|
|
kfree(pt);
|
|
}
|
|
}
|
|
|
|
/* We were the only map that was found */
|
|
if (found_maps == 1 && map->flags & _DRM_REMOVABLE) {
|
|
/* Check to see if we are in the maplist, if we are not, then
|
|
* we delete this mappings information.
|
|
*/
|
|
found_maps = 0;
|
|
list_for_each_entry(r_list, &dev->maplist, head) {
|
|
if (r_list->map == map)
|
|
found_maps++;
|
|
}
|
|
|
|
if (!found_maps) {
|
|
drm_dma_handle_t dmah;
|
|
|
|
switch (map->type) {
|
|
case _DRM_REGISTERS:
|
|
case _DRM_FRAME_BUFFER:
|
|
if (drm_core_has_MTRR(dev) && map->mtrr >= 0) {
|
|
int retcode;
|
|
retcode = mtrr_del(map->mtrr,
|
|
map->offset,
|
|
map->size);
|
|
DRM_DEBUG("mtrr_del = %d\n", retcode);
|
|
}
|
|
iounmap(map->handle);
|
|
break;
|
|
case _DRM_SHM:
|
|
vfree(map->handle);
|
|
break;
|
|
case _DRM_AGP:
|
|
case _DRM_SCATTER_GATHER:
|
|
break;
|
|
case _DRM_CONSISTENT:
|
|
dmah.vaddr = map->handle;
|
|
dmah.busaddr = map->offset;
|
|
dmah.size = map->size;
|
|
__drm_pci_free(dev, &dmah);
|
|
break;
|
|
case _DRM_GEM:
|
|
DRM_ERROR("tried to rmmap GEM object\n");
|
|
break;
|
|
}
|
|
kfree(map);
|
|
}
|
|
}
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
/**
|
|
* \c fault method for DMA virtual memory.
|
|
*
|
|
* \param vma virtual memory area.
|
|
* \param address access address.
|
|
* \return pointer to the page structure.
|
|
*
|
|
* Determine the page number from the page offset and get it from drm_device_dma::pagelist.
|
|
*/
|
|
static int drm_do_vm_dma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct drm_file *priv = vma->vm_file->private_data;
|
|
struct drm_device *dev = priv->minor->dev;
|
|
struct drm_device_dma *dma = dev->dma;
|
|
unsigned long offset;
|
|
unsigned long page_nr;
|
|
struct page *page;
|
|
|
|
if (!dma)
|
|
return VM_FAULT_SIGBUS; /* Error */
|
|
if (!dma->pagelist)
|
|
return VM_FAULT_SIGBUS; /* Nothing allocated */
|
|
|
|
offset = (unsigned long)vmf->virtual_address - vma->vm_start; /* vm_[pg]off[set] should be 0 */
|
|
page_nr = offset >> PAGE_SHIFT; /* page_nr could just be vmf->pgoff */
|
|
page = virt_to_page((dma->pagelist[page_nr] + (offset & (~PAGE_MASK))));
|
|
|
|
get_page(page);
|
|
vmf->page = page;
|
|
|
|
DRM_DEBUG("dma_fault 0x%lx (page %lu)\n", offset, page_nr);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* \c fault method for scatter-gather virtual memory.
|
|
*
|
|
* \param vma virtual memory area.
|
|
* \param address access address.
|
|
* \return pointer to the page structure.
|
|
*
|
|
* Determine the map offset from the page offset and get it from drm_sg_mem::pagelist.
|
|
*/
|
|
static int drm_do_vm_sg_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct drm_local_map *map = vma->vm_private_data;
|
|
struct drm_file *priv = vma->vm_file->private_data;
|
|
struct drm_device *dev = priv->minor->dev;
|
|
struct drm_sg_mem *entry = dev->sg;
|
|
unsigned long offset;
|
|
unsigned long map_offset;
|
|
unsigned long page_offset;
|
|
struct page *page;
|
|
|
|
if (!entry)
|
|
return VM_FAULT_SIGBUS; /* Error */
|
|
if (!entry->pagelist)
|
|
return VM_FAULT_SIGBUS; /* Nothing allocated */
|
|
|
|
offset = (unsigned long)vmf->virtual_address - vma->vm_start;
|
|
map_offset = map->offset - (unsigned long)dev->sg->virtual;
|
|
page_offset = (offset >> PAGE_SHIFT) + (map_offset >> PAGE_SHIFT);
|
|
page = entry->pagelist[page_offset];
|
|
get_page(page);
|
|
vmf->page = page;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int drm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
return drm_do_vm_fault(vma, vmf);
|
|
}
|
|
|
|
static int drm_vm_shm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
return drm_do_vm_shm_fault(vma, vmf);
|
|
}
|
|
|
|
static int drm_vm_dma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
return drm_do_vm_dma_fault(vma, vmf);
|
|
}
|
|
|
|
static int drm_vm_sg_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
return drm_do_vm_sg_fault(vma, vmf);
|
|
}
|
|
|
|
/** AGP virtual memory operations */
|
|
static const struct vm_operations_struct drm_vm_ops = {
|
|
.fault = drm_vm_fault,
|
|
.open = drm_vm_open,
|
|
.close = drm_vm_close,
|
|
};
|
|
|
|
/** Shared virtual memory operations */
|
|
static const struct vm_operations_struct drm_vm_shm_ops = {
|
|
.fault = drm_vm_shm_fault,
|
|
.open = drm_vm_open,
|
|
.close = drm_vm_shm_close,
|
|
};
|
|
|
|
/** DMA virtual memory operations */
|
|
static const struct vm_operations_struct drm_vm_dma_ops = {
|
|
.fault = drm_vm_dma_fault,
|
|
.open = drm_vm_open,
|
|
.close = drm_vm_close,
|
|
};
|
|
|
|
/** Scatter-gather virtual memory operations */
|
|
static const struct vm_operations_struct drm_vm_sg_ops = {
|
|
.fault = drm_vm_sg_fault,
|
|
.open = drm_vm_open,
|
|
.close = drm_vm_close,
|
|
};
|
|
|
|
/**
|
|
* \c open method for shared virtual memory.
|
|
*
|
|
* \param vma virtual memory area.
|
|
*
|
|
* Create a new drm_vma_entry structure as the \p vma private data entry and
|
|
* add it to drm_device::vmalist.
|
|
*/
|
|
void drm_vm_open_locked(struct vm_area_struct *vma)
|
|
{
|
|
struct drm_file *priv = vma->vm_file->private_data;
|
|
struct drm_device *dev = priv->minor->dev;
|
|
struct drm_vma_entry *vma_entry;
|
|
|
|
DRM_DEBUG("0x%08lx,0x%08lx\n",
|
|
vma->vm_start, vma->vm_end - vma->vm_start);
|
|
atomic_inc(&dev->vma_count);
|
|
|
|
vma_entry = kmalloc(sizeof(*vma_entry), GFP_KERNEL);
|
|
if (vma_entry) {
|
|
vma_entry->vma = vma;
|
|
vma_entry->pid = current->pid;
|
|
list_add(&vma_entry->head, &dev->vmalist);
|
|
}
|
|
}
|
|
|
|
static void drm_vm_open(struct vm_area_struct *vma)
|
|
{
|
|
struct drm_file *priv = vma->vm_file->private_data;
|
|
struct drm_device *dev = priv->minor->dev;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
drm_vm_open_locked(vma);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
/**
|
|
* \c close method for all virtual memory types.
|
|
*
|
|
* \param vma virtual memory area.
|
|
*
|
|
* Search the \p vma private data entry in drm_device::vmalist, unlink it, and
|
|
* free it.
|
|
*/
|
|
static void drm_vm_close(struct vm_area_struct *vma)
|
|
{
|
|
struct drm_file *priv = vma->vm_file->private_data;
|
|
struct drm_device *dev = priv->minor->dev;
|
|
struct drm_vma_entry *pt, *temp;
|
|
|
|
DRM_DEBUG("0x%08lx,0x%08lx\n",
|
|
vma->vm_start, vma->vm_end - vma->vm_start);
|
|
atomic_dec(&dev->vma_count);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
list_for_each_entry_safe(pt, temp, &dev->vmalist, head) {
|
|
if (pt->vma == vma) {
|
|
list_del(&pt->head);
|
|
kfree(pt);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
/**
|
|
* mmap DMA memory.
|
|
*
|
|
* \param file_priv DRM file private.
|
|
* \param vma virtual memory area.
|
|
* \return zero on success or a negative number on failure.
|
|
*
|
|
* Sets the virtual memory area operations structure to vm_dma_ops, the file
|
|
* pointer, and calls vm_open().
|
|
*/
|
|
static int drm_mmap_dma(struct file *filp, struct vm_area_struct *vma)
|
|
{
|
|
struct drm_file *priv = filp->private_data;
|
|
struct drm_device *dev;
|
|
struct drm_device_dma *dma;
|
|
unsigned long length = vma->vm_end - vma->vm_start;
|
|
|
|
dev = priv->minor->dev;
|
|
dma = dev->dma;
|
|
DRM_DEBUG("start = 0x%lx, end = 0x%lx, page offset = 0x%lx\n",
|
|
vma->vm_start, vma->vm_end, vma->vm_pgoff);
|
|
|
|
/* Length must match exact page count */
|
|
if (!dma || (length >> PAGE_SHIFT) != dma->page_count) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!capable(CAP_SYS_ADMIN) &&
|
|
(dma->flags & _DRM_DMA_USE_PCI_RO)) {
|
|
vma->vm_flags &= ~(VM_WRITE | VM_MAYWRITE);
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
pgprot_val(vma->vm_page_prot) &= ~_PAGE_RW;
|
|
#else
|
|
/* Ye gads this is ugly. With more thought
|
|
we could move this up higher and use
|
|
`protection_map' instead. */
|
|
vma->vm_page_prot =
|
|
__pgprot(pte_val
|
|
(pte_wrprotect
|
|
(__pte(pgprot_val(vma->vm_page_prot)))));
|
|
#endif
|
|
}
|
|
|
|
vma->vm_ops = &drm_vm_dma_ops;
|
|
|
|
vma->vm_flags |= VM_RESERVED; /* Don't swap */
|
|
vma->vm_flags |= VM_DONTEXPAND;
|
|
|
|
vma->vm_file = filp; /* Needed for drm_vm_open() */
|
|
drm_vm_open_locked(vma);
|
|
return 0;
|
|
}
|
|
|
|
resource_size_t drm_core_get_map_ofs(struct drm_local_map * map)
|
|
{
|
|
return map->offset;
|
|
}
|
|
|
|
EXPORT_SYMBOL(drm_core_get_map_ofs);
|
|
|
|
resource_size_t drm_core_get_reg_ofs(struct drm_device *dev)
|
|
{
|
|
#ifdef __alpha__
|
|
return dev->hose->dense_mem_base - dev->hose->mem_space->start;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
EXPORT_SYMBOL(drm_core_get_reg_ofs);
|
|
|
|
/**
|
|
* mmap DMA memory.
|
|
*
|
|
* \param file_priv DRM file private.
|
|
* \param vma virtual memory area.
|
|
* \return zero on success or a negative number on failure.
|
|
*
|
|
* If the virtual memory area has no offset associated with it then it's a DMA
|
|
* area, so calls mmap_dma(). Otherwise searches the map in drm_device::maplist,
|
|
* checks that the restricted flag is not set, sets the virtual memory operations
|
|
* according to the mapping type and remaps the pages. Finally sets the file
|
|
* pointer and calls vm_open().
|
|
*/
|
|
int drm_mmap_locked(struct file *filp, struct vm_area_struct *vma)
|
|
{
|
|
struct drm_file *priv = filp->private_data;
|
|
struct drm_device *dev = priv->minor->dev;
|
|
struct drm_local_map *map = NULL;
|
|
resource_size_t offset = 0;
|
|
struct drm_hash_item *hash;
|
|
|
|
DRM_DEBUG("start = 0x%lx, end = 0x%lx, page offset = 0x%lx\n",
|
|
vma->vm_start, vma->vm_end, vma->vm_pgoff);
|
|
|
|
if (!priv->authenticated)
|
|
return -EACCES;
|
|
|
|
/* We check for "dma". On Apple's UniNorth, it's valid to have
|
|
* the AGP mapped at physical address 0
|
|
* --BenH.
|
|
*/
|
|
if (!vma->vm_pgoff
|
|
#if __OS_HAS_AGP
|
|
&& (!dev->agp
|
|
|| dev->agp->agp_info.device->vendor != PCI_VENDOR_ID_APPLE)
|
|
#endif
|
|
)
|
|
return drm_mmap_dma(filp, vma);
|
|
|
|
if (drm_ht_find_item(&dev->map_hash, vma->vm_pgoff, &hash)) {
|
|
DRM_ERROR("Could not find map\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
map = drm_hash_entry(hash, struct drm_map_list, hash)->map;
|
|
if (!map || ((map->flags & _DRM_RESTRICTED) && !capable(CAP_SYS_ADMIN)))
|
|
return -EPERM;
|
|
|
|
/* Check for valid size. */
|
|
if (map->size < vma->vm_end - vma->vm_start)
|
|
return -EINVAL;
|
|
|
|
if (!capable(CAP_SYS_ADMIN) && (map->flags & _DRM_READ_ONLY)) {
|
|
vma->vm_flags &= ~(VM_WRITE | VM_MAYWRITE);
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
pgprot_val(vma->vm_page_prot) &= ~_PAGE_RW;
|
|
#else
|
|
/* Ye gads this is ugly. With more thought
|
|
we could move this up higher and use
|
|
`protection_map' instead. */
|
|
vma->vm_page_prot =
|
|
__pgprot(pte_val
|
|
(pte_wrprotect
|
|
(__pte(pgprot_val(vma->vm_page_prot)))));
|
|
#endif
|
|
}
|
|
|
|
switch (map->type) {
|
|
case _DRM_AGP:
|
|
if (drm_core_has_AGP(dev) && dev->agp->cant_use_aperture) {
|
|
/*
|
|
* On some platforms we can't talk to bus dma address from the CPU, so for
|
|
* memory of type DRM_AGP, we'll deal with sorting out the real physical
|
|
* pages and mappings in fault()
|
|
*/
|
|
#if defined(__powerpc__)
|
|
pgprot_val(vma->vm_page_prot) |= _PAGE_NO_CACHE;
|
|
#endif
|
|
vma->vm_ops = &drm_vm_ops;
|
|
break;
|
|
}
|
|
/* fall through to _DRM_FRAME_BUFFER... */
|
|
case _DRM_FRAME_BUFFER:
|
|
case _DRM_REGISTERS:
|
|
offset = dev->driver->get_reg_ofs(dev);
|
|
vma->vm_flags |= VM_IO; /* not in core dump */
|
|
vma->vm_page_prot = drm_io_prot(map->type, vma);
|
|
if (io_remap_pfn_range(vma, vma->vm_start,
|
|
(map->offset + offset) >> PAGE_SHIFT,
|
|
vma->vm_end - vma->vm_start,
|
|
vma->vm_page_prot))
|
|
return -EAGAIN;
|
|
DRM_DEBUG(" Type = %d; start = 0x%lx, end = 0x%lx,"
|
|
" offset = 0x%llx\n",
|
|
map->type,
|
|
vma->vm_start, vma->vm_end, (unsigned long long)(map->offset + offset));
|
|
vma->vm_ops = &drm_vm_ops;
|
|
break;
|
|
case _DRM_CONSISTENT:
|
|
/* Consistent memory is really like shared memory. But
|
|
* it's allocated in a different way, so avoid fault */
|
|
if (remap_pfn_range(vma, vma->vm_start,
|
|
page_to_pfn(virt_to_page(map->handle)),
|
|
vma->vm_end - vma->vm_start, vma->vm_page_prot))
|
|
return -EAGAIN;
|
|
vma->vm_page_prot = drm_dma_prot(map->type, vma);
|
|
/* fall through to _DRM_SHM */
|
|
case _DRM_SHM:
|
|
vma->vm_ops = &drm_vm_shm_ops;
|
|
vma->vm_private_data = (void *)map;
|
|
/* Don't let this area swap. Change when
|
|
DRM_KERNEL advisory is supported. */
|
|
vma->vm_flags |= VM_RESERVED;
|
|
break;
|
|
case _DRM_SCATTER_GATHER:
|
|
vma->vm_ops = &drm_vm_sg_ops;
|
|
vma->vm_private_data = (void *)map;
|
|
vma->vm_flags |= VM_RESERVED;
|
|
vma->vm_page_prot = drm_dma_prot(map->type, vma);
|
|
break;
|
|
default:
|
|
return -EINVAL; /* This should never happen. */
|
|
}
|
|
vma->vm_flags |= VM_RESERVED; /* Don't swap */
|
|
vma->vm_flags |= VM_DONTEXPAND;
|
|
|
|
vma->vm_file = filp; /* Needed for drm_vm_open() */
|
|
drm_vm_open_locked(vma);
|
|
return 0;
|
|
}
|
|
|
|
int drm_mmap(struct file *filp, struct vm_area_struct *vma)
|
|
{
|
|
struct drm_file *priv = filp->private_data;
|
|
struct drm_device *dev = priv->minor->dev;
|
|
int ret;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
ret = drm_mmap_locked(filp, vma);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(drm_mmap);
|