mirror of
https://github.com/torvalds/linux.git
synced 2024-11-01 09:41:44 +00:00
892d208bcf
Main features: - Handle percpu memory allocations (only scanning them, not actually reporting). - Memory hotplug support. Usability improvements: - Show the origin of early allocations. - Report previously found leaks even if kmemleak has been disabled by some error. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.9 (GNU/Linux) iQIcBAABAgAGBQJPDCI0AAoJEGvWsS0AyF7x+MUQALEQTnREqBgpqa+95Wk8WaEB F/00mbwRpLVKl1jsfCn4wxFPUGuXS/oaxYztDSTP8BrEzZ5E0Kq+Ejsby9yPLs5r 9nwsoRrxBerUjFHqXjx2xrTkAZQomLesNw5ZkaKFVgBzNo7O63Co4TGuP5J8s03G 7hyewcZvbmzkX1SpqMvPItdUTpK+vwABBHGvYta6NS89Bt9GuexC/NS3o2qy2q6c 2BXhUXSJyYsalxvsYYw+hNOyVWrFJ/TWJKsksg9ANxzcbkLKUat9IpvcR3CTRUpu L/72GXGCDyMw3YgXs8MBlOk3KXRcobISYCVMsDuVz6tITP7RHCB6rG/Hg55YWxeS 1N2P0kMFkDGVui4pzPZZENUH1QfuwoZ5RpgJ2OCaVnfguLOgGM9k665KT9OScWeC tpxoS82jGd5RezrgF30yvpLz2CivvjRiEpIXL8o47pg/kESgY1PFnDwTW8imoikt dTQFZXYeFzjcHkN1YNUXgjNfh+CqCkUXLQ5k+8vQ+9TFWh21thwuzg5AGcK28xTc 6mGzSsJzx2w7IKTCjZ3BGN+IXt/KpC4iKyIEFeNsgy9Z8gU0I0GaMVixQtZFxeEt asqNBaQGngJ86BeO1bjRB/YKO+F+ZIchJiGN4PNgtc4BGz45LGfKOfRjlku4rmsZ 8OJRqGx5qZykxYhNSHXq =5lb1 -----END PGP SIGNATURE----- Merge tag 'kmemleak' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux Kmemleak patches Main features: - Handle percpu memory allocations (only scanning them, not actually reporting). - Memory hotplug support. Usability improvements: - Show the origin of early allocations. - Report previously found leaks even if kmemleak has been disabled by some error. * tag 'kmemleak' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux: kmemleak: Add support for memory hotplug kmemleak: Handle percpu memory allocation kmemleak: Report previously found leaks even after an error kmemleak: When the early log buffer is exceeded, report the actual number kmemleak: Show where early_log issues come from
1931 lines
57 KiB
C
1931 lines
57 KiB
C
/*
|
|
* mm/percpu.c - percpu memory allocator
|
|
*
|
|
* Copyright (C) 2009 SUSE Linux Products GmbH
|
|
* Copyright (C) 2009 Tejun Heo <tj@kernel.org>
|
|
*
|
|
* This file is released under the GPLv2.
|
|
*
|
|
* This is percpu allocator which can handle both static and dynamic
|
|
* areas. Percpu areas are allocated in chunks. Each chunk is
|
|
* consisted of boot-time determined number of units and the first
|
|
* chunk is used for static percpu variables in the kernel image
|
|
* (special boot time alloc/init handling necessary as these areas
|
|
* need to be brought up before allocation services are running).
|
|
* Unit grows as necessary and all units grow or shrink in unison.
|
|
* When a chunk is filled up, another chunk is allocated.
|
|
*
|
|
* c0 c1 c2
|
|
* ------------------- ------------------- ------------
|
|
* | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
|
|
* ------------------- ...... ------------------- .... ------------
|
|
*
|
|
* Allocation is done in offset-size areas of single unit space. Ie,
|
|
* an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
|
|
* c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
|
|
* cpus. On NUMA, the mapping can be non-linear and even sparse.
|
|
* Percpu access can be done by configuring percpu base registers
|
|
* according to cpu to unit mapping and pcpu_unit_size.
|
|
*
|
|
* There are usually many small percpu allocations many of them being
|
|
* as small as 4 bytes. The allocator organizes chunks into lists
|
|
* according to free size and tries to allocate from the fullest one.
|
|
* Each chunk keeps the maximum contiguous area size hint which is
|
|
* guaranteed to be equal to or larger than the maximum contiguous
|
|
* area in the chunk. This helps the allocator not to iterate the
|
|
* chunk maps unnecessarily.
|
|
*
|
|
* Allocation state in each chunk is kept using an array of integers
|
|
* on chunk->map. A positive value in the map represents a free
|
|
* region and negative allocated. Allocation inside a chunk is done
|
|
* by scanning this map sequentially and serving the first matching
|
|
* entry. This is mostly copied from the percpu_modalloc() allocator.
|
|
* Chunks can be determined from the address using the index field
|
|
* in the page struct. The index field contains a pointer to the chunk.
|
|
*
|
|
* To use this allocator, arch code should do the followings.
|
|
*
|
|
* - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
|
|
* regular address to percpu pointer and back if they need to be
|
|
* different from the default
|
|
*
|
|
* - use pcpu_setup_first_chunk() during percpu area initialization to
|
|
* setup the first chunk containing the kernel static percpu area
|
|
*/
|
|
|
|
#include <linux/bitmap.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/err.h>
|
|
#include <linux/list.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/kmemleak.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/io.h>
|
|
|
|
#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
|
|
#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
|
|
#ifndef __addr_to_pcpu_ptr
|
|
#define __addr_to_pcpu_ptr(addr) \
|
|
(void __percpu *)((unsigned long)(addr) - \
|
|
(unsigned long)pcpu_base_addr + \
|
|
(unsigned long)__per_cpu_start)
|
|
#endif
|
|
#ifndef __pcpu_ptr_to_addr
|
|
#define __pcpu_ptr_to_addr(ptr) \
|
|
(void __force *)((unsigned long)(ptr) + \
|
|
(unsigned long)pcpu_base_addr - \
|
|
(unsigned long)__per_cpu_start)
|
|
#endif
|
|
#else /* CONFIG_SMP */
|
|
/* on UP, it's always identity mapped */
|
|
#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
|
|
#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
|
|
#endif /* CONFIG_SMP */
|
|
|
|
struct pcpu_chunk {
|
|
struct list_head list; /* linked to pcpu_slot lists */
|
|
int free_size; /* free bytes in the chunk */
|
|
int contig_hint; /* max contiguous size hint */
|
|
void *base_addr; /* base address of this chunk */
|
|
int map_used; /* # of map entries used */
|
|
int map_alloc; /* # of map entries allocated */
|
|
int *map; /* allocation map */
|
|
void *data; /* chunk data */
|
|
bool immutable; /* no [de]population allowed */
|
|
unsigned long populated[]; /* populated bitmap */
|
|
};
|
|
|
|
static int pcpu_unit_pages __read_mostly;
|
|
static int pcpu_unit_size __read_mostly;
|
|
static int pcpu_nr_units __read_mostly;
|
|
static int pcpu_atom_size __read_mostly;
|
|
static int pcpu_nr_slots __read_mostly;
|
|
static size_t pcpu_chunk_struct_size __read_mostly;
|
|
|
|
/* cpus with the lowest and highest unit addresses */
|
|
static unsigned int pcpu_low_unit_cpu __read_mostly;
|
|
static unsigned int pcpu_high_unit_cpu __read_mostly;
|
|
|
|
/* the address of the first chunk which starts with the kernel static area */
|
|
void *pcpu_base_addr __read_mostly;
|
|
EXPORT_SYMBOL_GPL(pcpu_base_addr);
|
|
|
|
static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
|
|
const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
|
|
|
|
/* group information, used for vm allocation */
|
|
static int pcpu_nr_groups __read_mostly;
|
|
static const unsigned long *pcpu_group_offsets __read_mostly;
|
|
static const size_t *pcpu_group_sizes __read_mostly;
|
|
|
|
/*
|
|
* The first chunk which always exists. Note that unlike other
|
|
* chunks, this one can be allocated and mapped in several different
|
|
* ways and thus often doesn't live in the vmalloc area.
|
|
*/
|
|
static struct pcpu_chunk *pcpu_first_chunk;
|
|
|
|
/*
|
|
* Optional reserved chunk. This chunk reserves part of the first
|
|
* chunk and serves it for reserved allocations. The amount of
|
|
* reserved offset is in pcpu_reserved_chunk_limit. When reserved
|
|
* area doesn't exist, the following variables contain NULL and 0
|
|
* respectively.
|
|
*/
|
|
static struct pcpu_chunk *pcpu_reserved_chunk;
|
|
static int pcpu_reserved_chunk_limit;
|
|
|
|
/*
|
|
* Synchronization rules.
|
|
*
|
|
* There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
|
|
* protects allocation/reclaim paths, chunks, populated bitmap and
|
|
* vmalloc mapping. The latter is a spinlock and protects the index
|
|
* data structures - chunk slots, chunks and area maps in chunks.
|
|
*
|
|
* During allocation, pcpu_alloc_mutex is kept locked all the time and
|
|
* pcpu_lock is grabbed and released as necessary. All actual memory
|
|
* allocations are done using GFP_KERNEL with pcpu_lock released. In
|
|
* general, percpu memory can't be allocated with irq off but
|
|
* irqsave/restore are still used in alloc path so that it can be used
|
|
* from early init path - sched_init() specifically.
|
|
*
|
|
* Free path accesses and alters only the index data structures, so it
|
|
* can be safely called from atomic context. When memory needs to be
|
|
* returned to the system, free path schedules reclaim_work which
|
|
* grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
|
|
* reclaimed, release both locks and frees the chunks. Note that it's
|
|
* necessary to grab both locks to remove a chunk from circulation as
|
|
* allocation path might be referencing the chunk with only
|
|
* pcpu_alloc_mutex locked.
|
|
*/
|
|
static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
|
|
static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
|
|
|
|
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
|
|
|
|
/* reclaim work to release fully free chunks, scheduled from free path */
|
|
static void pcpu_reclaim(struct work_struct *work);
|
|
static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
|
|
|
|
static bool pcpu_addr_in_first_chunk(void *addr)
|
|
{
|
|
void *first_start = pcpu_first_chunk->base_addr;
|
|
|
|
return addr >= first_start && addr < first_start + pcpu_unit_size;
|
|
}
|
|
|
|
static bool pcpu_addr_in_reserved_chunk(void *addr)
|
|
{
|
|
void *first_start = pcpu_first_chunk->base_addr;
|
|
|
|
return addr >= first_start &&
|
|
addr < first_start + pcpu_reserved_chunk_limit;
|
|
}
|
|
|
|
static int __pcpu_size_to_slot(int size)
|
|
{
|
|
int highbit = fls(size); /* size is in bytes */
|
|
return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
|
|
}
|
|
|
|
static int pcpu_size_to_slot(int size)
|
|
{
|
|
if (size == pcpu_unit_size)
|
|
return pcpu_nr_slots - 1;
|
|
return __pcpu_size_to_slot(size);
|
|
}
|
|
|
|
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
|
|
{
|
|
if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
|
|
return 0;
|
|
|
|
return pcpu_size_to_slot(chunk->free_size);
|
|
}
|
|
|
|
/* set the pointer to a chunk in a page struct */
|
|
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
|
|
{
|
|
page->index = (unsigned long)pcpu;
|
|
}
|
|
|
|
/* obtain pointer to a chunk from a page struct */
|
|
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
|
|
{
|
|
return (struct pcpu_chunk *)page->index;
|
|
}
|
|
|
|
static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
|
|
{
|
|
return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
|
|
}
|
|
|
|
static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
|
|
unsigned int cpu, int page_idx)
|
|
{
|
|
return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
|
|
(page_idx << PAGE_SHIFT);
|
|
}
|
|
|
|
static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
|
|
int *rs, int *re, int end)
|
|
{
|
|
*rs = find_next_zero_bit(chunk->populated, end, *rs);
|
|
*re = find_next_bit(chunk->populated, end, *rs + 1);
|
|
}
|
|
|
|
static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
|
|
int *rs, int *re, int end)
|
|
{
|
|
*rs = find_next_bit(chunk->populated, end, *rs);
|
|
*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
|
|
}
|
|
|
|
/*
|
|
* (Un)populated page region iterators. Iterate over (un)populated
|
|
* page regions between @start and @end in @chunk. @rs and @re should
|
|
* be integer variables and will be set to start and end page index of
|
|
* the current region.
|
|
*/
|
|
#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
|
|
for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
|
|
(rs) < (re); \
|
|
(rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
|
|
|
|
#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
|
|
for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
|
|
(rs) < (re); \
|
|
(rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
|
|
|
|
/**
|
|
* pcpu_mem_zalloc - allocate memory
|
|
* @size: bytes to allocate
|
|
*
|
|
* Allocate @size bytes. If @size is smaller than PAGE_SIZE,
|
|
* kzalloc() is used; otherwise, vzalloc() is used. The returned
|
|
* memory is always zeroed.
|
|
*
|
|
* CONTEXT:
|
|
* Does GFP_KERNEL allocation.
|
|
*
|
|
* RETURNS:
|
|
* Pointer to the allocated area on success, NULL on failure.
|
|
*/
|
|
static void *pcpu_mem_zalloc(size_t size)
|
|
{
|
|
if (WARN_ON_ONCE(!slab_is_available()))
|
|
return NULL;
|
|
|
|
if (size <= PAGE_SIZE)
|
|
return kzalloc(size, GFP_KERNEL);
|
|
else
|
|
return vzalloc(size);
|
|
}
|
|
|
|
/**
|
|
* pcpu_mem_free - free memory
|
|
* @ptr: memory to free
|
|
* @size: size of the area
|
|
*
|
|
* Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
|
|
*/
|
|
static void pcpu_mem_free(void *ptr, size_t size)
|
|
{
|
|
if (size <= PAGE_SIZE)
|
|
kfree(ptr);
|
|
else
|
|
vfree(ptr);
|
|
}
|
|
|
|
/**
|
|
* pcpu_chunk_relocate - put chunk in the appropriate chunk slot
|
|
* @chunk: chunk of interest
|
|
* @oslot: the previous slot it was on
|
|
*
|
|
* This function is called after an allocation or free changed @chunk.
|
|
* New slot according to the changed state is determined and @chunk is
|
|
* moved to the slot. Note that the reserved chunk is never put on
|
|
* chunk slots.
|
|
*
|
|
* CONTEXT:
|
|
* pcpu_lock.
|
|
*/
|
|
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
|
|
{
|
|
int nslot = pcpu_chunk_slot(chunk);
|
|
|
|
if (chunk != pcpu_reserved_chunk && oslot != nslot) {
|
|
if (oslot < nslot)
|
|
list_move(&chunk->list, &pcpu_slot[nslot]);
|
|
else
|
|
list_move_tail(&chunk->list, &pcpu_slot[nslot]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* pcpu_need_to_extend - determine whether chunk area map needs to be extended
|
|
* @chunk: chunk of interest
|
|
*
|
|
* Determine whether area map of @chunk needs to be extended to
|
|
* accommodate a new allocation.
|
|
*
|
|
* CONTEXT:
|
|
* pcpu_lock.
|
|
*
|
|
* RETURNS:
|
|
* New target map allocation length if extension is necessary, 0
|
|
* otherwise.
|
|
*/
|
|
static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
|
|
{
|
|
int new_alloc;
|
|
|
|
if (chunk->map_alloc >= chunk->map_used + 2)
|
|
return 0;
|
|
|
|
new_alloc = PCPU_DFL_MAP_ALLOC;
|
|
while (new_alloc < chunk->map_used + 2)
|
|
new_alloc *= 2;
|
|
|
|
return new_alloc;
|
|
}
|
|
|
|
/**
|
|
* pcpu_extend_area_map - extend area map of a chunk
|
|
* @chunk: chunk of interest
|
|
* @new_alloc: new target allocation length of the area map
|
|
*
|
|
* Extend area map of @chunk to have @new_alloc entries.
|
|
*
|
|
* CONTEXT:
|
|
* Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
|
|
{
|
|
int *old = NULL, *new = NULL;
|
|
size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
|
|
unsigned long flags;
|
|
|
|
new = pcpu_mem_zalloc(new_size);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
/* acquire pcpu_lock and switch to new area map */
|
|
spin_lock_irqsave(&pcpu_lock, flags);
|
|
|
|
if (new_alloc <= chunk->map_alloc)
|
|
goto out_unlock;
|
|
|
|
old_size = chunk->map_alloc * sizeof(chunk->map[0]);
|
|
old = chunk->map;
|
|
|
|
memcpy(new, old, old_size);
|
|
|
|
chunk->map_alloc = new_alloc;
|
|
chunk->map = new;
|
|
new = NULL;
|
|
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&pcpu_lock, flags);
|
|
|
|
/*
|
|
* pcpu_mem_free() might end up calling vfree() which uses
|
|
* IRQ-unsafe lock and thus can't be called under pcpu_lock.
|
|
*/
|
|
pcpu_mem_free(old, old_size);
|
|
pcpu_mem_free(new, new_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pcpu_split_block - split a map block
|
|
* @chunk: chunk of interest
|
|
* @i: index of map block to split
|
|
* @head: head size in bytes (can be 0)
|
|
* @tail: tail size in bytes (can be 0)
|
|
*
|
|
* Split the @i'th map block into two or three blocks. If @head is
|
|
* non-zero, @head bytes block is inserted before block @i moving it
|
|
* to @i+1 and reducing its size by @head bytes.
|
|
*
|
|
* If @tail is non-zero, the target block, which can be @i or @i+1
|
|
* depending on @head, is reduced by @tail bytes and @tail byte block
|
|
* is inserted after the target block.
|
|
*
|
|
* @chunk->map must have enough free slots to accommodate the split.
|
|
*
|
|
* CONTEXT:
|
|
* pcpu_lock.
|
|
*/
|
|
static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
|
|
int head, int tail)
|
|
{
|
|
int nr_extra = !!head + !!tail;
|
|
|
|
BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
|
|
|
|
/* insert new subblocks */
|
|
memmove(&chunk->map[i + nr_extra], &chunk->map[i],
|
|
sizeof(chunk->map[0]) * (chunk->map_used - i));
|
|
chunk->map_used += nr_extra;
|
|
|
|
if (head) {
|
|
chunk->map[i + 1] = chunk->map[i] - head;
|
|
chunk->map[i++] = head;
|
|
}
|
|
if (tail) {
|
|
chunk->map[i++] -= tail;
|
|
chunk->map[i] = tail;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* pcpu_alloc_area - allocate area from a pcpu_chunk
|
|
* @chunk: chunk of interest
|
|
* @size: wanted size in bytes
|
|
* @align: wanted align
|
|
*
|
|
* Try to allocate @size bytes area aligned at @align from @chunk.
|
|
* Note that this function only allocates the offset. It doesn't
|
|
* populate or map the area.
|
|
*
|
|
* @chunk->map must have at least two free slots.
|
|
*
|
|
* CONTEXT:
|
|
* pcpu_lock.
|
|
*
|
|
* RETURNS:
|
|
* Allocated offset in @chunk on success, -1 if no matching area is
|
|
* found.
|
|
*/
|
|
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
|
|
{
|
|
int oslot = pcpu_chunk_slot(chunk);
|
|
int max_contig = 0;
|
|
int i, off;
|
|
|
|
for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
|
|
bool is_last = i + 1 == chunk->map_used;
|
|
int head, tail;
|
|
|
|
/* extra for alignment requirement */
|
|
head = ALIGN(off, align) - off;
|
|
BUG_ON(i == 0 && head != 0);
|
|
|
|
if (chunk->map[i] < 0)
|
|
continue;
|
|
if (chunk->map[i] < head + size) {
|
|
max_contig = max(chunk->map[i], max_contig);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If head is small or the previous block is free,
|
|
* merge'em. Note that 'small' is defined as smaller
|
|
* than sizeof(int), which is very small but isn't too
|
|
* uncommon for percpu allocations.
|
|
*/
|
|
if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
|
|
if (chunk->map[i - 1] > 0)
|
|
chunk->map[i - 1] += head;
|
|
else {
|
|
chunk->map[i - 1] -= head;
|
|
chunk->free_size -= head;
|
|
}
|
|
chunk->map[i] -= head;
|
|
off += head;
|
|
head = 0;
|
|
}
|
|
|
|
/* if tail is small, just keep it around */
|
|
tail = chunk->map[i] - head - size;
|
|
if (tail < sizeof(int))
|
|
tail = 0;
|
|
|
|
/* split if warranted */
|
|
if (head || tail) {
|
|
pcpu_split_block(chunk, i, head, tail);
|
|
if (head) {
|
|
i++;
|
|
off += head;
|
|
max_contig = max(chunk->map[i - 1], max_contig);
|
|
}
|
|
if (tail)
|
|
max_contig = max(chunk->map[i + 1], max_contig);
|
|
}
|
|
|
|
/* update hint and mark allocated */
|
|
if (is_last)
|
|
chunk->contig_hint = max_contig; /* fully scanned */
|
|
else
|
|
chunk->contig_hint = max(chunk->contig_hint,
|
|
max_contig);
|
|
|
|
chunk->free_size -= chunk->map[i];
|
|
chunk->map[i] = -chunk->map[i];
|
|
|
|
pcpu_chunk_relocate(chunk, oslot);
|
|
return off;
|
|
}
|
|
|
|
chunk->contig_hint = max_contig; /* fully scanned */
|
|
pcpu_chunk_relocate(chunk, oslot);
|
|
|
|
/* tell the upper layer that this chunk has no matching area */
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* pcpu_free_area - free area to a pcpu_chunk
|
|
* @chunk: chunk of interest
|
|
* @freeme: offset of area to free
|
|
*
|
|
* Free area starting from @freeme to @chunk. Note that this function
|
|
* only modifies the allocation map. It doesn't depopulate or unmap
|
|
* the area.
|
|
*
|
|
* CONTEXT:
|
|
* pcpu_lock.
|
|
*/
|
|
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
|
|
{
|
|
int oslot = pcpu_chunk_slot(chunk);
|
|
int i, off;
|
|
|
|
for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
|
|
if (off == freeme)
|
|
break;
|
|
BUG_ON(off != freeme);
|
|
BUG_ON(chunk->map[i] > 0);
|
|
|
|
chunk->map[i] = -chunk->map[i];
|
|
chunk->free_size += chunk->map[i];
|
|
|
|
/* merge with previous? */
|
|
if (i > 0 && chunk->map[i - 1] >= 0) {
|
|
chunk->map[i - 1] += chunk->map[i];
|
|
chunk->map_used--;
|
|
memmove(&chunk->map[i], &chunk->map[i + 1],
|
|
(chunk->map_used - i) * sizeof(chunk->map[0]));
|
|
i--;
|
|
}
|
|
/* merge with next? */
|
|
if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
|
|
chunk->map[i] += chunk->map[i + 1];
|
|
chunk->map_used--;
|
|
memmove(&chunk->map[i + 1], &chunk->map[i + 2],
|
|
(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
|
|
}
|
|
|
|
chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
|
|
pcpu_chunk_relocate(chunk, oslot);
|
|
}
|
|
|
|
static struct pcpu_chunk *pcpu_alloc_chunk(void)
|
|
{
|
|
struct pcpu_chunk *chunk;
|
|
|
|
chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
|
|
if (!chunk)
|
|
return NULL;
|
|
|
|
chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
|
|
sizeof(chunk->map[0]));
|
|
if (!chunk->map) {
|
|
kfree(chunk);
|
|
return NULL;
|
|
}
|
|
|
|
chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
|
|
chunk->map[chunk->map_used++] = pcpu_unit_size;
|
|
|
|
INIT_LIST_HEAD(&chunk->list);
|
|
chunk->free_size = pcpu_unit_size;
|
|
chunk->contig_hint = pcpu_unit_size;
|
|
|
|
return chunk;
|
|
}
|
|
|
|
static void pcpu_free_chunk(struct pcpu_chunk *chunk)
|
|
{
|
|
if (!chunk)
|
|
return;
|
|
pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
|
|
kfree(chunk);
|
|
}
|
|
|
|
/*
|
|
* Chunk management implementation.
|
|
*
|
|
* To allow different implementations, chunk alloc/free and
|
|
* [de]population are implemented in a separate file which is pulled
|
|
* into this file and compiled together. The following functions
|
|
* should be implemented.
|
|
*
|
|
* pcpu_populate_chunk - populate the specified range of a chunk
|
|
* pcpu_depopulate_chunk - depopulate the specified range of a chunk
|
|
* pcpu_create_chunk - create a new chunk
|
|
* pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
|
|
* pcpu_addr_to_page - translate address to physical address
|
|
* pcpu_verify_alloc_info - check alloc_info is acceptable during init
|
|
*/
|
|
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
|
|
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
|
|
static struct pcpu_chunk *pcpu_create_chunk(void);
|
|
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
|
|
static struct page *pcpu_addr_to_page(void *addr);
|
|
static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
|
|
|
|
#ifdef CONFIG_NEED_PER_CPU_KM
|
|
#include "percpu-km.c"
|
|
#else
|
|
#include "percpu-vm.c"
|
|
#endif
|
|
|
|
/**
|
|
* pcpu_chunk_addr_search - determine chunk containing specified address
|
|
* @addr: address for which the chunk needs to be determined.
|
|
*
|
|
* RETURNS:
|
|
* The address of the found chunk.
|
|
*/
|
|
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
|
|
{
|
|
/* is it in the first chunk? */
|
|
if (pcpu_addr_in_first_chunk(addr)) {
|
|
/* is it in the reserved area? */
|
|
if (pcpu_addr_in_reserved_chunk(addr))
|
|
return pcpu_reserved_chunk;
|
|
return pcpu_first_chunk;
|
|
}
|
|
|
|
/*
|
|
* The address is relative to unit0 which might be unused and
|
|
* thus unmapped. Offset the address to the unit space of the
|
|
* current processor before looking it up in the vmalloc
|
|
* space. Note that any possible cpu id can be used here, so
|
|
* there's no need to worry about preemption or cpu hotplug.
|
|
*/
|
|
addr += pcpu_unit_offsets[raw_smp_processor_id()];
|
|
return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
|
|
}
|
|
|
|
/**
|
|
* pcpu_alloc - the percpu allocator
|
|
* @size: size of area to allocate in bytes
|
|
* @align: alignment of area (max PAGE_SIZE)
|
|
* @reserved: allocate from the reserved chunk if available
|
|
*
|
|
* Allocate percpu area of @size bytes aligned at @align.
|
|
*
|
|
* CONTEXT:
|
|
* Does GFP_KERNEL allocation.
|
|
*
|
|
* RETURNS:
|
|
* Percpu pointer to the allocated area on success, NULL on failure.
|
|
*/
|
|
static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
|
|
{
|
|
static int warn_limit = 10;
|
|
struct pcpu_chunk *chunk;
|
|
const char *err;
|
|
int slot, off, new_alloc;
|
|
unsigned long flags;
|
|
void __percpu *ptr;
|
|
|
|
if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
|
|
WARN(true, "illegal size (%zu) or align (%zu) for "
|
|
"percpu allocation\n", size, align);
|
|
return NULL;
|
|
}
|
|
|
|
mutex_lock(&pcpu_alloc_mutex);
|
|
spin_lock_irqsave(&pcpu_lock, flags);
|
|
|
|
/* serve reserved allocations from the reserved chunk if available */
|
|
if (reserved && pcpu_reserved_chunk) {
|
|
chunk = pcpu_reserved_chunk;
|
|
|
|
if (size > chunk->contig_hint) {
|
|
err = "alloc from reserved chunk failed";
|
|
goto fail_unlock;
|
|
}
|
|
|
|
while ((new_alloc = pcpu_need_to_extend(chunk))) {
|
|
spin_unlock_irqrestore(&pcpu_lock, flags);
|
|
if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
|
|
err = "failed to extend area map of reserved chunk";
|
|
goto fail_unlock_mutex;
|
|
}
|
|
spin_lock_irqsave(&pcpu_lock, flags);
|
|
}
|
|
|
|
off = pcpu_alloc_area(chunk, size, align);
|
|
if (off >= 0)
|
|
goto area_found;
|
|
|
|
err = "alloc from reserved chunk failed";
|
|
goto fail_unlock;
|
|
}
|
|
|
|
restart:
|
|
/* search through normal chunks */
|
|
for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
|
|
list_for_each_entry(chunk, &pcpu_slot[slot], list) {
|
|
if (size > chunk->contig_hint)
|
|
continue;
|
|
|
|
new_alloc = pcpu_need_to_extend(chunk);
|
|
if (new_alloc) {
|
|
spin_unlock_irqrestore(&pcpu_lock, flags);
|
|
if (pcpu_extend_area_map(chunk,
|
|
new_alloc) < 0) {
|
|
err = "failed to extend area map";
|
|
goto fail_unlock_mutex;
|
|
}
|
|
spin_lock_irqsave(&pcpu_lock, flags);
|
|
/*
|
|
* pcpu_lock has been dropped, need to
|
|
* restart cpu_slot list walking.
|
|
*/
|
|
goto restart;
|
|
}
|
|
|
|
off = pcpu_alloc_area(chunk, size, align);
|
|
if (off >= 0)
|
|
goto area_found;
|
|
}
|
|
}
|
|
|
|
/* hmmm... no space left, create a new chunk */
|
|
spin_unlock_irqrestore(&pcpu_lock, flags);
|
|
|
|
chunk = pcpu_create_chunk();
|
|
if (!chunk) {
|
|
err = "failed to allocate new chunk";
|
|
goto fail_unlock_mutex;
|
|
}
|
|
|
|
spin_lock_irqsave(&pcpu_lock, flags);
|
|
pcpu_chunk_relocate(chunk, -1);
|
|
goto restart;
|
|
|
|
area_found:
|
|
spin_unlock_irqrestore(&pcpu_lock, flags);
|
|
|
|
/* populate, map and clear the area */
|
|
if (pcpu_populate_chunk(chunk, off, size)) {
|
|
spin_lock_irqsave(&pcpu_lock, flags);
|
|
pcpu_free_area(chunk, off);
|
|
err = "failed to populate";
|
|
goto fail_unlock;
|
|
}
|
|
|
|
mutex_unlock(&pcpu_alloc_mutex);
|
|
|
|
/* return address relative to base address */
|
|
ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
|
|
kmemleak_alloc_percpu(ptr, size);
|
|
return ptr;
|
|
|
|
fail_unlock:
|
|
spin_unlock_irqrestore(&pcpu_lock, flags);
|
|
fail_unlock_mutex:
|
|
mutex_unlock(&pcpu_alloc_mutex);
|
|
if (warn_limit) {
|
|
pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
|
|
"%s\n", size, align, err);
|
|
dump_stack();
|
|
if (!--warn_limit)
|
|
pr_info("PERCPU: limit reached, disable warning\n");
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* __alloc_percpu - allocate dynamic percpu area
|
|
* @size: size of area to allocate in bytes
|
|
* @align: alignment of area (max PAGE_SIZE)
|
|
*
|
|
* Allocate zero-filled percpu area of @size bytes aligned at @align.
|
|
* Might sleep. Might trigger writeouts.
|
|
*
|
|
* CONTEXT:
|
|
* Does GFP_KERNEL allocation.
|
|
*
|
|
* RETURNS:
|
|
* Percpu pointer to the allocated area on success, NULL on failure.
|
|
*/
|
|
void __percpu *__alloc_percpu(size_t size, size_t align)
|
|
{
|
|
return pcpu_alloc(size, align, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__alloc_percpu);
|
|
|
|
/**
|
|
* __alloc_reserved_percpu - allocate reserved percpu area
|
|
* @size: size of area to allocate in bytes
|
|
* @align: alignment of area (max PAGE_SIZE)
|
|
*
|
|
* Allocate zero-filled percpu area of @size bytes aligned at @align
|
|
* from reserved percpu area if arch has set it up; otherwise,
|
|
* allocation is served from the same dynamic area. Might sleep.
|
|
* Might trigger writeouts.
|
|
*
|
|
* CONTEXT:
|
|
* Does GFP_KERNEL allocation.
|
|
*
|
|
* RETURNS:
|
|
* Percpu pointer to the allocated area on success, NULL on failure.
|
|
*/
|
|
void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
|
|
{
|
|
return pcpu_alloc(size, align, true);
|
|
}
|
|
|
|
/**
|
|
* pcpu_reclaim - reclaim fully free chunks, workqueue function
|
|
* @work: unused
|
|
*
|
|
* Reclaim all fully free chunks except for the first one.
|
|
*
|
|
* CONTEXT:
|
|
* workqueue context.
|
|
*/
|
|
static void pcpu_reclaim(struct work_struct *work)
|
|
{
|
|
LIST_HEAD(todo);
|
|
struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
|
|
struct pcpu_chunk *chunk, *next;
|
|
|
|
mutex_lock(&pcpu_alloc_mutex);
|
|
spin_lock_irq(&pcpu_lock);
|
|
|
|
list_for_each_entry_safe(chunk, next, head, list) {
|
|
WARN_ON(chunk->immutable);
|
|
|
|
/* spare the first one */
|
|
if (chunk == list_first_entry(head, struct pcpu_chunk, list))
|
|
continue;
|
|
|
|
list_move(&chunk->list, &todo);
|
|
}
|
|
|
|
spin_unlock_irq(&pcpu_lock);
|
|
|
|
list_for_each_entry_safe(chunk, next, &todo, list) {
|
|
pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
|
|
pcpu_destroy_chunk(chunk);
|
|
}
|
|
|
|
mutex_unlock(&pcpu_alloc_mutex);
|
|
}
|
|
|
|
/**
|
|
* free_percpu - free percpu area
|
|
* @ptr: pointer to area to free
|
|
*
|
|
* Free percpu area @ptr.
|
|
*
|
|
* CONTEXT:
|
|
* Can be called from atomic context.
|
|
*/
|
|
void free_percpu(void __percpu *ptr)
|
|
{
|
|
void *addr;
|
|
struct pcpu_chunk *chunk;
|
|
unsigned long flags;
|
|
int off;
|
|
|
|
if (!ptr)
|
|
return;
|
|
|
|
kmemleak_free_percpu(ptr);
|
|
|
|
addr = __pcpu_ptr_to_addr(ptr);
|
|
|
|
spin_lock_irqsave(&pcpu_lock, flags);
|
|
|
|
chunk = pcpu_chunk_addr_search(addr);
|
|
off = addr - chunk->base_addr;
|
|
|
|
pcpu_free_area(chunk, off);
|
|
|
|
/* if there are more than one fully free chunks, wake up grim reaper */
|
|
if (chunk->free_size == pcpu_unit_size) {
|
|
struct pcpu_chunk *pos;
|
|
|
|
list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
|
|
if (pos != chunk) {
|
|
schedule_work(&pcpu_reclaim_work);
|
|
break;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&pcpu_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(free_percpu);
|
|
|
|
/**
|
|
* is_kernel_percpu_address - test whether address is from static percpu area
|
|
* @addr: address to test
|
|
*
|
|
* Test whether @addr belongs to in-kernel static percpu area. Module
|
|
* static percpu areas are not considered. For those, use
|
|
* is_module_percpu_address().
|
|
*
|
|
* RETURNS:
|
|
* %true if @addr is from in-kernel static percpu area, %false otherwise.
|
|
*/
|
|
bool is_kernel_percpu_address(unsigned long addr)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
const size_t static_size = __per_cpu_end - __per_cpu_start;
|
|
void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
|
|
unsigned int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
void *start = per_cpu_ptr(base, cpu);
|
|
|
|
if ((void *)addr >= start && (void *)addr < start + static_size)
|
|
return true;
|
|
}
|
|
#endif
|
|
/* on UP, can't distinguish from other static vars, always false */
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* per_cpu_ptr_to_phys - convert translated percpu address to physical address
|
|
* @addr: the address to be converted to physical address
|
|
*
|
|
* Given @addr which is dereferenceable address obtained via one of
|
|
* percpu access macros, this function translates it into its physical
|
|
* address. The caller is responsible for ensuring @addr stays valid
|
|
* until this function finishes.
|
|
*
|
|
* percpu allocator has special setup for the first chunk, which currently
|
|
* supports either embedding in linear address space or vmalloc mapping,
|
|
* and, from the second one, the backing allocator (currently either vm or
|
|
* km) provides translation.
|
|
*
|
|
* The addr can be tranlated simply without checking if it falls into the
|
|
* first chunk. But the current code reflects better how percpu allocator
|
|
* actually works, and the verification can discover both bugs in percpu
|
|
* allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
|
|
* code.
|
|
*
|
|
* RETURNS:
|
|
* The physical address for @addr.
|
|
*/
|
|
phys_addr_t per_cpu_ptr_to_phys(void *addr)
|
|
{
|
|
void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
|
|
bool in_first_chunk = false;
|
|
unsigned long first_low, first_high;
|
|
unsigned int cpu;
|
|
|
|
/*
|
|
* The following test on unit_low/high isn't strictly
|
|
* necessary but will speed up lookups of addresses which
|
|
* aren't in the first chunk.
|
|
*/
|
|
first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
|
|
first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
|
|
pcpu_unit_pages);
|
|
if ((unsigned long)addr >= first_low &&
|
|
(unsigned long)addr < first_high) {
|
|
for_each_possible_cpu(cpu) {
|
|
void *start = per_cpu_ptr(base, cpu);
|
|
|
|
if (addr >= start && addr < start + pcpu_unit_size) {
|
|
in_first_chunk = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (in_first_chunk) {
|
|
if (!is_vmalloc_addr(addr))
|
|
return __pa(addr);
|
|
else
|
|
return page_to_phys(vmalloc_to_page(addr)) +
|
|
offset_in_page(addr);
|
|
} else
|
|
return page_to_phys(pcpu_addr_to_page(addr)) +
|
|
offset_in_page(addr);
|
|
}
|
|
|
|
/**
|
|
* pcpu_alloc_alloc_info - allocate percpu allocation info
|
|
* @nr_groups: the number of groups
|
|
* @nr_units: the number of units
|
|
*
|
|
* Allocate ai which is large enough for @nr_groups groups containing
|
|
* @nr_units units. The returned ai's groups[0].cpu_map points to the
|
|
* cpu_map array which is long enough for @nr_units and filled with
|
|
* NR_CPUS. It's the caller's responsibility to initialize cpu_map
|
|
* pointer of other groups.
|
|
*
|
|
* RETURNS:
|
|
* Pointer to the allocated pcpu_alloc_info on success, NULL on
|
|
* failure.
|
|
*/
|
|
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
|
|
int nr_units)
|
|
{
|
|
struct pcpu_alloc_info *ai;
|
|
size_t base_size, ai_size;
|
|
void *ptr;
|
|
int unit;
|
|
|
|
base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
|
|
__alignof__(ai->groups[0].cpu_map[0]));
|
|
ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
|
|
|
|
ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
|
|
if (!ptr)
|
|
return NULL;
|
|
ai = ptr;
|
|
ptr += base_size;
|
|
|
|
ai->groups[0].cpu_map = ptr;
|
|
|
|
for (unit = 0; unit < nr_units; unit++)
|
|
ai->groups[0].cpu_map[unit] = NR_CPUS;
|
|
|
|
ai->nr_groups = nr_groups;
|
|
ai->__ai_size = PFN_ALIGN(ai_size);
|
|
|
|
return ai;
|
|
}
|
|
|
|
/**
|
|
* pcpu_free_alloc_info - free percpu allocation info
|
|
* @ai: pcpu_alloc_info to free
|
|
*
|
|
* Free @ai which was allocated by pcpu_alloc_alloc_info().
|
|
*/
|
|
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
|
|
{
|
|
free_bootmem(__pa(ai), ai->__ai_size);
|
|
}
|
|
|
|
/**
|
|
* pcpu_dump_alloc_info - print out information about pcpu_alloc_info
|
|
* @lvl: loglevel
|
|
* @ai: allocation info to dump
|
|
*
|
|
* Print out information about @ai using loglevel @lvl.
|
|
*/
|
|
static void pcpu_dump_alloc_info(const char *lvl,
|
|
const struct pcpu_alloc_info *ai)
|
|
{
|
|
int group_width = 1, cpu_width = 1, width;
|
|
char empty_str[] = "--------";
|
|
int alloc = 0, alloc_end = 0;
|
|
int group, v;
|
|
int upa, apl; /* units per alloc, allocs per line */
|
|
|
|
v = ai->nr_groups;
|
|
while (v /= 10)
|
|
group_width++;
|
|
|
|
v = num_possible_cpus();
|
|
while (v /= 10)
|
|
cpu_width++;
|
|
empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
|
|
|
|
upa = ai->alloc_size / ai->unit_size;
|
|
width = upa * (cpu_width + 1) + group_width + 3;
|
|
apl = rounddown_pow_of_two(max(60 / width, 1));
|
|
|
|
printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
|
|
lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
|
|
ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
|
|
|
|
for (group = 0; group < ai->nr_groups; group++) {
|
|
const struct pcpu_group_info *gi = &ai->groups[group];
|
|
int unit = 0, unit_end = 0;
|
|
|
|
BUG_ON(gi->nr_units % upa);
|
|
for (alloc_end += gi->nr_units / upa;
|
|
alloc < alloc_end; alloc++) {
|
|
if (!(alloc % apl)) {
|
|
printk("\n");
|
|
printk("%spcpu-alloc: ", lvl);
|
|
}
|
|
printk("[%0*d] ", group_width, group);
|
|
|
|
for (unit_end += upa; unit < unit_end; unit++)
|
|
if (gi->cpu_map[unit] != NR_CPUS)
|
|
printk("%0*d ", cpu_width,
|
|
gi->cpu_map[unit]);
|
|
else
|
|
printk("%s ", empty_str);
|
|
}
|
|
}
|
|
printk("\n");
|
|
}
|
|
|
|
/**
|
|
* pcpu_setup_first_chunk - initialize the first percpu chunk
|
|
* @ai: pcpu_alloc_info describing how to percpu area is shaped
|
|
* @base_addr: mapped address
|
|
*
|
|
* Initialize the first percpu chunk which contains the kernel static
|
|
* perpcu area. This function is to be called from arch percpu area
|
|
* setup path.
|
|
*
|
|
* @ai contains all information necessary to initialize the first
|
|
* chunk and prime the dynamic percpu allocator.
|
|
*
|
|
* @ai->static_size is the size of static percpu area.
|
|
*
|
|
* @ai->reserved_size, if non-zero, specifies the amount of bytes to
|
|
* reserve after the static area in the first chunk. This reserves
|
|
* the first chunk such that it's available only through reserved
|
|
* percpu allocation. This is primarily used to serve module percpu
|
|
* static areas on architectures where the addressing model has
|
|
* limited offset range for symbol relocations to guarantee module
|
|
* percpu symbols fall inside the relocatable range.
|
|
*
|
|
* @ai->dyn_size determines the number of bytes available for dynamic
|
|
* allocation in the first chunk. The area between @ai->static_size +
|
|
* @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
|
|
*
|
|
* @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
|
|
* and equal to or larger than @ai->static_size + @ai->reserved_size +
|
|
* @ai->dyn_size.
|
|
*
|
|
* @ai->atom_size is the allocation atom size and used as alignment
|
|
* for vm areas.
|
|
*
|
|
* @ai->alloc_size is the allocation size and always multiple of
|
|
* @ai->atom_size. This is larger than @ai->atom_size if
|
|
* @ai->unit_size is larger than @ai->atom_size.
|
|
*
|
|
* @ai->nr_groups and @ai->groups describe virtual memory layout of
|
|
* percpu areas. Units which should be colocated are put into the
|
|
* same group. Dynamic VM areas will be allocated according to these
|
|
* groupings. If @ai->nr_groups is zero, a single group containing
|
|
* all units is assumed.
|
|
*
|
|
* The caller should have mapped the first chunk at @base_addr and
|
|
* copied static data to each unit.
|
|
*
|
|
* If the first chunk ends up with both reserved and dynamic areas, it
|
|
* is served by two chunks - one to serve the core static and reserved
|
|
* areas and the other for the dynamic area. They share the same vm
|
|
* and page map but uses different area allocation map to stay away
|
|
* from each other. The latter chunk is circulated in the chunk slots
|
|
* and available for dynamic allocation like any other chunks.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
|
|
void *base_addr)
|
|
{
|
|
static char cpus_buf[4096] __initdata;
|
|
static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
|
|
static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
|
|
size_t dyn_size = ai->dyn_size;
|
|
size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
|
|
struct pcpu_chunk *schunk, *dchunk = NULL;
|
|
unsigned long *group_offsets;
|
|
size_t *group_sizes;
|
|
unsigned long *unit_off;
|
|
unsigned int cpu;
|
|
int *unit_map;
|
|
int group, unit, i;
|
|
|
|
cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
|
|
|
|
#define PCPU_SETUP_BUG_ON(cond) do { \
|
|
if (unlikely(cond)) { \
|
|
pr_emerg("PERCPU: failed to initialize, %s", #cond); \
|
|
pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
|
|
pcpu_dump_alloc_info(KERN_EMERG, ai); \
|
|
BUG(); \
|
|
} \
|
|
} while (0)
|
|
|
|
/* sanity checks */
|
|
PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
|
|
#ifdef CONFIG_SMP
|
|
PCPU_SETUP_BUG_ON(!ai->static_size);
|
|
PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
|
|
#endif
|
|
PCPU_SETUP_BUG_ON(!base_addr);
|
|
PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
|
|
PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
|
|
PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
|
|
PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
|
|
PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
|
|
PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
|
|
|
|
/* process group information and build config tables accordingly */
|
|
group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
|
|
group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
|
|
unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
|
|
unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
|
|
|
|
for (cpu = 0; cpu < nr_cpu_ids; cpu++)
|
|
unit_map[cpu] = UINT_MAX;
|
|
|
|
pcpu_low_unit_cpu = NR_CPUS;
|
|
pcpu_high_unit_cpu = NR_CPUS;
|
|
|
|
for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
|
|
const struct pcpu_group_info *gi = &ai->groups[group];
|
|
|
|
group_offsets[group] = gi->base_offset;
|
|
group_sizes[group] = gi->nr_units * ai->unit_size;
|
|
|
|
for (i = 0; i < gi->nr_units; i++) {
|
|
cpu = gi->cpu_map[i];
|
|
if (cpu == NR_CPUS)
|
|
continue;
|
|
|
|
PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
|
|
PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
|
|
PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
|
|
|
|
unit_map[cpu] = unit + i;
|
|
unit_off[cpu] = gi->base_offset + i * ai->unit_size;
|
|
|
|
/* determine low/high unit_cpu */
|
|
if (pcpu_low_unit_cpu == NR_CPUS ||
|
|
unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
|
|
pcpu_low_unit_cpu = cpu;
|
|
if (pcpu_high_unit_cpu == NR_CPUS ||
|
|
unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
|
|
pcpu_high_unit_cpu = cpu;
|
|
}
|
|
}
|
|
pcpu_nr_units = unit;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
|
|
|
|
/* we're done parsing the input, undefine BUG macro and dump config */
|
|
#undef PCPU_SETUP_BUG_ON
|
|
pcpu_dump_alloc_info(KERN_DEBUG, ai);
|
|
|
|
pcpu_nr_groups = ai->nr_groups;
|
|
pcpu_group_offsets = group_offsets;
|
|
pcpu_group_sizes = group_sizes;
|
|
pcpu_unit_map = unit_map;
|
|
pcpu_unit_offsets = unit_off;
|
|
|
|
/* determine basic parameters */
|
|
pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
|
|
pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
|
|
pcpu_atom_size = ai->atom_size;
|
|
pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
|
|
BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
|
|
|
|
/*
|
|
* Allocate chunk slots. The additional last slot is for
|
|
* empty chunks.
|
|
*/
|
|
pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
|
|
pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
|
|
for (i = 0; i < pcpu_nr_slots; i++)
|
|
INIT_LIST_HEAD(&pcpu_slot[i]);
|
|
|
|
/*
|
|
* Initialize static chunk. If reserved_size is zero, the
|
|
* static chunk covers static area + dynamic allocation area
|
|
* in the first chunk. If reserved_size is not zero, it
|
|
* covers static area + reserved area (mostly used for module
|
|
* static percpu allocation).
|
|
*/
|
|
schunk = alloc_bootmem(pcpu_chunk_struct_size);
|
|
INIT_LIST_HEAD(&schunk->list);
|
|
schunk->base_addr = base_addr;
|
|
schunk->map = smap;
|
|
schunk->map_alloc = ARRAY_SIZE(smap);
|
|
schunk->immutable = true;
|
|
bitmap_fill(schunk->populated, pcpu_unit_pages);
|
|
|
|
if (ai->reserved_size) {
|
|
schunk->free_size = ai->reserved_size;
|
|
pcpu_reserved_chunk = schunk;
|
|
pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
|
|
} else {
|
|
schunk->free_size = dyn_size;
|
|
dyn_size = 0; /* dynamic area covered */
|
|
}
|
|
schunk->contig_hint = schunk->free_size;
|
|
|
|
schunk->map[schunk->map_used++] = -ai->static_size;
|
|
if (schunk->free_size)
|
|
schunk->map[schunk->map_used++] = schunk->free_size;
|
|
|
|
/* init dynamic chunk if necessary */
|
|
if (dyn_size) {
|
|
dchunk = alloc_bootmem(pcpu_chunk_struct_size);
|
|
INIT_LIST_HEAD(&dchunk->list);
|
|
dchunk->base_addr = base_addr;
|
|
dchunk->map = dmap;
|
|
dchunk->map_alloc = ARRAY_SIZE(dmap);
|
|
dchunk->immutable = true;
|
|
bitmap_fill(dchunk->populated, pcpu_unit_pages);
|
|
|
|
dchunk->contig_hint = dchunk->free_size = dyn_size;
|
|
dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
|
|
dchunk->map[dchunk->map_used++] = dchunk->free_size;
|
|
}
|
|
|
|
/* link the first chunk in */
|
|
pcpu_first_chunk = dchunk ?: schunk;
|
|
pcpu_chunk_relocate(pcpu_first_chunk, -1);
|
|
|
|
/* we're done */
|
|
pcpu_base_addr = base_addr;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
|
|
[PCPU_FC_AUTO] = "auto",
|
|
[PCPU_FC_EMBED] = "embed",
|
|
[PCPU_FC_PAGE] = "page",
|
|
};
|
|
|
|
enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
|
|
|
|
static int __init percpu_alloc_setup(char *str)
|
|
{
|
|
if (0)
|
|
/* nada */;
|
|
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
|
|
else if (!strcmp(str, "embed"))
|
|
pcpu_chosen_fc = PCPU_FC_EMBED;
|
|
#endif
|
|
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
|
|
else if (!strcmp(str, "page"))
|
|
pcpu_chosen_fc = PCPU_FC_PAGE;
|
|
#endif
|
|
else
|
|
pr_warning("PERCPU: unknown allocator %s specified\n", str);
|
|
|
|
return 0;
|
|
}
|
|
early_param("percpu_alloc", percpu_alloc_setup);
|
|
|
|
/*
|
|
* pcpu_embed_first_chunk() is used by the generic percpu setup.
|
|
* Build it if needed by the arch config or the generic setup is going
|
|
* to be used.
|
|
*/
|
|
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
|
|
!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
|
|
#define BUILD_EMBED_FIRST_CHUNK
|
|
#endif
|
|
|
|
/* build pcpu_page_first_chunk() iff needed by the arch config */
|
|
#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
|
|
#define BUILD_PAGE_FIRST_CHUNK
|
|
#endif
|
|
|
|
/* pcpu_build_alloc_info() is used by both embed and page first chunk */
|
|
#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
|
|
/**
|
|
* pcpu_build_alloc_info - build alloc_info considering distances between CPUs
|
|
* @reserved_size: the size of reserved percpu area in bytes
|
|
* @dyn_size: minimum free size for dynamic allocation in bytes
|
|
* @atom_size: allocation atom size
|
|
* @cpu_distance_fn: callback to determine distance between cpus, optional
|
|
*
|
|
* This function determines grouping of units, their mappings to cpus
|
|
* and other parameters considering needed percpu size, allocation
|
|
* atom size and distances between CPUs.
|
|
*
|
|
* Groups are always mutliples of atom size and CPUs which are of
|
|
* LOCAL_DISTANCE both ways are grouped together and share space for
|
|
* units in the same group. The returned configuration is guaranteed
|
|
* to have CPUs on different nodes on different groups and >=75% usage
|
|
* of allocated virtual address space.
|
|
*
|
|
* RETURNS:
|
|
* On success, pointer to the new allocation_info is returned. On
|
|
* failure, ERR_PTR value is returned.
|
|
*/
|
|
static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
|
|
size_t reserved_size, size_t dyn_size,
|
|
size_t atom_size,
|
|
pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
|
|
{
|
|
static int group_map[NR_CPUS] __initdata;
|
|
static int group_cnt[NR_CPUS] __initdata;
|
|
const size_t static_size = __per_cpu_end - __per_cpu_start;
|
|
int nr_groups = 1, nr_units = 0;
|
|
size_t size_sum, min_unit_size, alloc_size;
|
|
int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
|
|
int last_allocs, group, unit;
|
|
unsigned int cpu, tcpu;
|
|
struct pcpu_alloc_info *ai;
|
|
unsigned int *cpu_map;
|
|
|
|
/* this function may be called multiple times */
|
|
memset(group_map, 0, sizeof(group_map));
|
|
memset(group_cnt, 0, sizeof(group_cnt));
|
|
|
|
/* calculate size_sum and ensure dyn_size is enough for early alloc */
|
|
size_sum = PFN_ALIGN(static_size + reserved_size +
|
|
max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
|
|
dyn_size = size_sum - static_size - reserved_size;
|
|
|
|
/*
|
|
* Determine min_unit_size, alloc_size and max_upa such that
|
|
* alloc_size is multiple of atom_size and is the smallest
|
|
* which can accommodate 4k aligned segments which are equal to
|
|
* or larger than min_unit_size.
|
|
*/
|
|
min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
|
|
|
|
alloc_size = roundup(min_unit_size, atom_size);
|
|
upa = alloc_size / min_unit_size;
|
|
while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
|
|
upa--;
|
|
max_upa = upa;
|
|
|
|
/* group cpus according to their proximity */
|
|
for_each_possible_cpu(cpu) {
|
|
group = 0;
|
|
next_group:
|
|
for_each_possible_cpu(tcpu) {
|
|
if (cpu == tcpu)
|
|
break;
|
|
if (group_map[tcpu] == group && cpu_distance_fn &&
|
|
(cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
|
|
cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
|
|
group++;
|
|
nr_groups = max(nr_groups, group + 1);
|
|
goto next_group;
|
|
}
|
|
}
|
|
group_map[cpu] = group;
|
|
group_cnt[group]++;
|
|
}
|
|
|
|
/*
|
|
* Expand unit size until address space usage goes over 75%
|
|
* and then as much as possible without using more address
|
|
* space.
|
|
*/
|
|
last_allocs = INT_MAX;
|
|
for (upa = max_upa; upa; upa--) {
|
|
int allocs = 0, wasted = 0;
|
|
|
|
if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
|
|
continue;
|
|
|
|
for (group = 0; group < nr_groups; group++) {
|
|
int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
|
|
allocs += this_allocs;
|
|
wasted += this_allocs * upa - group_cnt[group];
|
|
}
|
|
|
|
/*
|
|
* Don't accept if wastage is over 1/3. The
|
|
* greater-than comparison ensures upa==1 always
|
|
* passes the following check.
|
|
*/
|
|
if (wasted > num_possible_cpus() / 3)
|
|
continue;
|
|
|
|
/* and then don't consume more memory */
|
|
if (allocs > last_allocs)
|
|
break;
|
|
last_allocs = allocs;
|
|
best_upa = upa;
|
|
}
|
|
upa = best_upa;
|
|
|
|
/* allocate and fill alloc_info */
|
|
for (group = 0; group < nr_groups; group++)
|
|
nr_units += roundup(group_cnt[group], upa);
|
|
|
|
ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
|
|
if (!ai)
|
|
return ERR_PTR(-ENOMEM);
|
|
cpu_map = ai->groups[0].cpu_map;
|
|
|
|
for (group = 0; group < nr_groups; group++) {
|
|
ai->groups[group].cpu_map = cpu_map;
|
|
cpu_map += roundup(group_cnt[group], upa);
|
|
}
|
|
|
|
ai->static_size = static_size;
|
|
ai->reserved_size = reserved_size;
|
|
ai->dyn_size = dyn_size;
|
|
ai->unit_size = alloc_size / upa;
|
|
ai->atom_size = atom_size;
|
|
ai->alloc_size = alloc_size;
|
|
|
|
for (group = 0, unit = 0; group_cnt[group]; group++) {
|
|
struct pcpu_group_info *gi = &ai->groups[group];
|
|
|
|
/*
|
|
* Initialize base_offset as if all groups are located
|
|
* back-to-back. The caller should update this to
|
|
* reflect actual allocation.
|
|
*/
|
|
gi->base_offset = unit * ai->unit_size;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
if (group_map[cpu] == group)
|
|
gi->cpu_map[gi->nr_units++] = cpu;
|
|
gi->nr_units = roundup(gi->nr_units, upa);
|
|
unit += gi->nr_units;
|
|
}
|
|
BUG_ON(unit != nr_units);
|
|
|
|
return ai;
|
|
}
|
|
#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
|
|
|
|
#if defined(BUILD_EMBED_FIRST_CHUNK)
|
|
/**
|
|
* pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
|
|
* @reserved_size: the size of reserved percpu area in bytes
|
|
* @dyn_size: minimum free size for dynamic allocation in bytes
|
|
* @atom_size: allocation atom size
|
|
* @cpu_distance_fn: callback to determine distance between cpus, optional
|
|
* @alloc_fn: function to allocate percpu page
|
|
* @free_fn: function to free percpu page
|
|
*
|
|
* This is a helper to ease setting up embedded first percpu chunk and
|
|
* can be called where pcpu_setup_first_chunk() is expected.
|
|
*
|
|
* If this function is used to setup the first chunk, it is allocated
|
|
* by calling @alloc_fn and used as-is without being mapped into
|
|
* vmalloc area. Allocations are always whole multiples of @atom_size
|
|
* aligned to @atom_size.
|
|
*
|
|
* This enables the first chunk to piggy back on the linear physical
|
|
* mapping which often uses larger page size. Please note that this
|
|
* can result in very sparse cpu->unit mapping on NUMA machines thus
|
|
* requiring large vmalloc address space. Don't use this allocator if
|
|
* vmalloc space is not orders of magnitude larger than distances
|
|
* between node memory addresses (ie. 32bit NUMA machines).
|
|
*
|
|
* @dyn_size specifies the minimum dynamic area size.
|
|
*
|
|
* If the needed size is smaller than the minimum or specified unit
|
|
* size, the leftover is returned using @free_fn.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
|
|
size_t atom_size,
|
|
pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
|
|
pcpu_fc_alloc_fn_t alloc_fn,
|
|
pcpu_fc_free_fn_t free_fn)
|
|
{
|
|
void *base = (void *)ULONG_MAX;
|
|
void **areas = NULL;
|
|
struct pcpu_alloc_info *ai;
|
|
size_t size_sum, areas_size, max_distance;
|
|
int group, i, rc;
|
|
|
|
ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
|
|
cpu_distance_fn);
|
|
if (IS_ERR(ai))
|
|
return PTR_ERR(ai);
|
|
|
|
size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
|
|
areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
|
|
|
|
areas = alloc_bootmem_nopanic(areas_size);
|
|
if (!areas) {
|
|
rc = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
/* allocate, copy and determine base address */
|
|
for (group = 0; group < ai->nr_groups; group++) {
|
|
struct pcpu_group_info *gi = &ai->groups[group];
|
|
unsigned int cpu = NR_CPUS;
|
|
void *ptr;
|
|
|
|
for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
|
|
cpu = gi->cpu_map[i];
|
|
BUG_ON(cpu == NR_CPUS);
|
|
|
|
/* allocate space for the whole group */
|
|
ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
|
|
if (!ptr) {
|
|
rc = -ENOMEM;
|
|
goto out_free_areas;
|
|
}
|
|
/* kmemleak tracks the percpu allocations separately */
|
|
kmemleak_free(ptr);
|
|
areas[group] = ptr;
|
|
|
|
base = min(ptr, base);
|
|
|
|
for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
|
|
if (gi->cpu_map[i] == NR_CPUS) {
|
|
/* unused unit, free whole */
|
|
free_fn(ptr, ai->unit_size);
|
|
continue;
|
|
}
|
|
/* copy and return the unused part */
|
|
memcpy(ptr, __per_cpu_load, ai->static_size);
|
|
free_fn(ptr + size_sum, ai->unit_size - size_sum);
|
|
}
|
|
}
|
|
|
|
/* base address is now known, determine group base offsets */
|
|
max_distance = 0;
|
|
for (group = 0; group < ai->nr_groups; group++) {
|
|
ai->groups[group].base_offset = areas[group] - base;
|
|
max_distance = max_t(size_t, max_distance,
|
|
ai->groups[group].base_offset);
|
|
}
|
|
max_distance += ai->unit_size;
|
|
|
|
/* warn if maximum distance is further than 75% of vmalloc space */
|
|
if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
|
|
pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
|
|
"space 0x%lx\n", max_distance,
|
|
(unsigned long)(VMALLOC_END - VMALLOC_START));
|
|
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
|
|
/* and fail if we have fallback */
|
|
rc = -EINVAL;
|
|
goto out_free;
|
|
#endif
|
|
}
|
|
|
|
pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
|
|
PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
|
|
ai->dyn_size, ai->unit_size);
|
|
|
|
rc = pcpu_setup_first_chunk(ai, base);
|
|
goto out_free;
|
|
|
|
out_free_areas:
|
|
for (group = 0; group < ai->nr_groups; group++)
|
|
free_fn(areas[group],
|
|
ai->groups[group].nr_units * ai->unit_size);
|
|
out_free:
|
|
pcpu_free_alloc_info(ai);
|
|
if (areas)
|
|
free_bootmem(__pa(areas), areas_size);
|
|
return rc;
|
|
}
|
|
#endif /* BUILD_EMBED_FIRST_CHUNK */
|
|
|
|
#ifdef BUILD_PAGE_FIRST_CHUNK
|
|
/**
|
|
* pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
|
|
* @reserved_size: the size of reserved percpu area in bytes
|
|
* @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
|
|
* @free_fn: function to free percpu page, always called with PAGE_SIZE
|
|
* @populate_pte_fn: function to populate pte
|
|
*
|
|
* This is a helper to ease setting up page-remapped first percpu
|
|
* chunk and can be called where pcpu_setup_first_chunk() is expected.
|
|
*
|
|
* This is the basic allocator. Static percpu area is allocated
|
|
* page-by-page into vmalloc area.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int __init pcpu_page_first_chunk(size_t reserved_size,
|
|
pcpu_fc_alloc_fn_t alloc_fn,
|
|
pcpu_fc_free_fn_t free_fn,
|
|
pcpu_fc_populate_pte_fn_t populate_pte_fn)
|
|
{
|
|
static struct vm_struct vm;
|
|
struct pcpu_alloc_info *ai;
|
|
char psize_str[16];
|
|
int unit_pages;
|
|
size_t pages_size;
|
|
struct page **pages;
|
|
int unit, i, j, rc;
|
|
|
|
snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
|
|
|
|
ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
|
|
if (IS_ERR(ai))
|
|
return PTR_ERR(ai);
|
|
BUG_ON(ai->nr_groups != 1);
|
|
BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
|
|
|
|
unit_pages = ai->unit_size >> PAGE_SHIFT;
|
|
|
|
/* unaligned allocations can't be freed, round up to page size */
|
|
pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
|
|
sizeof(pages[0]));
|
|
pages = alloc_bootmem(pages_size);
|
|
|
|
/* allocate pages */
|
|
j = 0;
|
|
for (unit = 0; unit < num_possible_cpus(); unit++)
|
|
for (i = 0; i < unit_pages; i++) {
|
|
unsigned int cpu = ai->groups[0].cpu_map[unit];
|
|
void *ptr;
|
|
|
|
ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
|
|
if (!ptr) {
|
|
pr_warning("PERCPU: failed to allocate %s page "
|
|
"for cpu%u\n", psize_str, cpu);
|
|
goto enomem;
|
|
}
|
|
/* kmemleak tracks the percpu allocations separately */
|
|
kmemleak_free(ptr);
|
|
pages[j++] = virt_to_page(ptr);
|
|
}
|
|
|
|
/* allocate vm area, map the pages and copy static data */
|
|
vm.flags = VM_ALLOC;
|
|
vm.size = num_possible_cpus() * ai->unit_size;
|
|
vm_area_register_early(&vm, PAGE_SIZE);
|
|
|
|
for (unit = 0; unit < num_possible_cpus(); unit++) {
|
|
unsigned long unit_addr =
|
|
(unsigned long)vm.addr + unit * ai->unit_size;
|
|
|
|
for (i = 0; i < unit_pages; i++)
|
|
populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
|
|
|
|
/* pte already populated, the following shouldn't fail */
|
|
rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
|
|
unit_pages);
|
|
if (rc < 0)
|
|
panic("failed to map percpu area, err=%d\n", rc);
|
|
|
|
/*
|
|
* FIXME: Archs with virtual cache should flush local
|
|
* cache for the linear mapping here - something
|
|
* equivalent to flush_cache_vmap() on the local cpu.
|
|
* flush_cache_vmap() can't be used as most supporting
|
|
* data structures are not set up yet.
|
|
*/
|
|
|
|
/* copy static data */
|
|
memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
|
|
}
|
|
|
|
/* we're ready, commit */
|
|
pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
|
|
unit_pages, psize_str, vm.addr, ai->static_size,
|
|
ai->reserved_size, ai->dyn_size);
|
|
|
|
rc = pcpu_setup_first_chunk(ai, vm.addr);
|
|
goto out_free_ar;
|
|
|
|
enomem:
|
|
while (--j >= 0)
|
|
free_fn(page_address(pages[j]), PAGE_SIZE);
|
|
rc = -ENOMEM;
|
|
out_free_ar:
|
|
free_bootmem(__pa(pages), pages_size);
|
|
pcpu_free_alloc_info(ai);
|
|
return rc;
|
|
}
|
|
#endif /* BUILD_PAGE_FIRST_CHUNK */
|
|
|
|
#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
|
|
/*
|
|
* Generic SMP percpu area setup.
|
|
*
|
|
* The embedding helper is used because its behavior closely resembles
|
|
* the original non-dynamic generic percpu area setup. This is
|
|
* important because many archs have addressing restrictions and might
|
|
* fail if the percpu area is located far away from the previous
|
|
* location. As an added bonus, in non-NUMA cases, embedding is
|
|
* generally a good idea TLB-wise because percpu area can piggy back
|
|
* on the physical linear memory mapping which uses large page
|
|
* mappings on applicable archs.
|
|
*/
|
|
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
|
|
EXPORT_SYMBOL(__per_cpu_offset);
|
|
|
|
static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
|
|
size_t align)
|
|
{
|
|
return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
|
|
}
|
|
|
|
static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
|
|
{
|
|
free_bootmem(__pa(ptr), size);
|
|
}
|
|
|
|
void __init setup_per_cpu_areas(void)
|
|
{
|
|
unsigned long delta;
|
|
unsigned int cpu;
|
|
int rc;
|
|
|
|
/*
|
|
* Always reserve area for module percpu variables. That's
|
|
* what the legacy allocator did.
|
|
*/
|
|
rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
|
|
PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
|
|
pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
|
|
if (rc < 0)
|
|
panic("Failed to initialize percpu areas.");
|
|
|
|
delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
|
|
for_each_possible_cpu(cpu)
|
|
__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
|
|
}
|
|
#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
|
|
|
|
#else /* CONFIG_SMP */
|
|
|
|
/*
|
|
* UP percpu area setup.
|
|
*
|
|
* UP always uses km-based percpu allocator with identity mapping.
|
|
* Static percpu variables are indistinguishable from the usual static
|
|
* variables and don't require any special preparation.
|
|
*/
|
|
void __init setup_per_cpu_areas(void)
|
|
{
|
|
const size_t unit_size =
|
|
roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
|
|
PERCPU_DYNAMIC_RESERVE));
|
|
struct pcpu_alloc_info *ai;
|
|
void *fc;
|
|
|
|
ai = pcpu_alloc_alloc_info(1, 1);
|
|
fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
|
|
if (!ai || !fc)
|
|
panic("Failed to allocate memory for percpu areas.");
|
|
|
|
ai->dyn_size = unit_size;
|
|
ai->unit_size = unit_size;
|
|
ai->atom_size = unit_size;
|
|
ai->alloc_size = unit_size;
|
|
ai->groups[0].nr_units = 1;
|
|
ai->groups[0].cpu_map[0] = 0;
|
|
|
|
if (pcpu_setup_first_chunk(ai, fc) < 0)
|
|
panic("Failed to initialize percpu areas.");
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* First and reserved chunks are initialized with temporary allocation
|
|
* map in initdata so that they can be used before slab is online.
|
|
* This function is called after slab is brought up and replaces those
|
|
* with properly allocated maps.
|
|
*/
|
|
void __init percpu_init_late(void)
|
|
{
|
|
struct pcpu_chunk *target_chunks[] =
|
|
{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
|
|
struct pcpu_chunk *chunk;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
for (i = 0; (chunk = target_chunks[i]); i++) {
|
|
int *map;
|
|
const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
|
|
|
|
BUILD_BUG_ON(size > PAGE_SIZE);
|
|
|
|
map = pcpu_mem_zalloc(size);
|
|
BUG_ON(!map);
|
|
|
|
spin_lock_irqsave(&pcpu_lock, flags);
|
|
memcpy(map, chunk->map, size);
|
|
chunk->map = map;
|
|
spin_unlock_irqrestore(&pcpu_lock, flags);
|
|
}
|
|
}
|