mirror of
https://github.com/torvalds/linux.git
synced 2024-12-04 18:13:04 +00:00
f43158eefd
If scsi_execute_cmd returns < 0, it doesn't initialize the sshdr, so we shouldn't access the sshdr. If it returns 0, then the cmd executed successfully, so there is no need to check the sshdr. This has us access the sshdr when we get a return value > 0. Signed-off-by: Mike Christie <michael.christie@oracle.com> Link: https://lore.kernel.org/r/20231004210013.5601-10-michael.christie@oracle.com Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: John Garry <john.g.garry@oracle.com> Reviewed-by: Martin Wilck <mwilck@suse.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
3338 lines
88 KiB
C
3338 lines
88 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 1999 Eric Youngdale
|
|
* Copyright (C) 2014 Christoph Hellwig
|
|
*
|
|
* SCSI queueing library.
|
|
* Initial versions: Eric Youngdale (eric@andante.org).
|
|
* Based upon conversations with large numbers
|
|
* of people at Linux Expo.
|
|
*/
|
|
|
|
#include <linux/bio.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/blk-integrity.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_dbg.h>
|
|
#include <scsi/scsi_device.h>
|
|
#include <scsi/scsi_driver.h>
|
|
#include <scsi/scsi_eh.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
|
|
#include <scsi/scsi_dh.h>
|
|
|
|
#include <trace/events/scsi.h>
|
|
|
|
#include "scsi_debugfs.h"
|
|
#include "scsi_priv.h"
|
|
#include "scsi_logging.h"
|
|
|
|
/*
|
|
* Size of integrity metadata is usually small, 1 inline sg should
|
|
* cover normal cases.
|
|
*/
|
|
#ifdef CONFIG_ARCH_NO_SG_CHAIN
|
|
#define SCSI_INLINE_PROT_SG_CNT 0
|
|
#define SCSI_INLINE_SG_CNT 0
|
|
#else
|
|
#define SCSI_INLINE_PROT_SG_CNT 1
|
|
#define SCSI_INLINE_SG_CNT 2
|
|
#endif
|
|
|
|
static struct kmem_cache *scsi_sense_cache;
|
|
static DEFINE_MUTEX(scsi_sense_cache_mutex);
|
|
|
|
static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
|
|
|
|
int scsi_init_sense_cache(struct Scsi_Host *shost)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&scsi_sense_cache_mutex);
|
|
if (!scsi_sense_cache) {
|
|
scsi_sense_cache =
|
|
kmem_cache_create_usercopy("scsi_sense_cache",
|
|
SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
|
|
0, SCSI_SENSE_BUFFERSIZE, NULL);
|
|
if (!scsi_sense_cache)
|
|
ret = -ENOMEM;
|
|
}
|
|
mutex_unlock(&scsi_sense_cache_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
|
|
{
|
|
struct Scsi_Host *host = cmd->device->host;
|
|
struct scsi_device *device = cmd->device;
|
|
struct scsi_target *starget = scsi_target(device);
|
|
|
|
/*
|
|
* Set the appropriate busy bit for the device/host.
|
|
*
|
|
* If the host/device isn't busy, assume that something actually
|
|
* completed, and that we should be able to queue a command now.
|
|
*
|
|
* Note that the prior mid-layer assumption that any host could
|
|
* always queue at least one command is now broken. The mid-layer
|
|
* will implement a user specifiable stall (see
|
|
* scsi_host.max_host_blocked and scsi_device.max_device_blocked)
|
|
* if a command is requeued with no other commands outstanding
|
|
* either for the device or for the host.
|
|
*/
|
|
switch (reason) {
|
|
case SCSI_MLQUEUE_HOST_BUSY:
|
|
atomic_set(&host->host_blocked, host->max_host_blocked);
|
|
break;
|
|
case SCSI_MLQUEUE_DEVICE_BUSY:
|
|
case SCSI_MLQUEUE_EH_RETRY:
|
|
atomic_set(&device->device_blocked,
|
|
device->max_device_blocked);
|
|
break;
|
|
case SCSI_MLQUEUE_TARGET_BUSY:
|
|
atomic_set(&starget->target_blocked,
|
|
starget->max_target_blocked);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
|
|
{
|
|
struct request *rq = scsi_cmd_to_rq(cmd);
|
|
|
|
if (rq->rq_flags & RQF_DONTPREP) {
|
|
rq->rq_flags &= ~RQF_DONTPREP;
|
|
scsi_mq_uninit_cmd(cmd);
|
|
} else {
|
|
WARN_ON_ONCE(true);
|
|
}
|
|
|
|
blk_mq_requeue_request(rq, false);
|
|
if (!scsi_host_in_recovery(cmd->device->host))
|
|
blk_mq_delay_kick_requeue_list(rq->q, msecs);
|
|
}
|
|
|
|
/**
|
|
* __scsi_queue_insert - private queue insertion
|
|
* @cmd: The SCSI command being requeued
|
|
* @reason: The reason for the requeue
|
|
* @unbusy: Whether the queue should be unbusied
|
|
*
|
|
* This is a private queue insertion. The public interface
|
|
* scsi_queue_insert() always assumes the queue should be unbusied
|
|
* because it's always called before the completion. This function is
|
|
* for a requeue after completion, which should only occur in this
|
|
* file.
|
|
*/
|
|
static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
|
|
{
|
|
struct scsi_device *device = cmd->device;
|
|
|
|
SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
|
|
"Inserting command %p into mlqueue\n", cmd));
|
|
|
|
scsi_set_blocked(cmd, reason);
|
|
|
|
/*
|
|
* Decrement the counters, since these commands are no longer
|
|
* active on the host/device.
|
|
*/
|
|
if (unbusy)
|
|
scsi_device_unbusy(device, cmd);
|
|
|
|
/*
|
|
* Requeue this command. It will go before all other commands
|
|
* that are already in the queue. Schedule requeue work under
|
|
* lock such that the kblockd_schedule_work() call happens
|
|
* before blk_mq_destroy_queue() finishes.
|
|
*/
|
|
cmd->result = 0;
|
|
|
|
blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
|
|
!scsi_host_in_recovery(cmd->device->host));
|
|
}
|
|
|
|
/**
|
|
* scsi_queue_insert - Reinsert a command in the queue.
|
|
* @cmd: command that we are adding to queue.
|
|
* @reason: why we are inserting command to queue.
|
|
*
|
|
* We do this for one of two cases. Either the host is busy and it cannot accept
|
|
* any more commands for the time being, or the device returned QUEUE_FULL and
|
|
* can accept no more commands.
|
|
*
|
|
* Context: This could be called either from an interrupt context or a normal
|
|
* process context.
|
|
*/
|
|
void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
|
|
{
|
|
__scsi_queue_insert(cmd, reason, true);
|
|
}
|
|
|
|
/**
|
|
* scsi_execute_cmd - insert request and wait for the result
|
|
* @sdev: scsi_device
|
|
* @cmd: scsi command
|
|
* @opf: block layer request cmd_flags
|
|
* @buffer: data buffer
|
|
* @bufflen: len of buffer
|
|
* @timeout: request timeout in HZ
|
|
* @retries: number of times to retry request
|
|
* @args: Optional args. See struct definition for field descriptions
|
|
*
|
|
* Returns the scsi_cmnd result field if a command was executed, or a negative
|
|
* Linux error code if we didn't get that far.
|
|
*/
|
|
int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
|
|
blk_opf_t opf, void *buffer, unsigned int bufflen,
|
|
int timeout, int retries,
|
|
const struct scsi_exec_args *args)
|
|
{
|
|
static const struct scsi_exec_args default_args;
|
|
struct request *req;
|
|
struct scsi_cmnd *scmd;
|
|
int ret;
|
|
|
|
if (!args)
|
|
args = &default_args;
|
|
else if (WARN_ON_ONCE(args->sense &&
|
|
args->sense_len != SCSI_SENSE_BUFFERSIZE))
|
|
return -EINVAL;
|
|
|
|
req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
|
|
if (IS_ERR(req))
|
|
return PTR_ERR(req);
|
|
|
|
if (bufflen) {
|
|
ret = blk_rq_map_kern(sdev->request_queue, req,
|
|
buffer, bufflen, GFP_NOIO);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
scmd = blk_mq_rq_to_pdu(req);
|
|
scmd->cmd_len = COMMAND_SIZE(cmd[0]);
|
|
memcpy(scmd->cmnd, cmd, scmd->cmd_len);
|
|
scmd->allowed = retries;
|
|
scmd->flags |= args->scmd_flags;
|
|
req->timeout = timeout;
|
|
req->rq_flags |= RQF_QUIET;
|
|
|
|
/*
|
|
* head injection *required* here otherwise quiesce won't work
|
|
*/
|
|
blk_execute_rq(req, true);
|
|
|
|
/*
|
|
* Some devices (USB mass-storage in particular) may transfer
|
|
* garbage data together with a residue indicating that the data
|
|
* is invalid. Prevent the garbage from being misinterpreted
|
|
* and prevent security leaks by zeroing out the excess data.
|
|
*/
|
|
if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
|
|
memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
|
|
|
|
if (args->resid)
|
|
*args->resid = scmd->resid_len;
|
|
if (args->sense)
|
|
memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
|
|
if (args->sshdr)
|
|
scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
|
|
args->sshdr);
|
|
|
|
ret = scmd->result;
|
|
out:
|
|
blk_mq_free_request(req);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(scsi_execute_cmd);
|
|
|
|
/*
|
|
* Wake up the error handler if necessary. Avoid as follows that the error
|
|
* handler is not woken up if host in-flight requests number ==
|
|
* shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
|
|
* with an RCU read lock in this function to ensure that this function in
|
|
* its entirety either finishes before scsi_eh_scmd_add() increases the
|
|
* host_failed counter or that it notices the shost state change made by
|
|
* scsi_eh_scmd_add().
|
|
*/
|
|
static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
|
|
{
|
|
unsigned long flags;
|
|
|
|
rcu_read_lock();
|
|
__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
|
|
if (unlikely(scsi_host_in_recovery(shost))) {
|
|
spin_lock_irqsave(shost->host_lock, flags);
|
|
if (shost->host_failed || shost->host_eh_scheduled)
|
|
scsi_eh_wakeup(shost);
|
|
spin_unlock_irqrestore(shost->host_lock, flags);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
|
|
{
|
|
struct Scsi_Host *shost = sdev->host;
|
|
struct scsi_target *starget = scsi_target(sdev);
|
|
|
|
scsi_dec_host_busy(shost, cmd);
|
|
|
|
if (starget->can_queue > 0)
|
|
atomic_dec(&starget->target_busy);
|
|
|
|
sbitmap_put(&sdev->budget_map, cmd->budget_token);
|
|
cmd->budget_token = -1;
|
|
}
|
|
|
|
/*
|
|
* Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
|
|
* interrupts disabled.
|
|
*/
|
|
static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
|
|
{
|
|
struct scsi_device *current_sdev = data;
|
|
|
|
if (sdev != current_sdev)
|
|
blk_mq_run_hw_queues(sdev->request_queue, true);
|
|
}
|
|
|
|
/*
|
|
* Called for single_lun devices on IO completion. Clear starget_sdev_user,
|
|
* and call blk_run_queue for all the scsi_devices on the target -
|
|
* including current_sdev first.
|
|
*
|
|
* Called with *no* scsi locks held.
|
|
*/
|
|
static void scsi_single_lun_run(struct scsi_device *current_sdev)
|
|
{
|
|
struct Scsi_Host *shost = current_sdev->host;
|
|
struct scsi_target *starget = scsi_target(current_sdev);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(shost->host_lock, flags);
|
|
starget->starget_sdev_user = NULL;
|
|
spin_unlock_irqrestore(shost->host_lock, flags);
|
|
|
|
/*
|
|
* Call blk_run_queue for all LUNs on the target, starting with
|
|
* current_sdev. We race with others (to set starget_sdev_user),
|
|
* but in most cases, we will be first. Ideally, each LU on the
|
|
* target would get some limited time or requests on the target.
|
|
*/
|
|
blk_mq_run_hw_queues(current_sdev->request_queue,
|
|
shost->queuecommand_may_block);
|
|
|
|
spin_lock_irqsave(shost->host_lock, flags);
|
|
if (!starget->starget_sdev_user)
|
|
__starget_for_each_device(starget, current_sdev,
|
|
scsi_kick_sdev_queue);
|
|
spin_unlock_irqrestore(shost->host_lock, flags);
|
|
}
|
|
|
|
static inline bool scsi_device_is_busy(struct scsi_device *sdev)
|
|
{
|
|
if (scsi_device_busy(sdev) >= sdev->queue_depth)
|
|
return true;
|
|
if (atomic_read(&sdev->device_blocked) > 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static inline bool scsi_target_is_busy(struct scsi_target *starget)
|
|
{
|
|
if (starget->can_queue > 0) {
|
|
if (atomic_read(&starget->target_busy) >= starget->can_queue)
|
|
return true;
|
|
if (atomic_read(&starget->target_blocked) > 0)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
|
|
{
|
|
if (atomic_read(&shost->host_blocked) > 0)
|
|
return true;
|
|
if (shost->host_self_blocked)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static void scsi_starved_list_run(struct Scsi_Host *shost)
|
|
{
|
|
LIST_HEAD(starved_list);
|
|
struct scsi_device *sdev;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(shost->host_lock, flags);
|
|
list_splice_init(&shost->starved_list, &starved_list);
|
|
|
|
while (!list_empty(&starved_list)) {
|
|
struct request_queue *slq;
|
|
|
|
/*
|
|
* As long as shost is accepting commands and we have
|
|
* starved queues, call blk_run_queue. scsi_request_fn
|
|
* drops the queue_lock and can add us back to the
|
|
* starved_list.
|
|
*
|
|
* host_lock protects the starved_list and starved_entry.
|
|
* scsi_request_fn must get the host_lock before checking
|
|
* or modifying starved_list or starved_entry.
|
|
*/
|
|
if (scsi_host_is_busy(shost))
|
|
break;
|
|
|
|
sdev = list_entry(starved_list.next,
|
|
struct scsi_device, starved_entry);
|
|
list_del_init(&sdev->starved_entry);
|
|
if (scsi_target_is_busy(scsi_target(sdev))) {
|
|
list_move_tail(&sdev->starved_entry,
|
|
&shost->starved_list);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Once we drop the host lock, a racing scsi_remove_device()
|
|
* call may remove the sdev from the starved list and destroy
|
|
* it and the queue. Mitigate by taking a reference to the
|
|
* queue and never touching the sdev again after we drop the
|
|
* host lock. Note: if __scsi_remove_device() invokes
|
|
* blk_mq_destroy_queue() before the queue is run from this
|
|
* function then blk_run_queue() will return immediately since
|
|
* blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
|
|
*/
|
|
slq = sdev->request_queue;
|
|
if (!blk_get_queue(slq))
|
|
continue;
|
|
spin_unlock_irqrestore(shost->host_lock, flags);
|
|
|
|
blk_mq_run_hw_queues(slq, false);
|
|
blk_put_queue(slq);
|
|
|
|
spin_lock_irqsave(shost->host_lock, flags);
|
|
}
|
|
/* put any unprocessed entries back */
|
|
list_splice(&starved_list, &shost->starved_list);
|
|
spin_unlock_irqrestore(shost->host_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* scsi_run_queue - Select a proper request queue to serve next.
|
|
* @q: last request's queue
|
|
*
|
|
* The previous command was completely finished, start a new one if possible.
|
|
*/
|
|
static void scsi_run_queue(struct request_queue *q)
|
|
{
|
|
struct scsi_device *sdev = q->queuedata;
|
|
|
|
if (scsi_target(sdev)->single_lun)
|
|
scsi_single_lun_run(sdev);
|
|
if (!list_empty(&sdev->host->starved_list))
|
|
scsi_starved_list_run(sdev->host);
|
|
|
|
/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
|
|
blk_mq_kick_requeue_list(q);
|
|
}
|
|
|
|
void scsi_requeue_run_queue(struct work_struct *work)
|
|
{
|
|
struct scsi_device *sdev;
|
|
struct request_queue *q;
|
|
|
|
sdev = container_of(work, struct scsi_device, requeue_work);
|
|
q = sdev->request_queue;
|
|
scsi_run_queue(q);
|
|
}
|
|
|
|
void scsi_run_host_queues(struct Scsi_Host *shost)
|
|
{
|
|
struct scsi_device *sdev;
|
|
|
|
shost_for_each_device(sdev, shost)
|
|
scsi_run_queue(sdev->request_queue);
|
|
}
|
|
|
|
static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
|
|
{
|
|
if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
|
|
struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
|
|
|
|
if (drv->uninit_command)
|
|
drv->uninit_command(cmd);
|
|
}
|
|
}
|
|
|
|
void scsi_free_sgtables(struct scsi_cmnd *cmd)
|
|
{
|
|
if (cmd->sdb.table.nents)
|
|
sg_free_table_chained(&cmd->sdb.table,
|
|
SCSI_INLINE_SG_CNT);
|
|
if (scsi_prot_sg_count(cmd))
|
|
sg_free_table_chained(&cmd->prot_sdb->table,
|
|
SCSI_INLINE_PROT_SG_CNT);
|
|
}
|
|
EXPORT_SYMBOL_GPL(scsi_free_sgtables);
|
|
|
|
static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
|
|
{
|
|
scsi_free_sgtables(cmd);
|
|
scsi_uninit_cmd(cmd);
|
|
}
|
|
|
|
static void scsi_run_queue_async(struct scsi_device *sdev)
|
|
{
|
|
if (scsi_host_in_recovery(sdev->host))
|
|
return;
|
|
|
|
if (scsi_target(sdev)->single_lun ||
|
|
!list_empty(&sdev->host->starved_list)) {
|
|
kblockd_schedule_work(&sdev->requeue_work);
|
|
} else {
|
|
/*
|
|
* smp_mb() present in sbitmap_queue_clear() or implied in
|
|
* .end_io is for ordering writing .device_busy in
|
|
* scsi_device_unbusy() and reading sdev->restarts.
|
|
*/
|
|
int old = atomic_read(&sdev->restarts);
|
|
|
|
/*
|
|
* ->restarts has to be kept as non-zero if new budget
|
|
* contention occurs.
|
|
*
|
|
* No need to run queue when either another re-run
|
|
* queue wins in updating ->restarts or a new budget
|
|
* contention occurs.
|
|
*/
|
|
if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
|
|
blk_mq_run_hw_queues(sdev->request_queue, true);
|
|
}
|
|
}
|
|
|
|
/* Returns false when no more bytes to process, true if there are more */
|
|
static bool scsi_end_request(struct request *req, blk_status_t error,
|
|
unsigned int bytes)
|
|
{
|
|
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
|
|
struct scsi_device *sdev = cmd->device;
|
|
struct request_queue *q = sdev->request_queue;
|
|
|
|
if (blk_update_request(req, error, bytes))
|
|
return true;
|
|
|
|
// XXX:
|
|
if (blk_queue_add_random(q))
|
|
add_disk_randomness(req->q->disk);
|
|
|
|
if (!blk_rq_is_passthrough(req)) {
|
|
WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
|
|
cmd->flags &= ~SCMD_INITIALIZED;
|
|
}
|
|
|
|
/*
|
|
* Calling rcu_barrier() is not necessary here because the
|
|
* SCSI error handler guarantees that the function called by
|
|
* call_rcu() has been called before scsi_end_request() is
|
|
* called.
|
|
*/
|
|
destroy_rcu_head(&cmd->rcu);
|
|
|
|
/*
|
|
* In the MQ case the command gets freed by __blk_mq_end_request,
|
|
* so we have to do all cleanup that depends on it earlier.
|
|
*
|
|
* We also can't kick the queues from irq context, so we
|
|
* will have to defer it to a workqueue.
|
|
*/
|
|
scsi_mq_uninit_cmd(cmd);
|
|
|
|
/*
|
|
* queue is still alive, so grab the ref for preventing it
|
|
* from being cleaned up during running queue.
|
|
*/
|
|
percpu_ref_get(&q->q_usage_counter);
|
|
|
|
__blk_mq_end_request(req, error);
|
|
|
|
scsi_run_queue_async(sdev);
|
|
|
|
percpu_ref_put(&q->q_usage_counter);
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
|
|
* @result: scsi error code
|
|
*
|
|
* Translate a SCSI result code into a blk_status_t value.
|
|
*/
|
|
static blk_status_t scsi_result_to_blk_status(int result)
|
|
{
|
|
/*
|
|
* Check the scsi-ml byte first in case we converted a host or status
|
|
* byte.
|
|
*/
|
|
switch (scsi_ml_byte(result)) {
|
|
case SCSIML_STAT_OK:
|
|
break;
|
|
case SCSIML_STAT_RESV_CONFLICT:
|
|
return BLK_STS_RESV_CONFLICT;
|
|
case SCSIML_STAT_NOSPC:
|
|
return BLK_STS_NOSPC;
|
|
case SCSIML_STAT_MED_ERROR:
|
|
return BLK_STS_MEDIUM;
|
|
case SCSIML_STAT_TGT_FAILURE:
|
|
return BLK_STS_TARGET;
|
|
case SCSIML_STAT_DL_TIMEOUT:
|
|
return BLK_STS_DURATION_LIMIT;
|
|
}
|
|
|
|
switch (host_byte(result)) {
|
|
case DID_OK:
|
|
if (scsi_status_is_good(result))
|
|
return BLK_STS_OK;
|
|
return BLK_STS_IOERR;
|
|
case DID_TRANSPORT_FAILFAST:
|
|
case DID_TRANSPORT_MARGINAL:
|
|
return BLK_STS_TRANSPORT;
|
|
default:
|
|
return BLK_STS_IOERR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* scsi_rq_err_bytes - determine number of bytes till the next failure boundary
|
|
* @rq: request to examine
|
|
*
|
|
* Description:
|
|
* A request could be merge of IOs which require different failure
|
|
* handling. This function determines the number of bytes which
|
|
* can be failed from the beginning of the request without
|
|
* crossing into area which need to be retried further.
|
|
*
|
|
* Return:
|
|
* The number of bytes to fail.
|
|
*/
|
|
static unsigned int scsi_rq_err_bytes(const struct request *rq)
|
|
{
|
|
blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
|
|
unsigned int bytes = 0;
|
|
struct bio *bio;
|
|
|
|
if (!(rq->rq_flags & RQF_MIXED_MERGE))
|
|
return blk_rq_bytes(rq);
|
|
|
|
/*
|
|
* Currently the only 'mixing' which can happen is between
|
|
* different fastfail types. We can safely fail portions
|
|
* which have all the failfast bits that the first one has -
|
|
* the ones which are at least as eager to fail as the first
|
|
* one.
|
|
*/
|
|
for (bio = rq->bio; bio; bio = bio->bi_next) {
|
|
if ((bio->bi_opf & ff) != ff)
|
|
break;
|
|
bytes += bio->bi_iter.bi_size;
|
|
}
|
|
|
|
/* this could lead to infinite loop */
|
|
BUG_ON(blk_rq_bytes(rq) && !bytes);
|
|
return bytes;
|
|
}
|
|
|
|
static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
|
|
{
|
|
struct request *req = scsi_cmd_to_rq(cmd);
|
|
unsigned long wait_for;
|
|
|
|
if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
|
|
return false;
|
|
|
|
wait_for = (cmd->allowed + 1) * req->timeout;
|
|
if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
|
|
scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
|
|
wait_for/HZ);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* When ALUA transition state is returned, reprep the cmd to
|
|
* use the ALUA handler's transition timeout. Delay the reprep
|
|
* 1 sec to avoid aggressive retries of the target in that
|
|
* state.
|
|
*/
|
|
#define ALUA_TRANSITION_REPREP_DELAY 1000
|
|
|
|
/* Helper for scsi_io_completion() when special action required. */
|
|
static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
|
|
{
|
|
struct request *req = scsi_cmd_to_rq(cmd);
|
|
int level = 0;
|
|
enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
|
|
ACTION_RETRY, ACTION_DELAYED_RETRY} action;
|
|
struct scsi_sense_hdr sshdr;
|
|
bool sense_valid;
|
|
bool sense_current = true; /* false implies "deferred sense" */
|
|
blk_status_t blk_stat;
|
|
|
|
sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
|
|
if (sense_valid)
|
|
sense_current = !scsi_sense_is_deferred(&sshdr);
|
|
|
|
blk_stat = scsi_result_to_blk_status(result);
|
|
|
|
if (host_byte(result) == DID_RESET) {
|
|
/* Third party bus reset or reset for error recovery
|
|
* reasons. Just retry the command and see what
|
|
* happens.
|
|
*/
|
|
action = ACTION_RETRY;
|
|
} else if (sense_valid && sense_current) {
|
|
switch (sshdr.sense_key) {
|
|
case UNIT_ATTENTION:
|
|
if (cmd->device->removable) {
|
|
/* Detected disc change. Set a bit
|
|
* and quietly refuse further access.
|
|
*/
|
|
cmd->device->changed = 1;
|
|
action = ACTION_FAIL;
|
|
} else {
|
|
/* Must have been a power glitch, or a
|
|
* bus reset. Could not have been a
|
|
* media change, so we just retry the
|
|
* command and see what happens.
|
|
*/
|
|
action = ACTION_RETRY;
|
|
}
|
|
break;
|
|
case ILLEGAL_REQUEST:
|
|
/* If we had an ILLEGAL REQUEST returned, then
|
|
* we may have performed an unsupported
|
|
* command. The only thing this should be
|
|
* would be a ten byte read where only a six
|
|
* byte read was supported. Also, on a system
|
|
* where READ CAPACITY failed, we may have
|
|
* read past the end of the disk.
|
|
*/
|
|
if ((cmd->device->use_10_for_rw &&
|
|
sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
|
|
(cmd->cmnd[0] == READ_10 ||
|
|
cmd->cmnd[0] == WRITE_10)) {
|
|
/* This will issue a new 6-byte command. */
|
|
cmd->device->use_10_for_rw = 0;
|
|
action = ACTION_REPREP;
|
|
} else if (sshdr.asc == 0x10) /* DIX */ {
|
|
action = ACTION_FAIL;
|
|
blk_stat = BLK_STS_PROTECTION;
|
|
/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
|
|
} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
|
|
action = ACTION_FAIL;
|
|
blk_stat = BLK_STS_TARGET;
|
|
} else
|
|
action = ACTION_FAIL;
|
|
break;
|
|
case ABORTED_COMMAND:
|
|
action = ACTION_FAIL;
|
|
if (sshdr.asc == 0x10) /* DIF */
|
|
blk_stat = BLK_STS_PROTECTION;
|
|
break;
|
|
case NOT_READY:
|
|
/* If the device is in the process of becoming
|
|
* ready, or has a temporary blockage, retry.
|
|
*/
|
|
if (sshdr.asc == 0x04) {
|
|
switch (sshdr.ascq) {
|
|
case 0x01: /* becoming ready */
|
|
case 0x04: /* format in progress */
|
|
case 0x05: /* rebuild in progress */
|
|
case 0x06: /* recalculation in progress */
|
|
case 0x07: /* operation in progress */
|
|
case 0x08: /* Long write in progress */
|
|
case 0x09: /* self test in progress */
|
|
case 0x11: /* notify (enable spinup) required */
|
|
case 0x14: /* space allocation in progress */
|
|
case 0x1a: /* start stop unit in progress */
|
|
case 0x1b: /* sanitize in progress */
|
|
case 0x1d: /* configuration in progress */
|
|
case 0x24: /* depopulation in progress */
|
|
action = ACTION_DELAYED_RETRY;
|
|
break;
|
|
case 0x0a: /* ALUA state transition */
|
|
action = ACTION_DELAYED_REPREP;
|
|
break;
|
|
default:
|
|
action = ACTION_FAIL;
|
|
break;
|
|
}
|
|
} else
|
|
action = ACTION_FAIL;
|
|
break;
|
|
case VOLUME_OVERFLOW:
|
|
/* See SSC3rXX or current. */
|
|
action = ACTION_FAIL;
|
|
break;
|
|
case DATA_PROTECT:
|
|
action = ACTION_FAIL;
|
|
if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
|
|
(sshdr.asc == 0x55 &&
|
|
(sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
|
|
/* Insufficient zone resources */
|
|
blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
|
|
}
|
|
break;
|
|
case COMPLETED:
|
|
fallthrough;
|
|
default:
|
|
action = ACTION_FAIL;
|
|
break;
|
|
}
|
|
} else
|
|
action = ACTION_FAIL;
|
|
|
|
if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
|
|
action = ACTION_FAIL;
|
|
|
|
switch (action) {
|
|
case ACTION_FAIL:
|
|
/* Give up and fail the remainder of the request */
|
|
if (!(req->rq_flags & RQF_QUIET)) {
|
|
static DEFINE_RATELIMIT_STATE(_rs,
|
|
DEFAULT_RATELIMIT_INTERVAL,
|
|
DEFAULT_RATELIMIT_BURST);
|
|
|
|
if (unlikely(scsi_logging_level))
|
|
level =
|
|
SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
|
|
SCSI_LOG_MLCOMPLETE_BITS);
|
|
|
|
/*
|
|
* if logging is enabled the failure will be printed
|
|
* in scsi_log_completion(), so avoid duplicate messages
|
|
*/
|
|
if (!level && __ratelimit(&_rs)) {
|
|
scsi_print_result(cmd, NULL, FAILED);
|
|
if (sense_valid)
|
|
scsi_print_sense(cmd);
|
|
scsi_print_command(cmd);
|
|
}
|
|
}
|
|
if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
|
|
return;
|
|
fallthrough;
|
|
case ACTION_REPREP:
|
|
scsi_mq_requeue_cmd(cmd, 0);
|
|
break;
|
|
case ACTION_DELAYED_REPREP:
|
|
scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
|
|
break;
|
|
case ACTION_RETRY:
|
|
/* Retry the same command immediately */
|
|
__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
|
|
break;
|
|
case ACTION_DELAYED_RETRY:
|
|
/* Retry the same command after a delay */
|
|
__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
|
|
* new result that may suppress further error checking. Also modifies
|
|
* *blk_statp in some cases.
|
|
*/
|
|
static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
|
|
blk_status_t *blk_statp)
|
|
{
|
|
bool sense_valid;
|
|
bool sense_current = true; /* false implies "deferred sense" */
|
|
struct request *req = scsi_cmd_to_rq(cmd);
|
|
struct scsi_sense_hdr sshdr;
|
|
|
|
sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
|
|
if (sense_valid)
|
|
sense_current = !scsi_sense_is_deferred(&sshdr);
|
|
|
|
if (blk_rq_is_passthrough(req)) {
|
|
if (sense_valid) {
|
|
/*
|
|
* SG_IO wants current and deferred errors
|
|
*/
|
|
cmd->sense_len = min(8 + cmd->sense_buffer[7],
|
|
SCSI_SENSE_BUFFERSIZE);
|
|
}
|
|
if (sense_current)
|
|
*blk_statp = scsi_result_to_blk_status(result);
|
|
} else if (blk_rq_bytes(req) == 0 && sense_current) {
|
|
/*
|
|
* Flush commands do not transfers any data, and thus cannot use
|
|
* good_bytes != blk_rq_bytes(req) as the signal for an error.
|
|
* This sets *blk_statp explicitly for the problem case.
|
|
*/
|
|
*blk_statp = scsi_result_to_blk_status(result);
|
|
}
|
|
/*
|
|
* Recovered errors need reporting, but they're always treated as
|
|
* success, so fiddle the result code here. For passthrough requests
|
|
* we already took a copy of the original into sreq->result which
|
|
* is what gets returned to the user
|
|
*/
|
|
if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
|
|
bool do_print = true;
|
|
/*
|
|
* if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
|
|
* skip print since caller wants ATA registers. Only occurs
|
|
* on SCSI ATA PASS_THROUGH commands when CK_COND=1
|
|
*/
|
|
if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
|
|
do_print = false;
|
|
else if (req->rq_flags & RQF_QUIET)
|
|
do_print = false;
|
|
if (do_print)
|
|
scsi_print_sense(cmd);
|
|
result = 0;
|
|
/* for passthrough, *blk_statp may be set */
|
|
*blk_statp = BLK_STS_OK;
|
|
}
|
|
/*
|
|
* Another corner case: the SCSI status byte is non-zero but 'good'.
|
|
* Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
|
|
* it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
|
|
* if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
|
|
* intermediate statuses (both obsolete in SAM-4) as good.
|
|
*/
|
|
if ((result & 0xff) && scsi_status_is_good(result)) {
|
|
result = 0;
|
|
*blk_statp = BLK_STS_OK;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* scsi_io_completion - Completion processing for SCSI commands.
|
|
* @cmd: command that is finished.
|
|
* @good_bytes: number of processed bytes.
|
|
*
|
|
* We will finish off the specified number of sectors. If we are done, the
|
|
* command block will be released and the queue function will be goosed. If we
|
|
* are not done then we have to figure out what to do next:
|
|
*
|
|
* a) We can call scsi_mq_requeue_cmd(). The request will be
|
|
* unprepared and put back on the queue. Then a new command will
|
|
* be created for it. This should be used if we made forward
|
|
* progress, or if we want to switch from READ(10) to READ(6) for
|
|
* example.
|
|
*
|
|
* b) We can call scsi_io_completion_action(). The request will be
|
|
* put back on the queue and retried using the same command as
|
|
* before, possibly after a delay.
|
|
*
|
|
* c) We can call scsi_end_request() with blk_stat other than
|
|
* BLK_STS_OK, to fail the remainder of the request.
|
|
*/
|
|
void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
|
|
{
|
|
int result = cmd->result;
|
|
struct request *req = scsi_cmd_to_rq(cmd);
|
|
blk_status_t blk_stat = BLK_STS_OK;
|
|
|
|
if (unlikely(result)) /* a nz result may or may not be an error */
|
|
result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
|
|
|
|
/*
|
|
* Next deal with any sectors which we were able to correctly
|
|
* handle.
|
|
*/
|
|
SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
|
|
"%u sectors total, %d bytes done.\n",
|
|
blk_rq_sectors(req), good_bytes));
|
|
|
|
/*
|
|
* Failed, zero length commands always need to drop down
|
|
* to retry code. Fast path should return in this block.
|
|
*/
|
|
if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
|
|
if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
|
|
return; /* no bytes remaining */
|
|
}
|
|
|
|
/* Kill remainder if no retries. */
|
|
if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
|
|
if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
|
|
WARN_ONCE(true,
|
|
"Bytes remaining after failed, no-retry command");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If there had been no error, but we have leftover bytes in the
|
|
* request just queue the command up again.
|
|
*/
|
|
if (likely(result == 0))
|
|
scsi_mq_requeue_cmd(cmd, 0);
|
|
else
|
|
scsi_io_completion_action(cmd, result);
|
|
}
|
|
|
|
static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
|
|
struct request *rq)
|
|
{
|
|
return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
|
|
!op_is_write(req_op(rq)) &&
|
|
sdev->host->hostt->dma_need_drain(rq);
|
|
}
|
|
|
|
/**
|
|
* scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
|
|
* @cmd: SCSI command data structure to initialize.
|
|
*
|
|
* Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
|
|
* for @cmd.
|
|
*
|
|
* Returns:
|
|
* * BLK_STS_OK - on success
|
|
* * BLK_STS_RESOURCE - if the failure is retryable
|
|
* * BLK_STS_IOERR - if the failure is fatal
|
|
*/
|
|
blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
|
|
{
|
|
struct scsi_device *sdev = cmd->device;
|
|
struct request *rq = scsi_cmd_to_rq(cmd);
|
|
unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
|
|
struct scatterlist *last_sg = NULL;
|
|
blk_status_t ret;
|
|
bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
|
|
int count;
|
|
|
|
if (WARN_ON_ONCE(!nr_segs))
|
|
return BLK_STS_IOERR;
|
|
|
|
/*
|
|
* Make sure there is space for the drain. The driver must adjust
|
|
* max_hw_segments to be prepared for this.
|
|
*/
|
|
if (need_drain)
|
|
nr_segs++;
|
|
|
|
/*
|
|
* If sg table allocation fails, requeue request later.
|
|
*/
|
|
if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
|
|
cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
|
|
return BLK_STS_RESOURCE;
|
|
|
|
/*
|
|
* Next, walk the list, and fill in the addresses and sizes of
|
|
* each segment.
|
|
*/
|
|
count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
|
|
|
|
if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
|
|
unsigned int pad_len =
|
|
(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
|
|
|
|
last_sg->length += pad_len;
|
|
cmd->extra_len += pad_len;
|
|
}
|
|
|
|
if (need_drain) {
|
|
sg_unmark_end(last_sg);
|
|
last_sg = sg_next(last_sg);
|
|
sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
|
|
sg_mark_end(last_sg);
|
|
|
|
cmd->extra_len += sdev->dma_drain_len;
|
|
count++;
|
|
}
|
|
|
|
BUG_ON(count > cmd->sdb.table.nents);
|
|
cmd->sdb.table.nents = count;
|
|
cmd->sdb.length = blk_rq_payload_bytes(rq);
|
|
|
|
if (blk_integrity_rq(rq)) {
|
|
struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
|
|
int ivecs;
|
|
|
|
if (WARN_ON_ONCE(!prot_sdb)) {
|
|
/*
|
|
* This can happen if someone (e.g. multipath)
|
|
* queues a command to a device on an adapter
|
|
* that does not support DIX.
|
|
*/
|
|
ret = BLK_STS_IOERR;
|
|
goto out_free_sgtables;
|
|
}
|
|
|
|
ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
|
|
|
|
if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
|
|
prot_sdb->table.sgl,
|
|
SCSI_INLINE_PROT_SG_CNT)) {
|
|
ret = BLK_STS_RESOURCE;
|
|
goto out_free_sgtables;
|
|
}
|
|
|
|
count = blk_rq_map_integrity_sg(rq->q, rq->bio,
|
|
prot_sdb->table.sgl);
|
|
BUG_ON(count > ivecs);
|
|
BUG_ON(count > queue_max_integrity_segments(rq->q));
|
|
|
|
cmd->prot_sdb = prot_sdb;
|
|
cmd->prot_sdb->table.nents = count;
|
|
}
|
|
|
|
return BLK_STS_OK;
|
|
out_free_sgtables:
|
|
scsi_free_sgtables(cmd);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(scsi_alloc_sgtables);
|
|
|
|
/**
|
|
* scsi_initialize_rq - initialize struct scsi_cmnd partially
|
|
* @rq: Request associated with the SCSI command to be initialized.
|
|
*
|
|
* This function initializes the members of struct scsi_cmnd that must be
|
|
* initialized before request processing starts and that won't be
|
|
* reinitialized if a SCSI command is requeued.
|
|
*/
|
|
static void scsi_initialize_rq(struct request *rq)
|
|
{
|
|
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
|
|
|
|
memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
|
|
cmd->cmd_len = MAX_COMMAND_SIZE;
|
|
cmd->sense_len = 0;
|
|
init_rcu_head(&cmd->rcu);
|
|
cmd->jiffies_at_alloc = jiffies;
|
|
cmd->retries = 0;
|
|
}
|
|
|
|
struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
|
|
blk_mq_req_flags_t flags)
|
|
{
|
|
struct request *rq;
|
|
|
|
rq = blk_mq_alloc_request(q, opf, flags);
|
|
if (!IS_ERR(rq))
|
|
scsi_initialize_rq(rq);
|
|
return rq;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scsi_alloc_request);
|
|
|
|
/*
|
|
* Only called when the request isn't completed by SCSI, and not freed by
|
|
* SCSI
|
|
*/
|
|
static void scsi_cleanup_rq(struct request *rq)
|
|
{
|
|
if (rq->rq_flags & RQF_DONTPREP) {
|
|
scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
|
|
rq->rq_flags &= ~RQF_DONTPREP;
|
|
}
|
|
}
|
|
|
|
/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
|
|
void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
|
|
{
|
|
struct request *rq = scsi_cmd_to_rq(cmd);
|
|
|
|
if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
|
|
cmd->flags |= SCMD_INITIALIZED;
|
|
scsi_initialize_rq(rq);
|
|
}
|
|
|
|
cmd->device = dev;
|
|
INIT_LIST_HEAD(&cmd->eh_entry);
|
|
INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
|
|
}
|
|
|
|
static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
|
|
struct request *req)
|
|
{
|
|
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
|
|
|
|
/*
|
|
* Passthrough requests may transfer data, in which case they must
|
|
* a bio attached to them. Or they might contain a SCSI command
|
|
* that does not transfer data, in which case they may optionally
|
|
* submit a request without an attached bio.
|
|
*/
|
|
if (req->bio) {
|
|
blk_status_t ret = scsi_alloc_sgtables(cmd);
|
|
if (unlikely(ret != BLK_STS_OK))
|
|
return ret;
|
|
} else {
|
|
BUG_ON(blk_rq_bytes(req));
|
|
|
|
memset(&cmd->sdb, 0, sizeof(cmd->sdb));
|
|
}
|
|
|
|
cmd->transfersize = blk_rq_bytes(req);
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static blk_status_t
|
|
scsi_device_state_check(struct scsi_device *sdev, struct request *req)
|
|
{
|
|
switch (sdev->sdev_state) {
|
|
case SDEV_CREATED:
|
|
return BLK_STS_OK;
|
|
case SDEV_OFFLINE:
|
|
case SDEV_TRANSPORT_OFFLINE:
|
|
/*
|
|
* If the device is offline we refuse to process any
|
|
* commands. The device must be brought online
|
|
* before trying any recovery commands.
|
|
*/
|
|
if (!sdev->offline_already) {
|
|
sdev->offline_already = true;
|
|
sdev_printk(KERN_ERR, sdev,
|
|
"rejecting I/O to offline device\n");
|
|
}
|
|
return BLK_STS_IOERR;
|
|
case SDEV_DEL:
|
|
/*
|
|
* If the device is fully deleted, we refuse to
|
|
* process any commands as well.
|
|
*/
|
|
sdev_printk(KERN_ERR, sdev,
|
|
"rejecting I/O to dead device\n");
|
|
return BLK_STS_IOERR;
|
|
case SDEV_BLOCK:
|
|
case SDEV_CREATED_BLOCK:
|
|
return BLK_STS_RESOURCE;
|
|
case SDEV_QUIESCE:
|
|
/*
|
|
* If the device is blocked we only accept power management
|
|
* commands.
|
|
*/
|
|
if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
|
|
return BLK_STS_RESOURCE;
|
|
return BLK_STS_OK;
|
|
default:
|
|
/*
|
|
* For any other not fully online state we only allow
|
|
* power management commands.
|
|
*/
|
|
if (req && !(req->rq_flags & RQF_PM))
|
|
return BLK_STS_OFFLINE;
|
|
return BLK_STS_OK;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* scsi_dev_queue_ready: if we can send requests to sdev, assign one token
|
|
* and return the token else return -1.
|
|
*/
|
|
static inline int scsi_dev_queue_ready(struct request_queue *q,
|
|
struct scsi_device *sdev)
|
|
{
|
|
int token;
|
|
|
|
token = sbitmap_get(&sdev->budget_map);
|
|
if (atomic_read(&sdev->device_blocked)) {
|
|
if (token < 0)
|
|
goto out;
|
|
|
|
if (scsi_device_busy(sdev) > 1)
|
|
goto out_dec;
|
|
|
|
/*
|
|
* unblock after device_blocked iterates to zero
|
|
*/
|
|
if (atomic_dec_return(&sdev->device_blocked) > 0)
|
|
goto out_dec;
|
|
SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
|
|
"unblocking device at zero depth\n"));
|
|
}
|
|
|
|
return token;
|
|
out_dec:
|
|
if (token >= 0)
|
|
sbitmap_put(&sdev->budget_map, token);
|
|
out:
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* scsi_target_queue_ready: checks if there we can send commands to target
|
|
* @sdev: scsi device on starget to check.
|
|
*/
|
|
static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
|
|
struct scsi_device *sdev)
|
|
{
|
|
struct scsi_target *starget = scsi_target(sdev);
|
|
unsigned int busy;
|
|
|
|
if (starget->single_lun) {
|
|
spin_lock_irq(shost->host_lock);
|
|
if (starget->starget_sdev_user &&
|
|
starget->starget_sdev_user != sdev) {
|
|
spin_unlock_irq(shost->host_lock);
|
|
return 0;
|
|
}
|
|
starget->starget_sdev_user = sdev;
|
|
spin_unlock_irq(shost->host_lock);
|
|
}
|
|
|
|
if (starget->can_queue <= 0)
|
|
return 1;
|
|
|
|
busy = atomic_inc_return(&starget->target_busy) - 1;
|
|
if (atomic_read(&starget->target_blocked) > 0) {
|
|
if (busy)
|
|
goto starved;
|
|
|
|
/*
|
|
* unblock after target_blocked iterates to zero
|
|
*/
|
|
if (atomic_dec_return(&starget->target_blocked) > 0)
|
|
goto out_dec;
|
|
|
|
SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
|
|
"unblocking target at zero depth\n"));
|
|
}
|
|
|
|
if (busy >= starget->can_queue)
|
|
goto starved;
|
|
|
|
return 1;
|
|
|
|
starved:
|
|
spin_lock_irq(shost->host_lock);
|
|
list_move_tail(&sdev->starved_entry, &shost->starved_list);
|
|
spin_unlock_irq(shost->host_lock);
|
|
out_dec:
|
|
if (starget->can_queue > 0)
|
|
atomic_dec(&starget->target_busy);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* scsi_host_queue_ready: if we can send requests to shost, return 1 else
|
|
* return 0. We must end up running the queue again whenever 0 is
|
|
* returned, else IO can hang.
|
|
*/
|
|
static inline int scsi_host_queue_ready(struct request_queue *q,
|
|
struct Scsi_Host *shost,
|
|
struct scsi_device *sdev,
|
|
struct scsi_cmnd *cmd)
|
|
{
|
|
if (atomic_read(&shost->host_blocked) > 0) {
|
|
if (scsi_host_busy(shost) > 0)
|
|
goto starved;
|
|
|
|
/*
|
|
* unblock after host_blocked iterates to zero
|
|
*/
|
|
if (atomic_dec_return(&shost->host_blocked) > 0)
|
|
goto out_dec;
|
|
|
|
SCSI_LOG_MLQUEUE(3,
|
|
shost_printk(KERN_INFO, shost,
|
|
"unblocking host at zero depth\n"));
|
|
}
|
|
|
|
if (shost->host_self_blocked)
|
|
goto starved;
|
|
|
|
/* We're OK to process the command, so we can't be starved */
|
|
if (!list_empty(&sdev->starved_entry)) {
|
|
spin_lock_irq(shost->host_lock);
|
|
if (!list_empty(&sdev->starved_entry))
|
|
list_del_init(&sdev->starved_entry);
|
|
spin_unlock_irq(shost->host_lock);
|
|
}
|
|
|
|
__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
|
|
|
|
return 1;
|
|
|
|
starved:
|
|
spin_lock_irq(shost->host_lock);
|
|
if (list_empty(&sdev->starved_entry))
|
|
list_add_tail(&sdev->starved_entry, &shost->starved_list);
|
|
spin_unlock_irq(shost->host_lock);
|
|
out_dec:
|
|
scsi_dec_host_busy(shost, cmd);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Busy state exporting function for request stacking drivers.
|
|
*
|
|
* For efficiency, no lock is taken to check the busy state of
|
|
* shost/starget/sdev, since the returned value is not guaranteed and
|
|
* may be changed after request stacking drivers call the function,
|
|
* regardless of taking lock or not.
|
|
*
|
|
* When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
|
|
* needs to return 'not busy'. Otherwise, request stacking drivers
|
|
* may hold requests forever.
|
|
*/
|
|
static bool scsi_mq_lld_busy(struct request_queue *q)
|
|
{
|
|
struct scsi_device *sdev = q->queuedata;
|
|
struct Scsi_Host *shost;
|
|
|
|
if (blk_queue_dying(q))
|
|
return false;
|
|
|
|
shost = sdev->host;
|
|
|
|
/*
|
|
* Ignore host/starget busy state.
|
|
* Since block layer does not have a concept of fairness across
|
|
* multiple queues, congestion of host/starget needs to be handled
|
|
* in SCSI layer.
|
|
*/
|
|
if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Block layer request completion callback. May be called from interrupt
|
|
* context.
|
|
*/
|
|
static void scsi_complete(struct request *rq)
|
|
{
|
|
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
|
|
enum scsi_disposition disposition;
|
|
|
|
INIT_LIST_HEAD(&cmd->eh_entry);
|
|
|
|
atomic_inc(&cmd->device->iodone_cnt);
|
|
if (cmd->result)
|
|
atomic_inc(&cmd->device->ioerr_cnt);
|
|
|
|
disposition = scsi_decide_disposition(cmd);
|
|
if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
|
|
disposition = SUCCESS;
|
|
|
|
scsi_log_completion(cmd, disposition);
|
|
|
|
switch (disposition) {
|
|
case SUCCESS:
|
|
scsi_finish_command(cmd);
|
|
break;
|
|
case NEEDS_RETRY:
|
|
scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
|
|
break;
|
|
case ADD_TO_MLQUEUE:
|
|
scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
|
|
break;
|
|
default:
|
|
scsi_eh_scmd_add(cmd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* scsi_dispatch_cmd - Dispatch a command to the low-level driver.
|
|
* @cmd: command block we are dispatching.
|
|
*
|
|
* Return: nonzero return request was rejected and device's queue needs to be
|
|
* plugged.
|
|
*/
|
|
static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
|
|
{
|
|
struct Scsi_Host *host = cmd->device->host;
|
|
int rtn = 0;
|
|
|
|
atomic_inc(&cmd->device->iorequest_cnt);
|
|
|
|
/* check if the device is still usable */
|
|
if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
|
|
/* in SDEV_DEL we error all commands. DID_NO_CONNECT
|
|
* returns an immediate error upwards, and signals
|
|
* that the device is no longer present */
|
|
cmd->result = DID_NO_CONNECT << 16;
|
|
goto done;
|
|
}
|
|
|
|
/* Check to see if the scsi lld made this device blocked. */
|
|
if (unlikely(scsi_device_blocked(cmd->device))) {
|
|
/*
|
|
* in blocked state, the command is just put back on
|
|
* the device queue. The suspend state has already
|
|
* blocked the queue so future requests should not
|
|
* occur until the device transitions out of the
|
|
* suspend state.
|
|
*/
|
|
SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
|
|
"queuecommand : device blocked\n"));
|
|
atomic_dec(&cmd->device->iorequest_cnt);
|
|
return SCSI_MLQUEUE_DEVICE_BUSY;
|
|
}
|
|
|
|
/* Store the LUN value in cmnd, if needed. */
|
|
if (cmd->device->lun_in_cdb)
|
|
cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
|
|
(cmd->device->lun << 5 & 0xe0);
|
|
|
|
scsi_log_send(cmd);
|
|
|
|
/*
|
|
* Before we queue this command, check if the command
|
|
* length exceeds what the host adapter can handle.
|
|
*/
|
|
if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
|
|
SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
|
|
"queuecommand : command too long. "
|
|
"cdb_size=%d host->max_cmd_len=%d\n",
|
|
cmd->cmd_len, cmd->device->host->max_cmd_len));
|
|
cmd->result = (DID_ABORT << 16);
|
|
goto done;
|
|
}
|
|
|
|
if (unlikely(host->shost_state == SHOST_DEL)) {
|
|
cmd->result = (DID_NO_CONNECT << 16);
|
|
goto done;
|
|
|
|
}
|
|
|
|
trace_scsi_dispatch_cmd_start(cmd);
|
|
rtn = host->hostt->queuecommand(host, cmd);
|
|
if (rtn) {
|
|
atomic_dec(&cmd->device->iorequest_cnt);
|
|
trace_scsi_dispatch_cmd_error(cmd, rtn);
|
|
if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
|
|
rtn != SCSI_MLQUEUE_TARGET_BUSY)
|
|
rtn = SCSI_MLQUEUE_HOST_BUSY;
|
|
|
|
SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
|
|
"queuecommand : request rejected\n"));
|
|
}
|
|
|
|
return rtn;
|
|
done:
|
|
scsi_done(cmd);
|
|
return 0;
|
|
}
|
|
|
|
/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
|
|
static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
|
|
{
|
|
return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
|
|
sizeof(struct scatterlist);
|
|
}
|
|
|
|
static blk_status_t scsi_prepare_cmd(struct request *req)
|
|
{
|
|
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
|
|
struct scsi_device *sdev = req->q->queuedata;
|
|
struct Scsi_Host *shost = sdev->host;
|
|
bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
|
|
struct scatterlist *sg;
|
|
|
|
scsi_init_command(sdev, cmd);
|
|
|
|
cmd->eh_eflags = 0;
|
|
cmd->prot_type = 0;
|
|
cmd->prot_flags = 0;
|
|
cmd->submitter = 0;
|
|
memset(&cmd->sdb, 0, sizeof(cmd->sdb));
|
|
cmd->underflow = 0;
|
|
cmd->transfersize = 0;
|
|
cmd->host_scribble = NULL;
|
|
cmd->result = 0;
|
|
cmd->extra_len = 0;
|
|
cmd->state = 0;
|
|
if (in_flight)
|
|
__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
|
|
|
|
/*
|
|
* Only clear the driver-private command data if the LLD does not supply
|
|
* a function to initialize that data.
|
|
*/
|
|
if (!shost->hostt->init_cmd_priv)
|
|
memset(cmd + 1, 0, shost->hostt->cmd_size);
|
|
|
|
cmd->prot_op = SCSI_PROT_NORMAL;
|
|
if (blk_rq_bytes(req))
|
|
cmd->sc_data_direction = rq_dma_dir(req);
|
|
else
|
|
cmd->sc_data_direction = DMA_NONE;
|
|
|
|
sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
|
|
cmd->sdb.table.sgl = sg;
|
|
|
|
if (scsi_host_get_prot(shost)) {
|
|
memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
|
|
|
|
cmd->prot_sdb->table.sgl =
|
|
(struct scatterlist *)(cmd->prot_sdb + 1);
|
|
}
|
|
|
|
/*
|
|
* Special handling for passthrough commands, which don't go to the ULP
|
|
* at all:
|
|
*/
|
|
if (blk_rq_is_passthrough(req))
|
|
return scsi_setup_scsi_cmnd(sdev, req);
|
|
|
|
if (sdev->handler && sdev->handler->prep_fn) {
|
|
blk_status_t ret = sdev->handler->prep_fn(sdev, req);
|
|
|
|
if (ret != BLK_STS_OK)
|
|
return ret;
|
|
}
|
|
|
|
/* Usually overridden by the ULP */
|
|
cmd->allowed = 0;
|
|
memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
|
|
return scsi_cmd_to_driver(cmd)->init_command(cmd);
|
|
}
|
|
|
|
static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
|
|
{
|
|
struct request *req = scsi_cmd_to_rq(cmd);
|
|
|
|
switch (cmd->submitter) {
|
|
case SUBMITTED_BY_BLOCK_LAYER:
|
|
break;
|
|
case SUBMITTED_BY_SCSI_ERROR_HANDLER:
|
|
return scsi_eh_done(cmd);
|
|
case SUBMITTED_BY_SCSI_RESET_IOCTL:
|
|
return;
|
|
}
|
|
|
|
if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
|
|
return;
|
|
if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
|
|
return;
|
|
trace_scsi_dispatch_cmd_done(cmd);
|
|
|
|
if (complete_directly)
|
|
blk_mq_complete_request_direct(req, scsi_complete);
|
|
else
|
|
blk_mq_complete_request(req);
|
|
}
|
|
|
|
void scsi_done(struct scsi_cmnd *cmd)
|
|
{
|
|
scsi_done_internal(cmd, false);
|
|
}
|
|
EXPORT_SYMBOL(scsi_done);
|
|
|
|
void scsi_done_direct(struct scsi_cmnd *cmd)
|
|
{
|
|
scsi_done_internal(cmd, true);
|
|
}
|
|
EXPORT_SYMBOL(scsi_done_direct);
|
|
|
|
static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
|
|
{
|
|
struct scsi_device *sdev = q->queuedata;
|
|
|
|
sbitmap_put(&sdev->budget_map, budget_token);
|
|
}
|
|
|
|
/*
|
|
* When to reinvoke queueing after a resource shortage. It's 3 msecs to
|
|
* not change behaviour from the previous unplug mechanism, experimentation
|
|
* may prove this needs changing.
|
|
*/
|
|
#define SCSI_QUEUE_DELAY 3
|
|
|
|
static int scsi_mq_get_budget(struct request_queue *q)
|
|
{
|
|
struct scsi_device *sdev = q->queuedata;
|
|
int token = scsi_dev_queue_ready(q, sdev);
|
|
|
|
if (token >= 0)
|
|
return token;
|
|
|
|
atomic_inc(&sdev->restarts);
|
|
|
|
/*
|
|
* Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
|
|
* .restarts must be incremented before .device_busy is read because the
|
|
* code in scsi_run_queue_async() depends on the order of these operations.
|
|
*/
|
|
smp_mb__after_atomic();
|
|
|
|
/*
|
|
* If all in-flight requests originated from this LUN are completed
|
|
* before reading .device_busy, sdev->device_busy will be observed as
|
|
* zero, then blk_mq_delay_run_hw_queues() will dispatch this request
|
|
* soon. Otherwise, completion of one of these requests will observe
|
|
* the .restarts flag, and the request queue will be run for handling
|
|
* this request, see scsi_end_request().
|
|
*/
|
|
if (unlikely(scsi_device_busy(sdev) == 0 &&
|
|
!scsi_device_blocked(sdev)))
|
|
blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
|
|
return -1;
|
|
}
|
|
|
|
static void scsi_mq_set_rq_budget_token(struct request *req, int token)
|
|
{
|
|
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
|
|
|
|
cmd->budget_token = token;
|
|
}
|
|
|
|
static int scsi_mq_get_rq_budget_token(struct request *req)
|
|
{
|
|
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
|
|
|
|
return cmd->budget_token;
|
|
}
|
|
|
|
static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
|
|
const struct blk_mq_queue_data *bd)
|
|
{
|
|
struct request *req = bd->rq;
|
|
struct request_queue *q = req->q;
|
|
struct scsi_device *sdev = q->queuedata;
|
|
struct Scsi_Host *shost = sdev->host;
|
|
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
|
|
blk_status_t ret;
|
|
int reason;
|
|
|
|
WARN_ON_ONCE(cmd->budget_token < 0);
|
|
|
|
/*
|
|
* If the device is not in running state we will reject some or all
|
|
* commands.
|
|
*/
|
|
if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
|
|
ret = scsi_device_state_check(sdev, req);
|
|
if (ret != BLK_STS_OK)
|
|
goto out_put_budget;
|
|
}
|
|
|
|
ret = BLK_STS_RESOURCE;
|
|
if (!scsi_target_queue_ready(shost, sdev))
|
|
goto out_put_budget;
|
|
if (unlikely(scsi_host_in_recovery(shost))) {
|
|
if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
|
|
ret = BLK_STS_OFFLINE;
|
|
goto out_dec_target_busy;
|
|
}
|
|
if (!scsi_host_queue_ready(q, shost, sdev, cmd))
|
|
goto out_dec_target_busy;
|
|
|
|
if (!(req->rq_flags & RQF_DONTPREP)) {
|
|
ret = scsi_prepare_cmd(req);
|
|
if (ret != BLK_STS_OK)
|
|
goto out_dec_host_busy;
|
|
req->rq_flags |= RQF_DONTPREP;
|
|
} else {
|
|
clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
|
|
}
|
|
|
|
cmd->flags &= SCMD_PRESERVED_FLAGS;
|
|
if (sdev->simple_tags)
|
|
cmd->flags |= SCMD_TAGGED;
|
|
if (bd->last)
|
|
cmd->flags |= SCMD_LAST;
|
|
|
|
scsi_set_resid(cmd, 0);
|
|
memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
|
|
cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
|
|
|
|
blk_mq_start_request(req);
|
|
reason = scsi_dispatch_cmd(cmd);
|
|
if (reason) {
|
|
scsi_set_blocked(cmd, reason);
|
|
ret = BLK_STS_RESOURCE;
|
|
goto out_dec_host_busy;
|
|
}
|
|
|
|
return BLK_STS_OK;
|
|
|
|
out_dec_host_busy:
|
|
scsi_dec_host_busy(shost, cmd);
|
|
out_dec_target_busy:
|
|
if (scsi_target(sdev)->can_queue > 0)
|
|
atomic_dec(&scsi_target(sdev)->target_busy);
|
|
out_put_budget:
|
|
scsi_mq_put_budget(q, cmd->budget_token);
|
|
cmd->budget_token = -1;
|
|
switch (ret) {
|
|
case BLK_STS_OK:
|
|
break;
|
|
case BLK_STS_RESOURCE:
|
|
case BLK_STS_ZONE_RESOURCE:
|
|
if (scsi_device_blocked(sdev))
|
|
ret = BLK_STS_DEV_RESOURCE;
|
|
break;
|
|
case BLK_STS_AGAIN:
|
|
cmd->result = DID_BUS_BUSY << 16;
|
|
if (req->rq_flags & RQF_DONTPREP)
|
|
scsi_mq_uninit_cmd(cmd);
|
|
break;
|
|
default:
|
|
if (unlikely(!scsi_device_online(sdev)))
|
|
cmd->result = DID_NO_CONNECT << 16;
|
|
else
|
|
cmd->result = DID_ERROR << 16;
|
|
/*
|
|
* Make sure to release all allocated resources when
|
|
* we hit an error, as we will never see this command
|
|
* again.
|
|
*/
|
|
if (req->rq_flags & RQF_DONTPREP)
|
|
scsi_mq_uninit_cmd(cmd);
|
|
scsi_run_queue_async(sdev);
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
|
|
unsigned int hctx_idx, unsigned int numa_node)
|
|
{
|
|
struct Scsi_Host *shost = set->driver_data;
|
|
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
|
|
struct scatterlist *sg;
|
|
int ret = 0;
|
|
|
|
cmd->sense_buffer =
|
|
kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
|
|
if (!cmd->sense_buffer)
|
|
return -ENOMEM;
|
|
|
|
if (scsi_host_get_prot(shost)) {
|
|
sg = (void *)cmd + sizeof(struct scsi_cmnd) +
|
|
shost->hostt->cmd_size;
|
|
cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
|
|
}
|
|
|
|
if (shost->hostt->init_cmd_priv) {
|
|
ret = shost->hostt->init_cmd_priv(shost, cmd);
|
|
if (ret < 0)
|
|
kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct Scsi_Host *shost = set->driver_data;
|
|
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
|
|
|
|
if (shost->hostt->exit_cmd_priv)
|
|
shost->hostt->exit_cmd_priv(shost, cmd);
|
|
kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
|
|
}
|
|
|
|
|
|
static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
|
|
{
|
|
struct Scsi_Host *shost = hctx->driver_data;
|
|
|
|
if (shost->hostt->mq_poll)
|
|
return shost->hostt->mq_poll(shost, hctx->queue_num);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct Scsi_Host *shost = data;
|
|
|
|
hctx->driver_data = shost;
|
|
return 0;
|
|
}
|
|
|
|
static void scsi_map_queues(struct blk_mq_tag_set *set)
|
|
{
|
|
struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
|
|
|
|
if (shost->hostt->map_queues)
|
|
return shost->hostt->map_queues(shost);
|
|
blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
|
|
}
|
|
|
|
void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
|
|
{
|
|
struct device *dev = shost->dma_dev;
|
|
|
|
/*
|
|
* this limit is imposed by hardware restrictions
|
|
*/
|
|
blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
|
|
SG_MAX_SEGMENTS));
|
|
|
|
if (scsi_host_prot_dma(shost)) {
|
|
shost->sg_prot_tablesize =
|
|
min_not_zero(shost->sg_prot_tablesize,
|
|
(unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
|
|
BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
|
|
blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
|
|
}
|
|
|
|
blk_queue_max_hw_sectors(q, shost->max_sectors);
|
|
blk_queue_segment_boundary(q, shost->dma_boundary);
|
|
dma_set_seg_boundary(dev, shost->dma_boundary);
|
|
|
|
blk_queue_max_segment_size(q, shost->max_segment_size);
|
|
blk_queue_virt_boundary(q, shost->virt_boundary_mask);
|
|
dma_set_max_seg_size(dev, queue_max_segment_size(q));
|
|
|
|
/*
|
|
* Set a reasonable default alignment: The larger of 32-byte (dword),
|
|
* which is a common minimum for HBAs, and the minimum DMA alignment,
|
|
* which is set by the platform.
|
|
*
|
|
* Devices that require a bigger alignment can increase it later.
|
|
*/
|
|
blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__scsi_init_queue);
|
|
|
|
static const struct blk_mq_ops scsi_mq_ops_no_commit = {
|
|
.get_budget = scsi_mq_get_budget,
|
|
.put_budget = scsi_mq_put_budget,
|
|
.queue_rq = scsi_queue_rq,
|
|
.complete = scsi_complete,
|
|
.timeout = scsi_timeout,
|
|
#ifdef CONFIG_BLK_DEBUG_FS
|
|
.show_rq = scsi_show_rq,
|
|
#endif
|
|
.init_request = scsi_mq_init_request,
|
|
.exit_request = scsi_mq_exit_request,
|
|
.cleanup_rq = scsi_cleanup_rq,
|
|
.busy = scsi_mq_lld_busy,
|
|
.map_queues = scsi_map_queues,
|
|
.init_hctx = scsi_init_hctx,
|
|
.poll = scsi_mq_poll,
|
|
.set_rq_budget_token = scsi_mq_set_rq_budget_token,
|
|
.get_rq_budget_token = scsi_mq_get_rq_budget_token,
|
|
};
|
|
|
|
|
|
static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct Scsi_Host *shost = hctx->driver_data;
|
|
|
|
shost->hostt->commit_rqs(shost, hctx->queue_num);
|
|
}
|
|
|
|
static const struct blk_mq_ops scsi_mq_ops = {
|
|
.get_budget = scsi_mq_get_budget,
|
|
.put_budget = scsi_mq_put_budget,
|
|
.queue_rq = scsi_queue_rq,
|
|
.commit_rqs = scsi_commit_rqs,
|
|
.complete = scsi_complete,
|
|
.timeout = scsi_timeout,
|
|
#ifdef CONFIG_BLK_DEBUG_FS
|
|
.show_rq = scsi_show_rq,
|
|
#endif
|
|
.init_request = scsi_mq_init_request,
|
|
.exit_request = scsi_mq_exit_request,
|
|
.cleanup_rq = scsi_cleanup_rq,
|
|
.busy = scsi_mq_lld_busy,
|
|
.map_queues = scsi_map_queues,
|
|
.init_hctx = scsi_init_hctx,
|
|
.poll = scsi_mq_poll,
|
|
.set_rq_budget_token = scsi_mq_set_rq_budget_token,
|
|
.get_rq_budget_token = scsi_mq_get_rq_budget_token,
|
|
};
|
|
|
|
int scsi_mq_setup_tags(struct Scsi_Host *shost)
|
|
{
|
|
unsigned int cmd_size, sgl_size;
|
|
struct blk_mq_tag_set *tag_set = &shost->tag_set;
|
|
|
|
sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
|
|
scsi_mq_inline_sgl_size(shost));
|
|
cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
|
|
if (scsi_host_get_prot(shost))
|
|
cmd_size += sizeof(struct scsi_data_buffer) +
|
|
sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
|
|
|
|
memset(tag_set, 0, sizeof(*tag_set));
|
|
if (shost->hostt->commit_rqs)
|
|
tag_set->ops = &scsi_mq_ops;
|
|
else
|
|
tag_set->ops = &scsi_mq_ops_no_commit;
|
|
tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
|
|
tag_set->nr_maps = shost->nr_maps ? : 1;
|
|
tag_set->queue_depth = shost->can_queue;
|
|
tag_set->cmd_size = cmd_size;
|
|
tag_set->numa_node = dev_to_node(shost->dma_dev);
|
|
tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
|
|
tag_set->flags |=
|
|
BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
|
|
if (shost->queuecommand_may_block)
|
|
tag_set->flags |= BLK_MQ_F_BLOCKING;
|
|
tag_set->driver_data = shost;
|
|
if (shost->host_tagset)
|
|
tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
|
|
|
|
return blk_mq_alloc_tag_set(tag_set);
|
|
}
|
|
|
|
void scsi_mq_free_tags(struct kref *kref)
|
|
{
|
|
struct Scsi_Host *shost = container_of(kref, typeof(*shost),
|
|
tagset_refcnt);
|
|
|
|
blk_mq_free_tag_set(&shost->tag_set);
|
|
complete(&shost->tagset_freed);
|
|
}
|
|
|
|
/**
|
|
* scsi_device_from_queue - return sdev associated with a request_queue
|
|
* @q: The request queue to return the sdev from
|
|
*
|
|
* Return the sdev associated with a request queue or NULL if the
|
|
* request_queue does not reference a SCSI device.
|
|
*/
|
|
struct scsi_device *scsi_device_from_queue(struct request_queue *q)
|
|
{
|
|
struct scsi_device *sdev = NULL;
|
|
|
|
if (q->mq_ops == &scsi_mq_ops_no_commit ||
|
|
q->mq_ops == &scsi_mq_ops)
|
|
sdev = q->queuedata;
|
|
if (!sdev || !get_device(&sdev->sdev_gendev))
|
|
sdev = NULL;
|
|
|
|
return sdev;
|
|
}
|
|
/*
|
|
* pktcdvd should have been integrated into the SCSI layers, but for historical
|
|
* reasons like the old IDE driver it isn't. This export allows it to safely
|
|
* probe if a given device is a SCSI one and only attach to that.
|
|
*/
|
|
#ifdef CONFIG_CDROM_PKTCDVD_MODULE
|
|
EXPORT_SYMBOL_GPL(scsi_device_from_queue);
|
|
#endif
|
|
|
|
/**
|
|
* scsi_block_requests - Utility function used by low-level drivers to prevent
|
|
* further commands from being queued to the device.
|
|
* @shost: host in question
|
|
*
|
|
* There is no timer nor any other means by which the requests get unblocked
|
|
* other than the low-level driver calling scsi_unblock_requests().
|
|
*/
|
|
void scsi_block_requests(struct Scsi_Host *shost)
|
|
{
|
|
shost->host_self_blocked = 1;
|
|
}
|
|
EXPORT_SYMBOL(scsi_block_requests);
|
|
|
|
/**
|
|
* scsi_unblock_requests - Utility function used by low-level drivers to allow
|
|
* further commands to be queued to the device.
|
|
* @shost: host in question
|
|
*
|
|
* There is no timer nor any other means by which the requests get unblocked
|
|
* other than the low-level driver calling scsi_unblock_requests(). This is done
|
|
* as an API function so that changes to the internals of the scsi mid-layer
|
|
* won't require wholesale changes to drivers that use this feature.
|
|
*/
|
|
void scsi_unblock_requests(struct Scsi_Host *shost)
|
|
{
|
|
shost->host_self_blocked = 0;
|
|
scsi_run_host_queues(shost);
|
|
}
|
|
EXPORT_SYMBOL(scsi_unblock_requests);
|
|
|
|
void scsi_exit_queue(void)
|
|
{
|
|
kmem_cache_destroy(scsi_sense_cache);
|
|
}
|
|
|
|
/**
|
|
* scsi_mode_select - issue a mode select
|
|
* @sdev: SCSI device to be queried
|
|
* @pf: Page format bit (1 == standard, 0 == vendor specific)
|
|
* @sp: Save page bit (0 == don't save, 1 == save)
|
|
* @buffer: request buffer (may not be smaller than eight bytes)
|
|
* @len: length of request buffer.
|
|
* @timeout: command timeout
|
|
* @retries: number of retries before failing
|
|
* @data: returns a structure abstracting the mode header data
|
|
* @sshdr: place to put sense data (or NULL if no sense to be collected).
|
|
* must be SCSI_SENSE_BUFFERSIZE big.
|
|
*
|
|
* Returns zero if successful; negative error number or scsi
|
|
* status on error
|
|
*
|
|
*/
|
|
int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
|
|
unsigned char *buffer, int len, int timeout, int retries,
|
|
struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
|
|
{
|
|
unsigned char cmd[10];
|
|
unsigned char *real_buffer;
|
|
const struct scsi_exec_args exec_args = {
|
|
.sshdr = sshdr,
|
|
};
|
|
int ret;
|
|
|
|
memset(cmd, 0, sizeof(cmd));
|
|
cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
|
|
|
|
/*
|
|
* Use MODE SELECT(10) if the device asked for it or if the mode page
|
|
* and the mode select header cannot fit within the maximumm 255 bytes
|
|
* of the MODE SELECT(6) command.
|
|
*/
|
|
if (sdev->use_10_for_ms ||
|
|
len + 4 > 255 ||
|
|
data->block_descriptor_length > 255) {
|
|
if (len > 65535 - 8)
|
|
return -EINVAL;
|
|
real_buffer = kmalloc(8 + len, GFP_KERNEL);
|
|
if (!real_buffer)
|
|
return -ENOMEM;
|
|
memcpy(real_buffer + 8, buffer, len);
|
|
len += 8;
|
|
real_buffer[0] = 0;
|
|
real_buffer[1] = 0;
|
|
real_buffer[2] = data->medium_type;
|
|
real_buffer[3] = data->device_specific;
|
|
real_buffer[4] = data->longlba ? 0x01 : 0;
|
|
real_buffer[5] = 0;
|
|
put_unaligned_be16(data->block_descriptor_length,
|
|
&real_buffer[6]);
|
|
|
|
cmd[0] = MODE_SELECT_10;
|
|
put_unaligned_be16(len, &cmd[7]);
|
|
} else {
|
|
if (data->longlba)
|
|
return -EINVAL;
|
|
|
|
real_buffer = kmalloc(4 + len, GFP_KERNEL);
|
|
if (!real_buffer)
|
|
return -ENOMEM;
|
|
memcpy(real_buffer + 4, buffer, len);
|
|
len += 4;
|
|
real_buffer[0] = 0;
|
|
real_buffer[1] = data->medium_type;
|
|
real_buffer[2] = data->device_specific;
|
|
real_buffer[3] = data->block_descriptor_length;
|
|
|
|
cmd[0] = MODE_SELECT;
|
|
cmd[4] = len;
|
|
}
|
|
|
|
ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
|
|
timeout, retries, &exec_args);
|
|
kfree(real_buffer);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scsi_mode_select);
|
|
|
|
/**
|
|
* scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
|
|
* @sdev: SCSI device to be queried
|
|
* @dbd: set to prevent mode sense from returning block descriptors
|
|
* @modepage: mode page being requested
|
|
* @subpage: sub-page of the mode page being requested
|
|
* @buffer: request buffer (may not be smaller than eight bytes)
|
|
* @len: length of request buffer.
|
|
* @timeout: command timeout
|
|
* @retries: number of retries before failing
|
|
* @data: returns a structure abstracting the mode header data
|
|
* @sshdr: place to put sense data (or NULL if no sense to be collected).
|
|
* must be SCSI_SENSE_BUFFERSIZE big.
|
|
*
|
|
* Returns zero if successful, or a negative error number on failure
|
|
*/
|
|
int
|
|
scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
|
|
unsigned char *buffer, int len, int timeout, int retries,
|
|
struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
|
|
{
|
|
unsigned char cmd[12];
|
|
int use_10_for_ms;
|
|
int header_length;
|
|
int result, retry_count = retries;
|
|
struct scsi_sense_hdr my_sshdr;
|
|
const struct scsi_exec_args exec_args = {
|
|
/* caller might not be interested in sense, but we need it */
|
|
.sshdr = sshdr ? : &my_sshdr,
|
|
};
|
|
|
|
memset(data, 0, sizeof(*data));
|
|
memset(&cmd[0], 0, 12);
|
|
|
|
dbd = sdev->set_dbd_for_ms ? 8 : dbd;
|
|
cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
|
|
cmd[2] = modepage;
|
|
cmd[3] = subpage;
|
|
|
|
sshdr = exec_args.sshdr;
|
|
|
|
retry:
|
|
use_10_for_ms = sdev->use_10_for_ms || len > 255;
|
|
|
|
if (use_10_for_ms) {
|
|
if (len < 8 || len > 65535)
|
|
return -EINVAL;
|
|
|
|
cmd[0] = MODE_SENSE_10;
|
|
put_unaligned_be16(len, &cmd[7]);
|
|
header_length = 8;
|
|
} else {
|
|
if (len < 4)
|
|
return -EINVAL;
|
|
|
|
cmd[0] = MODE_SENSE;
|
|
cmd[4] = len;
|
|
header_length = 4;
|
|
}
|
|
|
|
memset(buffer, 0, len);
|
|
|
|
result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
|
|
timeout, retries, &exec_args);
|
|
if (result < 0)
|
|
return result;
|
|
|
|
/* This code looks awful: what it's doing is making sure an
|
|
* ILLEGAL REQUEST sense return identifies the actual command
|
|
* byte as the problem. MODE_SENSE commands can return
|
|
* ILLEGAL REQUEST if the code page isn't supported */
|
|
|
|
if (!scsi_status_is_good(result)) {
|
|
if (scsi_sense_valid(sshdr)) {
|
|
if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
|
|
(sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
|
|
/*
|
|
* Invalid command operation code: retry using
|
|
* MODE SENSE(6) if this was a MODE SENSE(10)
|
|
* request, except if the request mode page is
|
|
* too large for MODE SENSE single byte
|
|
* allocation length field.
|
|
*/
|
|
if (use_10_for_ms) {
|
|
if (len > 255)
|
|
return -EIO;
|
|
sdev->use_10_for_ms = 0;
|
|
goto retry;
|
|
}
|
|
}
|
|
if (scsi_status_is_check_condition(result) &&
|
|
sshdr->sense_key == UNIT_ATTENTION &&
|
|
retry_count) {
|
|
retry_count--;
|
|
goto retry;
|
|
}
|
|
}
|
|
return -EIO;
|
|
}
|
|
if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
|
|
(modepage == 6 || modepage == 8))) {
|
|
/* Initio breakage? */
|
|
header_length = 0;
|
|
data->length = 13;
|
|
data->medium_type = 0;
|
|
data->device_specific = 0;
|
|
data->longlba = 0;
|
|
data->block_descriptor_length = 0;
|
|
} else if (use_10_for_ms) {
|
|
data->length = get_unaligned_be16(&buffer[0]) + 2;
|
|
data->medium_type = buffer[2];
|
|
data->device_specific = buffer[3];
|
|
data->longlba = buffer[4] & 0x01;
|
|
data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
|
|
} else {
|
|
data->length = buffer[0] + 1;
|
|
data->medium_type = buffer[1];
|
|
data->device_specific = buffer[2];
|
|
data->block_descriptor_length = buffer[3];
|
|
}
|
|
data->header_length = header_length;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(scsi_mode_sense);
|
|
|
|
/**
|
|
* scsi_test_unit_ready - test if unit is ready
|
|
* @sdev: scsi device to change the state of.
|
|
* @timeout: command timeout
|
|
* @retries: number of retries before failing
|
|
* @sshdr: outpout pointer for decoded sense information.
|
|
*
|
|
* Returns zero if unsuccessful or an error if TUR failed. For
|
|
* removable media, UNIT_ATTENTION sets ->changed flag.
|
|
**/
|
|
int
|
|
scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
|
|
struct scsi_sense_hdr *sshdr)
|
|
{
|
|
char cmd[] = {
|
|
TEST_UNIT_READY, 0, 0, 0, 0, 0,
|
|
};
|
|
const struct scsi_exec_args exec_args = {
|
|
.sshdr = sshdr,
|
|
};
|
|
int result;
|
|
|
|
/* try to eat the UNIT_ATTENTION if there are enough retries */
|
|
do {
|
|
result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
|
|
timeout, 1, &exec_args);
|
|
if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
|
|
sshdr->sense_key == UNIT_ATTENTION)
|
|
sdev->changed = 1;
|
|
} while (result > 0 && scsi_sense_valid(sshdr) &&
|
|
sshdr->sense_key == UNIT_ATTENTION && --retries);
|
|
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL(scsi_test_unit_ready);
|
|
|
|
/**
|
|
* scsi_device_set_state - Take the given device through the device state model.
|
|
* @sdev: scsi device to change the state of.
|
|
* @state: state to change to.
|
|
*
|
|
* Returns zero if successful or an error if the requested
|
|
* transition is illegal.
|
|
*/
|
|
int
|
|
scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
|
|
{
|
|
enum scsi_device_state oldstate = sdev->sdev_state;
|
|
|
|
if (state == oldstate)
|
|
return 0;
|
|
|
|
switch (state) {
|
|
case SDEV_CREATED:
|
|
switch (oldstate) {
|
|
case SDEV_CREATED_BLOCK:
|
|
break;
|
|
default:
|
|
goto illegal;
|
|
}
|
|
break;
|
|
|
|
case SDEV_RUNNING:
|
|
switch (oldstate) {
|
|
case SDEV_CREATED:
|
|
case SDEV_OFFLINE:
|
|
case SDEV_TRANSPORT_OFFLINE:
|
|
case SDEV_QUIESCE:
|
|
case SDEV_BLOCK:
|
|
break;
|
|
default:
|
|
goto illegal;
|
|
}
|
|
break;
|
|
|
|
case SDEV_QUIESCE:
|
|
switch (oldstate) {
|
|
case SDEV_RUNNING:
|
|
case SDEV_OFFLINE:
|
|
case SDEV_TRANSPORT_OFFLINE:
|
|
break;
|
|
default:
|
|
goto illegal;
|
|
}
|
|
break;
|
|
|
|
case SDEV_OFFLINE:
|
|
case SDEV_TRANSPORT_OFFLINE:
|
|
switch (oldstate) {
|
|
case SDEV_CREATED:
|
|
case SDEV_RUNNING:
|
|
case SDEV_QUIESCE:
|
|
case SDEV_BLOCK:
|
|
break;
|
|
default:
|
|
goto illegal;
|
|
}
|
|
break;
|
|
|
|
case SDEV_BLOCK:
|
|
switch (oldstate) {
|
|
case SDEV_RUNNING:
|
|
case SDEV_CREATED_BLOCK:
|
|
case SDEV_QUIESCE:
|
|
case SDEV_OFFLINE:
|
|
break;
|
|
default:
|
|
goto illegal;
|
|
}
|
|
break;
|
|
|
|
case SDEV_CREATED_BLOCK:
|
|
switch (oldstate) {
|
|
case SDEV_CREATED:
|
|
break;
|
|
default:
|
|
goto illegal;
|
|
}
|
|
break;
|
|
|
|
case SDEV_CANCEL:
|
|
switch (oldstate) {
|
|
case SDEV_CREATED:
|
|
case SDEV_RUNNING:
|
|
case SDEV_QUIESCE:
|
|
case SDEV_OFFLINE:
|
|
case SDEV_TRANSPORT_OFFLINE:
|
|
break;
|
|
default:
|
|
goto illegal;
|
|
}
|
|
break;
|
|
|
|
case SDEV_DEL:
|
|
switch (oldstate) {
|
|
case SDEV_CREATED:
|
|
case SDEV_RUNNING:
|
|
case SDEV_OFFLINE:
|
|
case SDEV_TRANSPORT_OFFLINE:
|
|
case SDEV_CANCEL:
|
|
case SDEV_BLOCK:
|
|
case SDEV_CREATED_BLOCK:
|
|
break;
|
|
default:
|
|
goto illegal;
|
|
}
|
|
break;
|
|
|
|
}
|
|
sdev->offline_already = false;
|
|
sdev->sdev_state = state;
|
|
return 0;
|
|
|
|
illegal:
|
|
SCSI_LOG_ERROR_RECOVERY(1,
|
|
sdev_printk(KERN_ERR, sdev,
|
|
"Illegal state transition %s->%s",
|
|
scsi_device_state_name(oldstate),
|
|
scsi_device_state_name(state))
|
|
);
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL(scsi_device_set_state);
|
|
|
|
/**
|
|
* scsi_evt_emit - emit a single SCSI device uevent
|
|
* @sdev: associated SCSI device
|
|
* @evt: event to emit
|
|
*
|
|
* Send a single uevent (scsi_event) to the associated scsi_device.
|
|
*/
|
|
static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
|
|
{
|
|
int idx = 0;
|
|
char *envp[3];
|
|
|
|
switch (evt->evt_type) {
|
|
case SDEV_EVT_MEDIA_CHANGE:
|
|
envp[idx++] = "SDEV_MEDIA_CHANGE=1";
|
|
break;
|
|
case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
|
|
scsi_rescan_device(sdev);
|
|
envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
|
|
break;
|
|
case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
|
|
envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
|
|
break;
|
|
case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
|
|
envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
|
|
break;
|
|
case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
|
|
envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
|
|
break;
|
|
case SDEV_EVT_LUN_CHANGE_REPORTED:
|
|
envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
|
|
break;
|
|
case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
|
|
envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
|
|
break;
|
|
case SDEV_EVT_POWER_ON_RESET_OCCURRED:
|
|
envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
|
|
break;
|
|
default:
|
|
/* do nothing */
|
|
break;
|
|
}
|
|
|
|
envp[idx++] = NULL;
|
|
|
|
kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
|
|
}
|
|
|
|
/**
|
|
* scsi_evt_thread - send a uevent for each scsi event
|
|
* @work: work struct for scsi_device
|
|
*
|
|
* Dispatch queued events to their associated scsi_device kobjects
|
|
* as uevents.
|
|
*/
|
|
void scsi_evt_thread(struct work_struct *work)
|
|
{
|
|
struct scsi_device *sdev;
|
|
enum scsi_device_event evt_type;
|
|
LIST_HEAD(event_list);
|
|
|
|
sdev = container_of(work, struct scsi_device, event_work);
|
|
|
|
for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
|
|
if (test_and_clear_bit(evt_type, sdev->pending_events))
|
|
sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
|
|
|
|
while (1) {
|
|
struct scsi_event *evt;
|
|
struct list_head *this, *tmp;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sdev->list_lock, flags);
|
|
list_splice_init(&sdev->event_list, &event_list);
|
|
spin_unlock_irqrestore(&sdev->list_lock, flags);
|
|
|
|
if (list_empty(&event_list))
|
|
break;
|
|
|
|
list_for_each_safe(this, tmp, &event_list) {
|
|
evt = list_entry(this, struct scsi_event, node);
|
|
list_del(&evt->node);
|
|
scsi_evt_emit(sdev, evt);
|
|
kfree(evt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sdev_evt_send - send asserted event to uevent thread
|
|
* @sdev: scsi_device event occurred on
|
|
* @evt: event to send
|
|
*
|
|
* Assert scsi device event asynchronously.
|
|
*/
|
|
void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
|
|
{
|
|
unsigned long flags;
|
|
|
|
#if 0
|
|
/* FIXME: currently this check eliminates all media change events
|
|
* for polled devices. Need to update to discriminate between AN
|
|
* and polled events */
|
|
if (!test_bit(evt->evt_type, sdev->supported_events)) {
|
|
kfree(evt);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
spin_lock_irqsave(&sdev->list_lock, flags);
|
|
list_add_tail(&evt->node, &sdev->event_list);
|
|
schedule_work(&sdev->event_work);
|
|
spin_unlock_irqrestore(&sdev->list_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sdev_evt_send);
|
|
|
|
/**
|
|
* sdev_evt_alloc - allocate a new scsi event
|
|
* @evt_type: type of event to allocate
|
|
* @gfpflags: GFP flags for allocation
|
|
*
|
|
* Allocates and returns a new scsi_event.
|
|
*/
|
|
struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
|
|
gfp_t gfpflags)
|
|
{
|
|
struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
|
|
if (!evt)
|
|
return NULL;
|
|
|
|
evt->evt_type = evt_type;
|
|
INIT_LIST_HEAD(&evt->node);
|
|
|
|
/* evt_type-specific initialization, if any */
|
|
switch (evt_type) {
|
|
case SDEV_EVT_MEDIA_CHANGE:
|
|
case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
|
|
case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
|
|
case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
|
|
case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
|
|
case SDEV_EVT_LUN_CHANGE_REPORTED:
|
|
case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
|
|
case SDEV_EVT_POWER_ON_RESET_OCCURRED:
|
|
default:
|
|
/* do nothing */
|
|
break;
|
|
}
|
|
|
|
return evt;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sdev_evt_alloc);
|
|
|
|
/**
|
|
* sdev_evt_send_simple - send asserted event to uevent thread
|
|
* @sdev: scsi_device event occurred on
|
|
* @evt_type: type of event to send
|
|
* @gfpflags: GFP flags for allocation
|
|
*
|
|
* Assert scsi device event asynchronously, given an event type.
|
|
*/
|
|
void sdev_evt_send_simple(struct scsi_device *sdev,
|
|
enum scsi_device_event evt_type, gfp_t gfpflags)
|
|
{
|
|
struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
|
|
if (!evt) {
|
|
sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
|
|
evt_type);
|
|
return;
|
|
}
|
|
|
|
sdev_evt_send(sdev, evt);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
|
|
|
|
/**
|
|
* scsi_device_quiesce - Block all commands except power management.
|
|
* @sdev: scsi device to quiesce.
|
|
*
|
|
* This works by trying to transition to the SDEV_QUIESCE state
|
|
* (which must be a legal transition). When the device is in this
|
|
* state, only power management requests will be accepted, all others will
|
|
* be deferred.
|
|
*
|
|
* Must be called with user context, may sleep.
|
|
*
|
|
* Returns zero if unsuccessful or an error if not.
|
|
*/
|
|
int
|
|
scsi_device_quiesce(struct scsi_device *sdev)
|
|
{
|
|
struct request_queue *q = sdev->request_queue;
|
|
int err;
|
|
|
|
/*
|
|
* It is allowed to call scsi_device_quiesce() multiple times from
|
|
* the same context but concurrent scsi_device_quiesce() calls are
|
|
* not allowed.
|
|
*/
|
|
WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
|
|
|
|
if (sdev->quiesced_by == current)
|
|
return 0;
|
|
|
|
blk_set_pm_only(q);
|
|
|
|
blk_mq_freeze_queue(q);
|
|
/*
|
|
* Ensure that the effect of blk_set_pm_only() will be visible
|
|
* for percpu_ref_tryget() callers that occur after the queue
|
|
* unfreeze even if the queue was already frozen before this function
|
|
* was called. See also https://lwn.net/Articles/573497/.
|
|
*/
|
|
synchronize_rcu();
|
|
blk_mq_unfreeze_queue(q);
|
|
|
|
mutex_lock(&sdev->state_mutex);
|
|
err = scsi_device_set_state(sdev, SDEV_QUIESCE);
|
|
if (err == 0)
|
|
sdev->quiesced_by = current;
|
|
else
|
|
blk_clear_pm_only(q);
|
|
mutex_unlock(&sdev->state_mutex);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(scsi_device_quiesce);
|
|
|
|
/**
|
|
* scsi_device_resume - Restart user issued commands to a quiesced device.
|
|
* @sdev: scsi device to resume.
|
|
*
|
|
* Moves the device from quiesced back to running and restarts the
|
|
* queues.
|
|
*
|
|
* Must be called with user context, may sleep.
|
|
*/
|
|
void scsi_device_resume(struct scsi_device *sdev)
|
|
{
|
|
/* check if the device state was mutated prior to resume, and if
|
|
* so assume the state is being managed elsewhere (for example
|
|
* device deleted during suspend)
|
|
*/
|
|
mutex_lock(&sdev->state_mutex);
|
|
if (sdev->sdev_state == SDEV_QUIESCE)
|
|
scsi_device_set_state(sdev, SDEV_RUNNING);
|
|
if (sdev->quiesced_by) {
|
|
sdev->quiesced_by = NULL;
|
|
blk_clear_pm_only(sdev->request_queue);
|
|
}
|
|
mutex_unlock(&sdev->state_mutex);
|
|
}
|
|
EXPORT_SYMBOL(scsi_device_resume);
|
|
|
|
static void
|
|
device_quiesce_fn(struct scsi_device *sdev, void *data)
|
|
{
|
|
scsi_device_quiesce(sdev);
|
|
}
|
|
|
|
void
|
|
scsi_target_quiesce(struct scsi_target *starget)
|
|
{
|
|
starget_for_each_device(starget, NULL, device_quiesce_fn);
|
|
}
|
|
EXPORT_SYMBOL(scsi_target_quiesce);
|
|
|
|
static void
|
|
device_resume_fn(struct scsi_device *sdev, void *data)
|
|
{
|
|
scsi_device_resume(sdev);
|
|
}
|
|
|
|
void
|
|
scsi_target_resume(struct scsi_target *starget)
|
|
{
|
|
starget_for_each_device(starget, NULL, device_resume_fn);
|
|
}
|
|
EXPORT_SYMBOL(scsi_target_resume);
|
|
|
|
static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
|
|
{
|
|
if (scsi_device_set_state(sdev, SDEV_BLOCK))
|
|
return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void scsi_start_queue(struct scsi_device *sdev)
|
|
{
|
|
if (cmpxchg(&sdev->queue_stopped, 1, 0))
|
|
blk_mq_unquiesce_queue(sdev->request_queue);
|
|
}
|
|
|
|
static void scsi_stop_queue(struct scsi_device *sdev)
|
|
{
|
|
/*
|
|
* The atomic variable of ->queue_stopped covers that
|
|
* blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
|
|
*
|
|
* The caller needs to wait until quiesce is done.
|
|
*/
|
|
if (!cmpxchg(&sdev->queue_stopped, 0, 1))
|
|
blk_mq_quiesce_queue_nowait(sdev->request_queue);
|
|
}
|
|
|
|
/**
|
|
* scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
|
|
* @sdev: device to block
|
|
*
|
|
* Pause SCSI command processing on the specified device. Does not sleep.
|
|
*
|
|
* Returns zero if successful or a negative error code upon failure.
|
|
*
|
|
* Notes:
|
|
* This routine transitions the device to the SDEV_BLOCK state (which must be
|
|
* a legal transition). When the device is in this state, command processing
|
|
* is paused until the device leaves the SDEV_BLOCK state. See also
|
|
* scsi_internal_device_unblock_nowait().
|
|
*/
|
|
int scsi_internal_device_block_nowait(struct scsi_device *sdev)
|
|
{
|
|
int ret = __scsi_internal_device_block_nowait(sdev);
|
|
|
|
/*
|
|
* The device has transitioned to SDEV_BLOCK. Stop the
|
|
* block layer from calling the midlayer with this device's
|
|
* request queue.
|
|
*/
|
|
if (!ret)
|
|
scsi_stop_queue(sdev);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
|
|
|
|
/**
|
|
* scsi_device_block - try to transition to the SDEV_BLOCK state
|
|
* @sdev: device to block
|
|
* @data: dummy argument, ignored
|
|
*
|
|
* Pause SCSI command processing on the specified device. Callers must wait
|
|
* until all ongoing scsi_queue_rq() calls have finished after this function
|
|
* returns.
|
|
*
|
|
* Note:
|
|
* This routine transitions the device to the SDEV_BLOCK state (which must be
|
|
* a legal transition). When the device is in this state, command processing
|
|
* is paused until the device leaves the SDEV_BLOCK state. See also
|
|
* scsi_internal_device_unblock().
|
|
*/
|
|
static void scsi_device_block(struct scsi_device *sdev, void *data)
|
|
{
|
|
int err;
|
|
enum scsi_device_state state;
|
|
|
|
mutex_lock(&sdev->state_mutex);
|
|
err = __scsi_internal_device_block_nowait(sdev);
|
|
state = sdev->sdev_state;
|
|
if (err == 0)
|
|
/*
|
|
* scsi_stop_queue() must be called with the state_mutex
|
|
* held. Otherwise a simultaneous scsi_start_queue() call
|
|
* might unquiesce the queue before we quiesce it.
|
|
*/
|
|
scsi_stop_queue(sdev);
|
|
|
|
mutex_unlock(&sdev->state_mutex);
|
|
|
|
WARN_ONCE(err, "%s: failed to block %s in state %d\n",
|
|
__func__, dev_name(&sdev->sdev_gendev), state);
|
|
}
|
|
|
|
/**
|
|
* scsi_internal_device_unblock_nowait - resume a device after a block request
|
|
* @sdev: device to resume
|
|
* @new_state: state to set the device to after unblocking
|
|
*
|
|
* Restart the device queue for a previously suspended SCSI device. Does not
|
|
* sleep.
|
|
*
|
|
* Returns zero if successful or a negative error code upon failure.
|
|
*
|
|
* Notes:
|
|
* This routine transitions the device to the SDEV_RUNNING state or to one of
|
|
* the offline states (which must be a legal transition) allowing the midlayer
|
|
* to goose the queue for this device.
|
|
*/
|
|
int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
|
|
enum scsi_device_state new_state)
|
|
{
|
|
switch (new_state) {
|
|
case SDEV_RUNNING:
|
|
case SDEV_TRANSPORT_OFFLINE:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Try to transition the scsi device to SDEV_RUNNING or one of the
|
|
* offlined states and goose the device queue if successful.
|
|
*/
|
|
switch (sdev->sdev_state) {
|
|
case SDEV_BLOCK:
|
|
case SDEV_TRANSPORT_OFFLINE:
|
|
sdev->sdev_state = new_state;
|
|
break;
|
|
case SDEV_CREATED_BLOCK:
|
|
if (new_state == SDEV_TRANSPORT_OFFLINE ||
|
|
new_state == SDEV_OFFLINE)
|
|
sdev->sdev_state = new_state;
|
|
else
|
|
sdev->sdev_state = SDEV_CREATED;
|
|
break;
|
|
case SDEV_CANCEL:
|
|
case SDEV_OFFLINE:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
scsi_start_queue(sdev);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
|
|
|
|
/**
|
|
* scsi_internal_device_unblock - resume a device after a block request
|
|
* @sdev: device to resume
|
|
* @new_state: state to set the device to after unblocking
|
|
*
|
|
* Restart the device queue for a previously suspended SCSI device. May sleep.
|
|
*
|
|
* Returns zero if successful or a negative error code upon failure.
|
|
*
|
|
* Notes:
|
|
* This routine transitions the device to the SDEV_RUNNING state or to one of
|
|
* the offline states (which must be a legal transition) allowing the midlayer
|
|
* to goose the queue for this device.
|
|
*/
|
|
static int scsi_internal_device_unblock(struct scsi_device *sdev,
|
|
enum scsi_device_state new_state)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&sdev->state_mutex);
|
|
ret = scsi_internal_device_unblock_nowait(sdev, new_state);
|
|
mutex_unlock(&sdev->state_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
target_block(struct device *dev, void *data)
|
|
{
|
|
if (scsi_is_target_device(dev))
|
|
starget_for_each_device(to_scsi_target(dev), NULL,
|
|
scsi_device_block);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
|
|
* @dev: a parent device of one or more scsi_target devices
|
|
* @shost: the Scsi_Host to which this device belongs
|
|
*
|
|
* Iterate over all children of @dev, which should be scsi_target devices,
|
|
* and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
|
|
* ongoing scsi_queue_rq() calls to finish. May sleep.
|
|
*
|
|
* Note:
|
|
* @dev must not itself be a scsi_target device.
|
|
*/
|
|
void
|
|
scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
|
|
{
|
|
WARN_ON_ONCE(scsi_is_target_device(dev));
|
|
device_for_each_child(dev, NULL, target_block);
|
|
blk_mq_wait_quiesce_done(&shost->tag_set);
|
|
}
|
|
EXPORT_SYMBOL_GPL(scsi_block_targets);
|
|
|
|
static void
|
|
device_unblock(struct scsi_device *sdev, void *data)
|
|
{
|
|
scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
|
|
}
|
|
|
|
static int
|
|
target_unblock(struct device *dev, void *data)
|
|
{
|
|
if (scsi_is_target_device(dev))
|
|
starget_for_each_device(to_scsi_target(dev), data,
|
|
device_unblock);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
|
|
{
|
|
if (scsi_is_target_device(dev))
|
|
starget_for_each_device(to_scsi_target(dev), &new_state,
|
|
device_unblock);
|
|
else
|
|
device_for_each_child(dev, &new_state, target_unblock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(scsi_target_unblock);
|
|
|
|
/**
|
|
* scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
|
|
* @shost: device to block
|
|
*
|
|
* Pause SCSI command processing for all logical units associated with the SCSI
|
|
* host and wait until pending scsi_queue_rq() calls have finished.
|
|
*
|
|
* Returns zero if successful or a negative error code upon failure.
|
|
*/
|
|
int
|
|
scsi_host_block(struct Scsi_Host *shost)
|
|
{
|
|
struct scsi_device *sdev;
|
|
int ret;
|
|
|
|
/*
|
|
* Call scsi_internal_device_block_nowait so we can avoid
|
|
* calling synchronize_rcu() for each LUN.
|
|
*/
|
|
shost_for_each_device(sdev, shost) {
|
|
mutex_lock(&sdev->state_mutex);
|
|
ret = scsi_internal_device_block_nowait(sdev);
|
|
mutex_unlock(&sdev->state_mutex);
|
|
if (ret) {
|
|
scsi_device_put(sdev);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Wait for ongoing scsi_queue_rq() calls to finish. */
|
|
blk_mq_wait_quiesce_done(&shost->tag_set);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scsi_host_block);
|
|
|
|
int
|
|
scsi_host_unblock(struct Scsi_Host *shost, int new_state)
|
|
{
|
|
struct scsi_device *sdev;
|
|
int ret = 0;
|
|
|
|
shost_for_each_device(sdev, shost) {
|
|
ret = scsi_internal_device_unblock(sdev, new_state);
|
|
if (ret) {
|
|
scsi_device_put(sdev);
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scsi_host_unblock);
|
|
|
|
/**
|
|
* scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
|
|
* @sgl: scatter-gather list
|
|
* @sg_count: number of segments in sg
|
|
* @offset: offset in bytes into sg, on return offset into the mapped area
|
|
* @len: bytes to map, on return number of bytes mapped
|
|
*
|
|
* Returns virtual address of the start of the mapped page
|
|
*/
|
|
void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
|
|
size_t *offset, size_t *len)
|
|
{
|
|
int i;
|
|
size_t sg_len = 0, len_complete = 0;
|
|
struct scatterlist *sg;
|
|
struct page *page;
|
|
|
|
WARN_ON(!irqs_disabled());
|
|
|
|
for_each_sg(sgl, sg, sg_count, i) {
|
|
len_complete = sg_len; /* Complete sg-entries */
|
|
sg_len += sg->length;
|
|
if (sg_len > *offset)
|
|
break;
|
|
}
|
|
|
|
if (unlikely(i == sg_count)) {
|
|
printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
|
|
"elements %d\n",
|
|
__func__, sg_len, *offset, sg_count);
|
|
WARN_ON(1);
|
|
return NULL;
|
|
}
|
|
|
|
/* Offset starting from the beginning of first page in this sg-entry */
|
|
*offset = *offset - len_complete + sg->offset;
|
|
|
|
/* Assumption: contiguous pages can be accessed as "page + i" */
|
|
page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
|
|
*offset &= ~PAGE_MASK;
|
|
|
|
/* Bytes in this sg-entry from *offset to the end of the page */
|
|
sg_len = PAGE_SIZE - *offset;
|
|
if (*len > sg_len)
|
|
*len = sg_len;
|
|
|
|
return kmap_atomic(page);
|
|
}
|
|
EXPORT_SYMBOL(scsi_kmap_atomic_sg);
|
|
|
|
/**
|
|
* scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
|
|
* @virt: virtual address to be unmapped
|
|
*/
|
|
void scsi_kunmap_atomic_sg(void *virt)
|
|
{
|
|
kunmap_atomic(virt);
|
|
}
|
|
EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
|
|
|
|
void sdev_disable_disk_events(struct scsi_device *sdev)
|
|
{
|
|
atomic_inc(&sdev->disk_events_disable_depth);
|
|
}
|
|
EXPORT_SYMBOL(sdev_disable_disk_events);
|
|
|
|
void sdev_enable_disk_events(struct scsi_device *sdev)
|
|
{
|
|
if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
|
|
return;
|
|
atomic_dec(&sdev->disk_events_disable_depth);
|
|
}
|
|
EXPORT_SYMBOL(sdev_enable_disk_events);
|
|
|
|
static unsigned char designator_prio(const unsigned char *d)
|
|
{
|
|
if (d[1] & 0x30)
|
|
/* not associated with LUN */
|
|
return 0;
|
|
|
|
if (d[3] == 0)
|
|
/* invalid length */
|
|
return 0;
|
|
|
|
/*
|
|
* Order of preference for lun descriptor:
|
|
* - SCSI name string
|
|
* - NAA IEEE Registered Extended
|
|
* - EUI-64 based 16-byte
|
|
* - EUI-64 based 12-byte
|
|
* - NAA IEEE Registered
|
|
* - NAA IEEE Extended
|
|
* - EUI-64 based 8-byte
|
|
* - SCSI name string (truncated)
|
|
* - T10 Vendor ID
|
|
* as longer descriptors reduce the likelyhood
|
|
* of identification clashes.
|
|
*/
|
|
|
|
switch (d[1] & 0xf) {
|
|
case 8:
|
|
/* SCSI name string, variable-length UTF-8 */
|
|
return 9;
|
|
case 3:
|
|
switch (d[4] >> 4) {
|
|
case 6:
|
|
/* NAA registered extended */
|
|
return 8;
|
|
case 5:
|
|
/* NAA registered */
|
|
return 5;
|
|
case 4:
|
|
/* NAA extended */
|
|
return 4;
|
|
case 3:
|
|
/* NAA locally assigned */
|
|
return 1;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case 2:
|
|
switch (d[3]) {
|
|
case 16:
|
|
/* EUI64-based, 16 byte */
|
|
return 7;
|
|
case 12:
|
|
/* EUI64-based, 12 byte */
|
|
return 6;
|
|
case 8:
|
|
/* EUI64-based, 8 byte */
|
|
return 3;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case 1:
|
|
/* T10 vendor ID */
|
|
return 1;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* scsi_vpd_lun_id - return a unique device identification
|
|
* @sdev: SCSI device
|
|
* @id: buffer for the identification
|
|
* @id_len: length of the buffer
|
|
*
|
|
* Copies a unique device identification into @id based
|
|
* on the information in the VPD page 0x83 of the device.
|
|
* The string will be formatted as a SCSI name string.
|
|
*
|
|
* Returns the length of the identification or error on failure.
|
|
* If the identifier is longer than the supplied buffer the actual
|
|
* identifier length is returned and the buffer is not zero-padded.
|
|
*/
|
|
int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
|
|
{
|
|
u8 cur_id_prio = 0;
|
|
u8 cur_id_size = 0;
|
|
const unsigned char *d, *cur_id_str;
|
|
const struct scsi_vpd *vpd_pg83;
|
|
int id_size = -EINVAL;
|
|
|
|
rcu_read_lock();
|
|
vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
|
|
if (!vpd_pg83) {
|
|
rcu_read_unlock();
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* The id string must be at least 20 bytes + terminating NULL byte */
|
|
if (id_len < 21) {
|
|
rcu_read_unlock();
|
|
return -EINVAL;
|
|
}
|
|
|
|
memset(id, 0, id_len);
|
|
for (d = vpd_pg83->data + 4;
|
|
d < vpd_pg83->data + vpd_pg83->len;
|
|
d += d[3] + 4) {
|
|
u8 prio = designator_prio(d);
|
|
|
|
if (prio == 0 || cur_id_prio > prio)
|
|
continue;
|
|
|
|
switch (d[1] & 0xf) {
|
|
case 0x1:
|
|
/* T10 Vendor ID */
|
|
if (cur_id_size > d[3])
|
|
break;
|
|
cur_id_prio = prio;
|
|
cur_id_size = d[3];
|
|
if (cur_id_size + 4 > id_len)
|
|
cur_id_size = id_len - 4;
|
|
cur_id_str = d + 4;
|
|
id_size = snprintf(id, id_len, "t10.%*pE",
|
|
cur_id_size, cur_id_str);
|
|
break;
|
|
case 0x2:
|
|
/* EUI-64 */
|
|
cur_id_prio = prio;
|
|
cur_id_size = d[3];
|
|
cur_id_str = d + 4;
|
|
switch (cur_id_size) {
|
|
case 8:
|
|
id_size = snprintf(id, id_len,
|
|
"eui.%8phN",
|
|
cur_id_str);
|
|
break;
|
|
case 12:
|
|
id_size = snprintf(id, id_len,
|
|
"eui.%12phN",
|
|
cur_id_str);
|
|
break;
|
|
case 16:
|
|
id_size = snprintf(id, id_len,
|
|
"eui.%16phN",
|
|
cur_id_str);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case 0x3:
|
|
/* NAA */
|
|
cur_id_prio = prio;
|
|
cur_id_size = d[3];
|
|
cur_id_str = d + 4;
|
|
switch (cur_id_size) {
|
|
case 8:
|
|
id_size = snprintf(id, id_len,
|
|
"naa.%8phN",
|
|
cur_id_str);
|
|
break;
|
|
case 16:
|
|
id_size = snprintf(id, id_len,
|
|
"naa.%16phN",
|
|
cur_id_str);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case 0x8:
|
|
/* SCSI name string */
|
|
if (cur_id_size > d[3])
|
|
break;
|
|
/* Prefer others for truncated descriptor */
|
|
if (d[3] > id_len) {
|
|
prio = 2;
|
|
if (cur_id_prio > prio)
|
|
break;
|
|
}
|
|
cur_id_prio = prio;
|
|
cur_id_size = id_size = d[3];
|
|
cur_id_str = d + 4;
|
|
if (cur_id_size >= id_len)
|
|
cur_id_size = id_len - 1;
|
|
memcpy(id, cur_id_str, cur_id_size);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return id_size;
|
|
}
|
|
EXPORT_SYMBOL(scsi_vpd_lun_id);
|
|
|
|
/*
|
|
* scsi_vpd_tpg_id - return a target port group identifier
|
|
* @sdev: SCSI device
|
|
*
|
|
* Returns the Target Port Group identifier from the information
|
|
* froom VPD page 0x83 of the device.
|
|
*
|
|
* Returns the identifier or error on failure.
|
|
*/
|
|
int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
|
|
{
|
|
const unsigned char *d;
|
|
const struct scsi_vpd *vpd_pg83;
|
|
int group_id = -EAGAIN, rel_port = -1;
|
|
|
|
rcu_read_lock();
|
|
vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
|
|
if (!vpd_pg83) {
|
|
rcu_read_unlock();
|
|
return -ENXIO;
|
|
}
|
|
|
|
d = vpd_pg83->data + 4;
|
|
while (d < vpd_pg83->data + vpd_pg83->len) {
|
|
switch (d[1] & 0xf) {
|
|
case 0x4:
|
|
/* Relative target port */
|
|
rel_port = get_unaligned_be16(&d[6]);
|
|
break;
|
|
case 0x5:
|
|
/* Target port group */
|
|
group_id = get_unaligned_be16(&d[6]);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
d += d[3] + 4;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (group_id >= 0 && rel_id && rel_port != -1)
|
|
*rel_id = rel_port;
|
|
|
|
return group_id;
|
|
}
|
|
EXPORT_SYMBOL(scsi_vpd_tpg_id);
|
|
|
|
/**
|
|
* scsi_build_sense - build sense data for a command
|
|
* @scmd: scsi command for which the sense should be formatted
|
|
* @desc: Sense format (non-zero == descriptor format,
|
|
* 0 == fixed format)
|
|
* @key: Sense key
|
|
* @asc: Additional sense code
|
|
* @ascq: Additional sense code qualifier
|
|
*
|
|
**/
|
|
void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
|
|
{
|
|
scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
|
|
scmd->result = SAM_STAT_CHECK_CONDITION;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scsi_build_sense);
|