mirror of
https://github.com/torvalds/linux.git
synced 2024-11-29 23:51:37 +00:00
63862b5bef
This patch removes the net_random and net_srandom macros and replaces them with direct calls to the prandom ones. As new commits only seem to use prandom_u32 there is no use to keep them around. This change makes it easier to grep for users of prandom_u32. Signed-off-by: Aruna-Hewapathirane <aruna.hewapathirane@gmail.com> Suggested-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
946 lines
22 KiB
C
946 lines
22 KiB
C
/*
|
|
* net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/string.h>
|
|
#include <linux/in.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <net/netlink.h>
|
|
#include <net/pkt_sched.h>
|
|
#include <net/flow_keys.h>
|
|
#include <net/red.h>
|
|
|
|
|
|
/* Stochastic Fairness Queuing algorithm.
|
|
=======================================
|
|
|
|
Source:
|
|
Paul E. McKenney "Stochastic Fairness Queuing",
|
|
IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
|
|
|
|
Paul E. McKenney "Stochastic Fairness Queuing",
|
|
"Interworking: Research and Experience", v.2, 1991, p.113-131.
|
|
|
|
|
|
See also:
|
|
M. Shreedhar and George Varghese "Efficient Fair
|
|
Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
|
|
|
|
|
|
This is not the thing that is usually called (W)FQ nowadays.
|
|
It does not use any timestamp mechanism, but instead
|
|
processes queues in round-robin order.
|
|
|
|
ADVANTAGE:
|
|
|
|
- It is very cheap. Both CPU and memory requirements are minimal.
|
|
|
|
DRAWBACKS:
|
|
|
|
- "Stochastic" -> It is not 100% fair.
|
|
When hash collisions occur, several flows are considered as one.
|
|
|
|
- "Round-robin" -> It introduces larger delays than virtual clock
|
|
based schemes, and should not be used for isolating interactive
|
|
traffic from non-interactive. It means, that this scheduler
|
|
should be used as leaf of CBQ or P3, which put interactive traffic
|
|
to higher priority band.
|
|
|
|
We still need true WFQ for top level CSZ, but using WFQ
|
|
for the best effort traffic is absolutely pointless:
|
|
SFQ is superior for this purpose.
|
|
|
|
IMPLEMENTATION:
|
|
This implementation limits :
|
|
- maximal queue length per flow to 127 packets.
|
|
- max mtu to 2^18-1;
|
|
- max 65408 flows,
|
|
- number of hash buckets to 65536.
|
|
|
|
It is easy to increase these values, but not in flight. */
|
|
|
|
#define SFQ_MAX_DEPTH 127 /* max number of packets per flow */
|
|
#define SFQ_DEFAULT_FLOWS 128
|
|
#define SFQ_MAX_FLOWS (0x10000 - SFQ_MAX_DEPTH - 1) /* max number of flows */
|
|
#define SFQ_EMPTY_SLOT 0xffff
|
|
#define SFQ_DEFAULT_HASH_DIVISOR 1024
|
|
|
|
/* We use 16 bits to store allot, and want to handle packets up to 64K
|
|
* Scale allot by 8 (1<<3) so that no overflow occurs.
|
|
*/
|
|
#define SFQ_ALLOT_SHIFT 3
|
|
#define SFQ_ALLOT_SIZE(X) DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT)
|
|
|
|
/* This type should contain at least SFQ_MAX_DEPTH + 1 + SFQ_MAX_FLOWS values */
|
|
typedef u16 sfq_index;
|
|
|
|
/*
|
|
* We dont use pointers to save space.
|
|
* Small indexes [0 ... SFQ_MAX_FLOWS - 1] are 'pointers' to slots[] array
|
|
* while following values [SFQ_MAX_FLOWS ... SFQ_MAX_FLOWS + SFQ_MAX_DEPTH]
|
|
* are 'pointers' to dep[] array
|
|
*/
|
|
struct sfq_head {
|
|
sfq_index next;
|
|
sfq_index prev;
|
|
};
|
|
|
|
struct sfq_slot {
|
|
struct sk_buff *skblist_next;
|
|
struct sk_buff *skblist_prev;
|
|
sfq_index qlen; /* number of skbs in skblist */
|
|
sfq_index next; /* next slot in sfq RR chain */
|
|
struct sfq_head dep; /* anchor in dep[] chains */
|
|
unsigned short hash; /* hash value (index in ht[]) */
|
|
short allot; /* credit for this slot */
|
|
|
|
unsigned int backlog;
|
|
struct red_vars vars;
|
|
};
|
|
|
|
struct sfq_sched_data {
|
|
/* frequently used fields */
|
|
int limit; /* limit of total number of packets in this qdisc */
|
|
unsigned int divisor; /* number of slots in hash table */
|
|
u8 headdrop;
|
|
u8 maxdepth; /* limit of packets per flow */
|
|
|
|
u32 perturbation;
|
|
u8 cur_depth; /* depth of longest slot */
|
|
u8 flags;
|
|
unsigned short scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */
|
|
struct tcf_proto *filter_list;
|
|
sfq_index *ht; /* Hash table ('divisor' slots) */
|
|
struct sfq_slot *slots; /* Flows table ('maxflows' entries) */
|
|
|
|
struct red_parms *red_parms;
|
|
struct tc_sfqred_stats stats;
|
|
struct sfq_slot *tail; /* current slot in round */
|
|
|
|
struct sfq_head dep[SFQ_MAX_DEPTH + 1];
|
|
/* Linked lists of slots, indexed by depth
|
|
* dep[0] : list of unused flows
|
|
* dep[1] : list of flows with 1 packet
|
|
* dep[X] : list of flows with X packets
|
|
*/
|
|
|
|
unsigned int maxflows; /* number of flows in flows array */
|
|
int perturb_period;
|
|
unsigned int quantum; /* Allotment per round: MUST BE >= MTU */
|
|
struct timer_list perturb_timer;
|
|
};
|
|
|
|
/*
|
|
* sfq_head are either in a sfq_slot or in dep[] array
|
|
*/
|
|
static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val)
|
|
{
|
|
if (val < SFQ_MAX_FLOWS)
|
|
return &q->slots[val].dep;
|
|
return &q->dep[val - SFQ_MAX_FLOWS];
|
|
}
|
|
|
|
/*
|
|
* In order to be able to quickly rehash our queue when timer changes
|
|
* q->perturbation, we store flow_keys in skb->cb[]
|
|
*/
|
|
struct sfq_skb_cb {
|
|
struct flow_keys keys;
|
|
};
|
|
|
|
static inline struct sfq_skb_cb *sfq_skb_cb(const struct sk_buff *skb)
|
|
{
|
|
qdisc_cb_private_validate(skb, sizeof(struct sfq_skb_cb));
|
|
return (struct sfq_skb_cb *)qdisc_skb_cb(skb)->data;
|
|
}
|
|
|
|
static unsigned int sfq_hash(const struct sfq_sched_data *q,
|
|
const struct sk_buff *skb)
|
|
{
|
|
const struct flow_keys *keys = &sfq_skb_cb(skb)->keys;
|
|
unsigned int hash;
|
|
|
|
hash = jhash_3words((__force u32)keys->dst,
|
|
(__force u32)keys->src ^ keys->ip_proto,
|
|
(__force u32)keys->ports, q->perturbation);
|
|
return hash & (q->divisor - 1);
|
|
}
|
|
|
|
static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
|
|
int *qerr)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
struct tcf_result res;
|
|
int result;
|
|
|
|
if (TC_H_MAJ(skb->priority) == sch->handle &&
|
|
TC_H_MIN(skb->priority) > 0 &&
|
|
TC_H_MIN(skb->priority) <= q->divisor)
|
|
return TC_H_MIN(skb->priority);
|
|
|
|
if (!q->filter_list) {
|
|
skb_flow_dissect(skb, &sfq_skb_cb(skb)->keys);
|
|
return sfq_hash(q, skb) + 1;
|
|
}
|
|
|
|
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
|
|
result = tc_classify(skb, q->filter_list, &res);
|
|
if (result >= 0) {
|
|
#ifdef CONFIG_NET_CLS_ACT
|
|
switch (result) {
|
|
case TC_ACT_STOLEN:
|
|
case TC_ACT_QUEUED:
|
|
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
|
|
case TC_ACT_SHOT:
|
|
return 0;
|
|
}
|
|
#endif
|
|
if (TC_H_MIN(res.classid) <= q->divisor)
|
|
return TC_H_MIN(res.classid);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* x : slot number [0 .. SFQ_MAX_FLOWS - 1]
|
|
*/
|
|
static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
|
|
{
|
|
sfq_index p, n;
|
|
struct sfq_slot *slot = &q->slots[x];
|
|
int qlen = slot->qlen;
|
|
|
|
p = qlen + SFQ_MAX_FLOWS;
|
|
n = q->dep[qlen].next;
|
|
|
|
slot->dep.next = n;
|
|
slot->dep.prev = p;
|
|
|
|
q->dep[qlen].next = x; /* sfq_dep_head(q, p)->next = x */
|
|
sfq_dep_head(q, n)->prev = x;
|
|
}
|
|
|
|
#define sfq_unlink(q, x, n, p) \
|
|
do { \
|
|
n = q->slots[x].dep.next; \
|
|
p = q->slots[x].dep.prev; \
|
|
sfq_dep_head(q, p)->next = n; \
|
|
sfq_dep_head(q, n)->prev = p; \
|
|
} while (0)
|
|
|
|
|
|
static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
|
|
{
|
|
sfq_index p, n;
|
|
int d;
|
|
|
|
sfq_unlink(q, x, n, p);
|
|
|
|
d = q->slots[x].qlen--;
|
|
if (n == p && q->cur_depth == d)
|
|
q->cur_depth--;
|
|
sfq_link(q, x);
|
|
}
|
|
|
|
static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
|
|
{
|
|
sfq_index p, n;
|
|
int d;
|
|
|
|
sfq_unlink(q, x, n, p);
|
|
|
|
d = ++q->slots[x].qlen;
|
|
if (q->cur_depth < d)
|
|
q->cur_depth = d;
|
|
sfq_link(q, x);
|
|
}
|
|
|
|
/* helper functions : might be changed when/if skb use a standard list_head */
|
|
|
|
/* remove one skb from tail of slot queue */
|
|
static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot)
|
|
{
|
|
struct sk_buff *skb = slot->skblist_prev;
|
|
|
|
slot->skblist_prev = skb->prev;
|
|
skb->prev->next = (struct sk_buff *)slot;
|
|
skb->next = skb->prev = NULL;
|
|
return skb;
|
|
}
|
|
|
|
/* remove one skb from head of slot queue */
|
|
static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot)
|
|
{
|
|
struct sk_buff *skb = slot->skblist_next;
|
|
|
|
slot->skblist_next = skb->next;
|
|
skb->next->prev = (struct sk_buff *)slot;
|
|
skb->next = skb->prev = NULL;
|
|
return skb;
|
|
}
|
|
|
|
static inline void slot_queue_init(struct sfq_slot *slot)
|
|
{
|
|
memset(slot, 0, sizeof(*slot));
|
|
slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot;
|
|
}
|
|
|
|
/* add skb to slot queue (tail add) */
|
|
static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb)
|
|
{
|
|
skb->prev = slot->skblist_prev;
|
|
skb->next = (struct sk_buff *)slot;
|
|
slot->skblist_prev->next = skb;
|
|
slot->skblist_prev = skb;
|
|
}
|
|
|
|
#define slot_queue_walk(slot, skb) \
|
|
for (skb = slot->skblist_next; \
|
|
skb != (struct sk_buff *)slot; \
|
|
skb = skb->next)
|
|
|
|
static unsigned int sfq_drop(struct Qdisc *sch)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
sfq_index x, d = q->cur_depth;
|
|
struct sk_buff *skb;
|
|
unsigned int len;
|
|
struct sfq_slot *slot;
|
|
|
|
/* Queue is full! Find the longest slot and drop tail packet from it */
|
|
if (d > 1) {
|
|
x = q->dep[d].next;
|
|
slot = &q->slots[x];
|
|
drop:
|
|
skb = q->headdrop ? slot_dequeue_head(slot) : slot_dequeue_tail(slot);
|
|
len = qdisc_pkt_len(skb);
|
|
slot->backlog -= len;
|
|
sfq_dec(q, x);
|
|
kfree_skb(skb);
|
|
sch->q.qlen--;
|
|
sch->qstats.drops++;
|
|
sch->qstats.backlog -= len;
|
|
return len;
|
|
}
|
|
|
|
if (d == 1) {
|
|
/* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
|
|
x = q->tail->next;
|
|
slot = &q->slots[x];
|
|
q->tail->next = slot->next;
|
|
q->ht[slot->hash] = SFQ_EMPTY_SLOT;
|
|
goto drop;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Is ECN parameter configured */
|
|
static int sfq_prob_mark(const struct sfq_sched_data *q)
|
|
{
|
|
return q->flags & TC_RED_ECN;
|
|
}
|
|
|
|
/* Should packets over max threshold just be marked */
|
|
static int sfq_hard_mark(const struct sfq_sched_data *q)
|
|
{
|
|
return (q->flags & (TC_RED_ECN | TC_RED_HARDDROP)) == TC_RED_ECN;
|
|
}
|
|
|
|
static int sfq_headdrop(const struct sfq_sched_data *q)
|
|
{
|
|
return q->headdrop;
|
|
}
|
|
|
|
static int
|
|
sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
unsigned int hash;
|
|
sfq_index x, qlen;
|
|
struct sfq_slot *slot;
|
|
int uninitialized_var(ret);
|
|
struct sk_buff *head;
|
|
int delta;
|
|
|
|
hash = sfq_classify(skb, sch, &ret);
|
|
if (hash == 0) {
|
|
if (ret & __NET_XMIT_BYPASS)
|
|
sch->qstats.drops++;
|
|
kfree_skb(skb);
|
|
return ret;
|
|
}
|
|
hash--;
|
|
|
|
x = q->ht[hash];
|
|
slot = &q->slots[x];
|
|
if (x == SFQ_EMPTY_SLOT) {
|
|
x = q->dep[0].next; /* get a free slot */
|
|
if (x >= SFQ_MAX_FLOWS)
|
|
return qdisc_drop(skb, sch);
|
|
q->ht[hash] = x;
|
|
slot = &q->slots[x];
|
|
slot->hash = hash;
|
|
slot->backlog = 0; /* should already be 0 anyway... */
|
|
red_set_vars(&slot->vars);
|
|
goto enqueue;
|
|
}
|
|
if (q->red_parms) {
|
|
slot->vars.qavg = red_calc_qavg_no_idle_time(q->red_parms,
|
|
&slot->vars,
|
|
slot->backlog);
|
|
switch (red_action(q->red_parms,
|
|
&slot->vars,
|
|
slot->vars.qavg)) {
|
|
case RED_DONT_MARK:
|
|
break;
|
|
|
|
case RED_PROB_MARK:
|
|
sch->qstats.overlimits++;
|
|
if (sfq_prob_mark(q)) {
|
|
/* We know we have at least one packet in queue */
|
|
if (sfq_headdrop(q) &&
|
|
INET_ECN_set_ce(slot->skblist_next)) {
|
|
q->stats.prob_mark_head++;
|
|
break;
|
|
}
|
|
if (INET_ECN_set_ce(skb)) {
|
|
q->stats.prob_mark++;
|
|
break;
|
|
}
|
|
}
|
|
q->stats.prob_drop++;
|
|
goto congestion_drop;
|
|
|
|
case RED_HARD_MARK:
|
|
sch->qstats.overlimits++;
|
|
if (sfq_hard_mark(q)) {
|
|
/* We know we have at least one packet in queue */
|
|
if (sfq_headdrop(q) &&
|
|
INET_ECN_set_ce(slot->skblist_next)) {
|
|
q->stats.forced_mark_head++;
|
|
break;
|
|
}
|
|
if (INET_ECN_set_ce(skb)) {
|
|
q->stats.forced_mark++;
|
|
break;
|
|
}
|
|
}
|
|
q->stats.forced_drop++;
|
|
goto congestion_drop;
|
|
}
|
|
}
|
|
|
|
if (slot->qlen >= q->maxdepth) {
|
|
congestion_drop:
|
|
if (!sfq_headdrop(q))
|
|
return qdisc_drop(skb, sch);
|
|
|
|
/* We know we have at least one packet in queue */
|
|
head = slot_dequeue_head(slot);
|
|
delta = qdisc_pkt_len(head) - qdisc_pkt_len(skb);
|
|
sch->qstats.backlog -= delta;
|
|
slot->backlog -= delta;
|
|
qdisc_drop(head, sch);
|
|
|
|
slot_queue_add(slot, skb);
|
|
return NET_XMIT_CN;
|
|
}
|
|
|
|
enqueue:
|
|
sch->qstats.backlog += qdisc_pkt_len(skb);
|
|
slot->backlog += qdisc_pkt_len(skb);
|
|
slot_queue_add(slot, skb);
|
|
sfq_inc(q, x);
|
|
if (slot->qlen == 1) { /* The flow is new */
|
|
if (q->tail == NULL) { /* It is the first flow */
|
|
slot->next = x;
|
|
} else {
|
|
slot->next = q->tail->next;
|
|
q->tail->next = x;
|
|
}
|
|
/* We put this flow at the end of our flow list.
|
|
* This might sound unfair for a new flow to wait after old ones,
|
|
* but we could endup servicing new flows only, and freeze old ones.
|
|
*/
|
|
q->tail = slot;
|
|
/* We could use a bigger initial quantum for new flows */
|
|
slot->allot = q->scaled_quantum;
|
|
}
|
|
if (++sch->q.qlen <= q->limit)
|
|
return NET_XMIT_SUCCESS;
|
|
|
|
qlen = slot->qlen;
|
|
sfq_drop(sch);
|
|
/* Return Congestion Notification only if we dropped a packet
|
|
* from this flow.
|
|
*/
|
|
if (qlen != slot->qlen)
|
|
return NET_XMIT_CN;
|
|
|
|
/* As we dropped a packet, better let upper stack know this */
|
|
qdisc_tree_decrease_qlen(sch, 1);
|
|
return NET_XMIT_SUCCESS;
|
|
}
|
|
|
|
static struct sk_buff *
|
|
sfq_dequeue(struct Qdisc *sch)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
struct sk_buff *skb;
|
|
sfq_index a, next_a;
|
|
struct sfq_slot *slot;
|
|
|
|
/* No active slots */
|
|
if (q->tail == NULL)
|
|
return NULL;
|
|
|
|
next_slot:
|
|
a = q->tail->next;
|
|
slot = &q->slots[a];
|
|
if (slot->allot <= 0) {
|
|
q->tail = slot;
|
|
slot->allot += q->scaled_quantum;
|
|
goto next_slot;
|
|
}
|
|
skb = slot_dequeue_head(slot);
|
|
sfq_dec(q, a);
|
|
qdisc_bstats_update(sch, skb);
|
|
sch->q.qlen--;
|
|
sch->qstats.backlog -= qdisc_pkt_len(skb);
|
|
slot->backlog -= qdisc_pkt_len(skb);
|
|
/* Is the slot empty? */
|
|
if (slot->qlen == 0) {
|
|
q->ht[slot->hash] = SFQ_EMPTY_SLOT;
|
|
next_a = slot->next;
|
|
if (a == next_a) {
|
|
q->tail = NULL; /* no more active slots */
|
|
return skb;
|
|
}
|
|
q->tail->next = next_a;
|
|
} else {
|
|
slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb));
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
static void
|
|
sfq_reset(struct Qdisc *sch)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = sfq_dequeue(sch)) != NULL)
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
/*
|
|
* When q->perturbation is changed, we rehash all queued skbs
|
|
* to avoid OOO (Out Of Order) effects.
|
|
* We dont use sfq_dequeue()/sfq_enqueue() because we dont want to change
|
|
* counters.
|
|
*/
|
|
static void sfq_rehash(struct Qdisc *sch)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
struct sk_buff *skb;
|
|
int i;
|
|
struct sfq_slot *slot;
|
|
struct sk_buff_head list;
|
|
int dropped = 0;
|
|
|
|
__skb_queue_head_init(&list);
|
|
|
|
for (i = 0; i < q->maxflows; i++) {
|
|
slot = &q->slots[i];
|
|
if (!slot->qlen)
|
|
continue;
|
|
while (slot->qlen) {
|
|
skb = slot_dequeue_head(slot);
|
|
sfq_dec(q, i);
|
|
__skb_queue_tail(&list, skb);
|
|
}
|
|
slot->backlog = 0;
|
|
red_set_vars(&slot->vars);
|
|
q->ht[slot->hash] = SFQ_EMPTY_SLOT;
|
|
}
|
|
q->tail = NULL;
|
|
|
|
while ((skb = __skb_dequeue(&list)) != NULL) {
|
|
unsigned int hash = sfq_hash(q, skb);
|
|
sfq_index x = q->ht[hash];
|
|
|
|
slot = &q->slots[x];
|
|
if (x == SFQ_EMPTY_SLOT) {
|
|
x = q->dep[0].next; /* get a free slot */
|
|
if (x >= SFQ_MAX_FLOWS) {
|
|
drop: sch->qstats.backlog -= qdisc_pkt_len(skb);
|
|
kfree_skb(skb);
|
|
dropped++;
|
|
continue;
|
|
}
|
|
q->ht[hash] = x;
|
|
slot = &q->slots[x];
|
|
slot->hash = hash;
|
|
}
|
|
if (slot->qlen >= q->maxdepth)
|
|
goto drop;
|
|
slot_queue_add(slot, skb);
|
|
if (q->red_parms)
|
|
slot->vars.qavg = red_calc_qavg(q->red_parms,
|
|
&slot->vars,
|
|
slot->backlog);
|
|
slot->backlog += qdisc_pkt_len(skb);
|
|
sfq_inc(q, x);
|
|
if (slot->qlen == 1) { /* The flow is new */
|
|
if (q->tail == NULL) { /* It is the first flow */
|
|
slot->next = x;
|
|
} else {
|
|
slot->next = q->tail->next;
|
|
q->tail->next = x;
|
|
}
|
|
q->tail = slot;
|
|
slot->allot = q->scaled_quantum;
|
|
}
|
|
}
|
|
sch->q.qlen -= dropped;
|
|
qdisc_tree_decrease_qlen(sch, dropped);
|
|
}
|
|
|
|
static void sfq_perturbation(unsigned long arg)
|
|
{
|
|
struct Qdisc *sch = (struct Qdisc *)arg;
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));
|
|
|
|
spin_lock(root_lock);
|
|
q->perturbation = prandom_u32();
|
|
if (!q->filter_list && q->tail)
|
|
sfq_rehash(sch);
|
|
spin_unlock(root_lock);
|
|
|
|
if (q->perturb_period)
|
|
mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
|
|
}
|
|
|
|
static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
struct tc_sfq_qopt *ctl = nla_data(opt);
|
|
struct tc_sfq_qopt_v1 *ctl_v1 = NULL;
|
|
unsigned int qlen;
|
|
struct red_parms *p = NULL;
|
|
|
|
if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
|
|
return -EINVAL;
|
|
if (opt->nla_len >= nla_attr_size(sizeof(*ctl_v1)))
|
|
ctl_v1 = nla_data(opt);
|
|
if (ctl->divisor &&
|
|
(!is_power_of_2(ctl->divisor) || ctl->divisor > 65536))
|
|
return -EINVAL;
|
|
if (ctl_v1 && ctl_v1->qth_min) {
|
|
p = kmalloc(sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
}
|
|
sch_tree_lock(sch);
|
|
if (ctl->quantum) {
|
|
q->quantum = ctl->quantum;
|
|
q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
|
|
}
|
|
q->perturb_period = ctl->perturb_period * HZ;
|
|
if (ctl->flows)
|
|
q->maxflows = min_t(u32, ctl->flows, SFQ_MAX_FLOWS);
|
|
if (ctl->divisor) {
|
|
q->divisor = ctl->divisor;
|
|
q->maxflows = min_t(u32, q->maxflows, q->divisor);
|
|
}
|
|
if (ctl_v1) {
|
|
if (ctl_v1->depth)
|
|
q->maxdepth = min_t(u32, ctl_v1->depth, SFQ_MAX_DEPTH);
|
|
if (p) {
|
|
swap(q->red_parms, p);
|
|
red_set_parms(q->red_parms,
|
|
ctl_v1->qth_min, ctl_v1->qth_max,
|
|
ctl_v1->Wlog,
|
|
ctl_v1->Plog, ctl_v1->Scell_log,
|
|
NULL,
|
|
ctl_v1->max_P);
|
|
}
|
|
q->flags = ctl_v1->flags;
|
|
q->headdrop = ctl_v1->headdrop;
|
|
}
|
|
if (ctl->limit) {
|
|
q->limit = min_t(u32, ctl->limit, q->maxdepth * q->maxflows);
|
|
q->maxflows = min_t(u32, q->maxflows, q->limit);
|
|
}
|
|
|
|
qlen = sch->q.qlen;
|
|
while (sch->q.qlen > q->limit)
|
|
sfq_drop(sch);
|
|
qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
|
|
|
|
del_timer(&q->perturb_timer);
|
|
if (q->perturb_period) {
|
|
mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
|
|
q->perturbation = prandom_u32();
|
|
}
|
|
sch_tree_unlock(sch);
|
|
kfree(p);
|
|
return 0;
|
|
}
|
|
|
|
static void *sfq_alloc(size_t sz)
|
|
{
|
|
void *ptr = kmalloc(sz, GFP_KERNEL | __GFP_NOWARN);
|
|
|
|
if (!ptr)
|
|
ptr = vmalloc(sz);
|
|
return ptr;
|
|
}
|
|
|
|
static void sfq_free(void *addr)
|
|
{
|
|
if (addr) {
|
|
if (is_vmalloc_addr(addr))
|
|
vfree(addr);
|
|
else
|
|
kfree(addr);
|
|
}
|
|
}
|
|
|
|
static void sfq_destroy(struct Qdisc *sch)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
|
|
tcf_destroy_chain(&q->filter_list);
|
|
q->perturb_period = 0;
|
|
del_timer_sync(&q->perturb_timer);
|
|
sfq_free(q->ht);
|
|
sfq_free(q->slots);
|
|
kfree(q->red_parms);
|
|
}
|
|
|
|
static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
int i;
|
|
|
|
q->perturb_timer.function = sfq_perturbation;
|
|
q->perturb_timer.data = (unsigned long)sch;
|
|
init_timer_deferrable(&q->perturb_timer);
|
|
|
|
for (i = 0; i < SFQ_MAX_DEPTH + 1; i++) {
|
|
q->dep[i].next = i + SFQ_MAX_FLOWS;
|
|
q->dep[i].prev = i + SFQ_MAX_FLOWS;
|
|
}
|
|
|
|
q->limit = SFQ_MAX_DEPTH;
|
|
q->maxdepth = SFQ_MAX_DEPTH;
|
|
q->cur_depth = 0;
|
|
q->tail = NULL;
|
|
q->divisor = SFQ_DEFAULT_HASH_DIVISOR;
|
|
q->maxflows = SFQ_DEFAULT_FLOWS;
|
|
q->quantum = psched_mtu(qdisc_dev(sch));
|
|
q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
|
|
q->perturb_period = 0;
|
|
q->perturbation = prandom_u32();
|
|
|
|
if (opt) {
|
|
int err = sfq_change(sch, opt);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
q->ht = sfq_alloc(sizeof(q->ht[0]) * q->divisor);
|
|
q->slots = sfq_alloc(sizeof(q->slots[0]) * q->maxflows);
|
|
if (!q->ht || !q->slots) {
|
|
sfq_destroy(sch);
|
|
return -ENOMEM;
|
|
}
|
|
for (i = 0; i < q->divisor; i++)
|
|
q->ht[i] = SFQ_EMPTY_SLOT;
|
|
|
|
for (i = 0; i < q->maxflows; i++) {
|
|
slot_queue_init(&q->slots[i]);
|
|
sfq_link(q, i);
|
|
}
|
|
if (q->limit >= 1)
|
|
sch->flags |= TCQ_F_CAN_BYPASS;
|
|
else
|
|
sch->flags &= ~TCQ_F_CAN_BYPASS;
|
|
return 0;
|
|
}
|
|
|
|
static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
unsigned char *b = skb_tail_pointer(skb);
|
|
struct tc_sfq_qopt_v1 opt;
|
|
struct red_parms *p = q->red_parms;
|
|
|
|
memset(&opt, 0, sizeof(opt));
|
|
opt.v0.quantum = q->quantum;
|
|
opt.v0.perturb_period = q->perturb_period / HZ;
|
|
opt.v0.limit = q->limit;
|
|
opt.v0.divisor = q->divisor;
|
|
opt.v0.flows = q->maxflows;
|
|
opt.depth = q->maxdepth;
|
|
opt.headdrop = q->headdrop;
|
|
|
|
if (p) {
|
|
opt.qth_min = p->qth_min >> p->Wlog;
|
|
opt.qth_max = p->qth_max >> p->Wlog;
|
|
opt.Wlog = p->Wlog;
|
|
opt.Plog = p->Plog;
|
|
opt.Scell_log = p->Scell_log;
|
|
opt.max_P = p->max_P;
|
|
}
|
|
memcpy(&opt.stats, &q->stats, sizeof(opt.stats));
|
|
opt.flags = q->flags;
|
|
|
|
if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
|
|
goto nla_put_failure;
|
|
|
|
return skb->len;
|
|
|
|
nla_put_failure:
|
|
nlmsg_trim(skb, b);
|
|
return -1;
|
|
}
|
|
|
|
static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static unsigned long sfq_get(struct Qdisc *sch, u32 classid)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent,
|
|
u32 classid)
|
|
{
|
|
/* we cannot bypass queue discipline anymore */
|
|
sch->flags &= ~TCQ_F_CAN_BYPASS;
|
|
return 0;
|
|
}
|
|
|
|
static void sfq_put(struct Qdisc *q, unsigned long cl)
|
|
{
|
|
}
|
|
|
|
static struct tcf_proto **sfq_find_tcf(struct Qdisc *sch, unsigned long cl)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
|
|
if (cl)
|
|
return NULL;
|
|
return &q->filter_list;
|
|
}
|
|
|
|
static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
|
|
struct sk_buff *skb, struct tcmsg *tcm)
|
|
{
|
|
tcm->tcm_handle |= TC_H_MIN(cl);
|
|
return 0;
|
|
}
|
|
|
|
static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
|
|
struct gnet_dump *d)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
sfq_index idx = q->ht[cl - 1];
|
|
struct gnet_stats_queue qs = { 0 };
|
|
struct tc_sfq_xstats xstats = { 0 };
|
|
|
|
if (idx != SFQ_EMPTY_SLOT) {
|
|
const struct sfq_slot *slot = &q->slots[idx];
|
|
|
|
xstats.allot = slot->allot << SFQ_ALLOT_SHIFT;
|
|
qs.qlen = slot->qlen;
|
|
qs.backlog = slot->backlog;
|
|
}
|
|
if (gnet_stats_copy_queue(d, &qs) < 0)
|
|
return -1;
|
|
return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
|
|
}
|
|
|
|
static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
unsigned int i;
|
|
|
|
if (arg->stop)
|
|
return;
|
|
|
|
for (i = 0; i < q->divisor; i++) {
|
|
if (q->ht[i] == SFQ_EMPTY_SLOT ||
|
|
arg->count < arg->skip) {
|
|
arg->count++;
|
|
continue;
|
|
}
|
|
if (arg->fn(sch, i + 1, arg) < 0) {
|
|
arg->stop = 1;
|
|
break;
|
|
}
|
|
arg->count++;
|
|
}
|
|
}
|
|
|
|
static const struct Qdisc_class_ops sfq_class_ops = {
|
|
.leaf = sfq_leaf,
|
|
.get = sfq_get,
|
|
.put = sfq_put,
|
|
.tcf_chain = sfq_find_tcf,
|
|
.bind_tcf = sfq_bind,
|
|
.unbind_tcf = sfq_put,
|
|
.dump = sfq_dump_class,
|
|
.dump_stats = sfq_dump_class_stats,
|
|
.walk = sfq_walk,
|
|
};
|
|
|
|
static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
|
|
.cl_ops = &sfq_class_ops,
|
|
.id = "sfq",
|
|
.priv_size = sizeof(struct sfq_sched_data),
|
|
.enqueue = sfq_enqueue,
|
|
.dequeue = sfq_dequeue,
|
|
.peek = qdisc_peek_dequeued,
|
|
.drop = sfq_drop,
|
|
.init = sfq_init,
|
|
.reset = sfq_reset,
|
|
.destroy = sfq_destroy,
|
|
.change = NULL,
|
|
.dump = sfq_dump,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init sfq_module_init(void)
|
|
{
|
|
return register_qdisc(&sfq_qdisc_ops);
|
|
}
|
|
static void __exit sfq_module_exit(void)
|
|
{
|
|
unregister_qdisc(&sfq_qdisc_ops);
|
|
}
|
|
module_init(sfq_module_init)
|
|
module_exit(sfq_module_exit)
|
|
MODULE_LICENSE("GPL");
|