mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 12:42:02 +00:00
1146f7e2dc
Clang's Control Flow Integrity (CFI) is a security mechanism that can help prevent JOP chains, deployed extensively in downstream kernels used in Android. Its deployment is hindered by mismatches in function signatures. For this case, we make callbacks match their intended function signature, and cast parameters within them rather than casting the callback when passed as a parameter. When running `mount -t ntfs ...` we observe the following trace: Call trace: __cfi_check_fail+0x1c/0x24 name_to_dev_t+0x0/0x404 iget5_locked+0x594/0x5e8 ntfs_fill_super+0xbfc/0x43ec mount_bdev+0x30c/0x3cc ntfs_mount+0x18/0x24 mount_fs+0x1b0/0x380 vfs_kern_mount+0x90/0x398 do_mount+0x5d8/0x1a10 SyS_mount+0x108/0x144 el0_svc_naked+0x34/0x38 Signed-off-by: Luca Stefani <luca.stefani.ge1@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: freak07 <michalechner92@googlemail.com> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Nathan Chancellor <natechancellor@gmail.com> Acked-by: Anton Altaparmakov <anton@tuxera.com> Link: http://lkml.kernel.org/r/20200718112513.533800-1-luca.stefani.ge1@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
3078 lines
95 KiB
C
3078 lines
95 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/**
|
|
* inode.c - NTFS kernel inode handling.
|
|
*
|
|
* Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
|
|
*/
|
|
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/quotaops.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/log2.h>
|
|
|
|
#include "aops.h"
|
|
#include "attrib.h"
|
|
#include "bitmap.h"
|
|
#include "dir.h"
|
|
#include "debug.h"
|
|
#include "inode.h"
|
|
#include "lcnalloc.h"
|
|
#include "malloc.h"
|
|
#include "mft.h"
|
|
#include "time.h"
|
|
#include "ntfs.h"
|
|
|
|
/**
|
|
* ntfs_test_inode - compare two (possibly fake) inodes for equality
|
|
* @vi: vfs inode which to test
|
|
* @data: data which is being tested with
|
|
*
|
|
* Compare the ntfs attribute embedded in the ntfs specific part of the vfs
|
|
* inode @vi for equality with the ntfs attribute @data.
|
|
*
|
|
* If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
|
|
* @na->name and @na->name_len are then ignored.
|
|
*
|
|
* Return 1 if the attributes match and 0 if not.
|
|
*
|
|
* NOTE: This function runs with the inode_hash_lock spin lock held so it is not
|
|
* allowed to sleep.
|
|
*/
|
|
int ntfs_test_inode(struct inode *vi, void *data)
|
|
{
|
|
ntfs_attr *na = (ntfs_attr *)data;
|
|
ntfs_inode *ni;
|
|
|
|
if (vi->i_ino != na->mft_no)
|
|
return 0;
|
|
ni = NTFS_I(vi);
|
|
/* If !NInoAttr(ni), @vi is a normal file or directory inode. */
|
|
if (likely(!NInoAttr(ni))) {
|
|
/* If not looking for a normal inode this is a mismatch. */
|
|
if (unlikely(na->type != AT_UNUSED))
|
|
return 0;
|
|
} else {
|
|
/* A fake inode describing an attribute. */
|
|
if (ni->type != na->type)
|
|
return 0;
|
|
if (ni->name_len != na->name_len)
|
|
return 0;
|
|
if (na->name_len && memcmp(ni->name, na->name,
|
|
na->name_len * sizeof(ntfschar)))
|
|
return 0;
|
|
}
|
|
/* Match! */
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ntfs_init_locked_inode - initialize an inode
|
|
* @vi: vfs inode to initialize
|
|
* @data: data which to initialize @vi to
|
|
*
|
|
* Initialize the vfs inode @vi with the values from the ntfs attribute @data in
|
|
* order to enable ntfs_test_inode() to do its work.
|
|
*
|
|
* If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
|
|
* In that case, @na->name and @na->name_len should be set to NULL and 0,
|
|
* respectively. Although that is not strictly necessary as
|
|
* ntfs_read_locked_inode() will fill them in later.
|
|
*
|
|
* Return 0 on success and -errno on error.
|
|
*
|
|
* NOTE: This function runs with the inode->i_lock spin lock held so it is not
|
|
* allowed to sleep. (Hence the GFP_ATOMIC allocation.)
|
|
*/
|
|
static int ntfs_init_locked_inode(struct inode *vi, void *data)
|
|
{
|
|
ntfs_attr *na = (ntfs_attr *)data;
|
|
ntfs_inode *ni = NTFS_I(vi);
|
|
|
|
vi->i_ino = na->mft_no;
|
|
|
|
ni->type = na->type;
|
|
if (na->type == AT_INDEX_ALLOCATION)
|
|
NInoSetMstProtected(ni);
|
|
|
|
ni->name = na->name;
|
|
ni->name_len = na->name_len;
|
|
|
|
/* If initializing a normal inode, we are done. */
|
|
if (likely(na->type == AT_UNUSED)) {
|
|
BUG_ON(na->name);
|
|
BUG_ON(na->name_len);
|
|
return 0;
|
|
}
|
|
|
|
/* It is a fake inode. */
|
|
NInoSetAttr(ni);
|
|
|
|
/*
|
|
* We have I30 global constant as an optimization as it is the name
|
|
* in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
|
|
* allocation but that is ok. And most attributes are unnamed anyway,
|
|
* thus the fraction of named attributes with name != I30 is actually
|
|
* absolutely tiny.
|
|
*/
|
|
if (na->name_len && na->name != I30) {
|
|
unsigned int i;
|
|
|
|
BUG_ON(!na->name);
|
|
i = na->name_len * sizeof(ntfschar);
|
|
ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
|
|
if (!ni->name)
|
|
return -ENOMEM;
|
|
memcpy(ni->name, na->name, i);
|
|
ni->name[na->name_len] = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ntfs_read_locked_inode(struct inode *vi);
|
|
static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
|
|
static int ntfs_read_locked_index_inode(struct inode *base_vi,
|
|
struct inode *vi);
|
|
|
|
/**
|
|
* ntfs_iget - obtain a struct inode corresponding to a specific normal inode
|
|
* @sb: super block of mounted volume
|
|
* @mft_no: mft record number / inode number to obtain
|
|
*
|
|
* Obtain the struct inode corresponding to a specific normal inode (i.e. a
|
|
* file or directory).
|
|
*
|
|
* If the inode is in the cache, it is just returned with an increased
|
|
* reference count. Otherwise, a new struct inode is allocated and initialized,
|
|
* and finally ntfs_read_locked_inode() is called to read in the inode and
|
|
* fill in the remainder of the inode structure.
|
|
*
|
|
* Return the struct inode on success. Check the return value with IS_ERR() and
|
|
* if true, the function failed and the error code is obtained from PTR_ERR().
|
|
*/
|
|
struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
|
|
{
|
|
struct inode *vi;
|
|
int err;
|
|
ntfs_attr na;
|
|
|
|
na.mft_no = mft_no;
|
|
na.type = AT_UNUSED;
|
|
na.name = NULL;
|
|
na.name_len = 0;
|
|
|
|
vi = iget5_locked(sb, mft_no, ntfs_test_inode,
|
|
ntfs_init_locked_inode, &na);
|
|
if (unlikely(!vi))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = 0;
|
|
|
|
/* If this is a freshly allocated inode, need to read it now. */
|
|
if (vi->i_state & I_NEW) {
|
|
err = ntfs_read_locked_inode(vi);
|
|
unlock_new_inode(vi);
|
|
}
|
|
/*
|
|
* There is no point in keeping bad inodes around if the failure was
|
|
* due to ENOMEM. We want to be able to retry again later.
|
|
*/
|
|
if (unlikely(err == -ENOMEM)) {
|
|
iput(vi);
|
|
vi = ERR_PTR(err);
|
|
}
|
|
return vi;
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_iget - obtain a struct inode corresponding to an attribute
|
|
* @base_vi: vfs base inode containing the attribute
|
|
* @type: attribute type
|
|
* @name: Unicode name of the attribute (NULL if unnamed)
|
|
* @name_len: length of @name in Unicode characters (0 if unnamed)
|
|
*
|
|
* Obtain the (fake) struct inode corresponding to the attribute specified by
|
|
* @type, @name, and @name_len, which is present in the base mft record
|
|
* specified by the vfs inode @base_vi.
|
|
*
|
|
* If the attribute inode is in the cache, it is just returned with an
|
|
* increased reference count. Otherwise, a new struct inode is allocated and
|
|
* initialized, and finally ntfs_read_locked_attr_inode() is called to read the
|
|
* attribute and fill in the inode structure.
|
|
*
|
|
* Note, for index allocation attributes, you need to use ntfs_index_iget()
|
|
* instead of ntfs_attr_iget() as working with indices is a lot more complex.
|
|
*
|
|
* Return the struct inode of the attribute inode on success. Check the return
|
|
* value with IS_ERR() and if true, the function failed and the error code is
|
|
* obtained from PTR_ERR().
|
|
*/
|
|
struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
|
|
ntfschar *name, u32 name_len)
|
|
{
|
|
struct inode *vi;
|
|
int err;
|
|
ntfs_attr na;
|
|
|
|
/* Make sure no one calls ntfs_attr_iget() for indices. */
|
|
BUG_ON(type == AT_INDEX_ALLOCATION);
|
|
|
|
na.mft_no = base_vi->i_ino;
|
|
na.type = type;
|
|
na.name = name;
|
|
na.name_len = name_len;
|
|
|
|
vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
|
|
ntfs_init_locked_inode, &na);
|
|
if (unlikely(!vi))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = 0;
|
|
|
|
/* If this is a freshly allocated inode, need to read it now. */
|
|
if (vi->i_state & I_NEW) {
|
|
err = ntfs_read_locked_attr_inode(base_vi, vi);
|
|
unlock_new_inode(vi);
|
|
}
|
|
/*
|
|
* There is no point in keeping bad attribute inodes around. This also
|
|
* simplifies things in that we never need to check for bad attribute
|
|
* inodes elsewhere.
|
|
*/
|
|
if (unlikely(err)) {
|
|
iput(vi);
|
|
vi = ERR_PTR(err);
|
|
}
|
|
return vi;
|
|
}
|
|
|
|
/**
|
|
* ntfs_index_iget - obtain a struct inode corresponding to an index
|
|
* @base_vi: vfs base inode containing the index related attributes
|
|
* @name: Unicode name of the index
|
|
* @name_len: length of @name in Unicode characters
|
|
*
|
|
* Obtain the (fake) struct inode corresponding to the index specified by @name
|
|
* and @name_len, which is present in the base mft record specified by the vfs
|
|
* inode @base_vi.
|
|
*
|
|
* If the index inode is in the cache, it is just returned with an increased
|
|
* reference count. Otherwise, a new struct inode is allocated and
|
|
* initialized, and finally ntfs_read_locked_index_inode() is called to read
|
|
* the index related attributes and fill in the inode structure.
|
|
*
|
|
* Return the struct inode of the index inode on success. Check the return
|
|
* value with IS_ERR() and if true, the function failed and the error code is
|
|
* obtained from PTR_ERR().
|
|
*/
|
|
struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
|
|
u32 name_len)
|
|
{
|
|
struct inode *vi;
|
|
int err;
|
|
ntfs_attr na;
|
|
|
|
na.mft_no = base_vi->i_ino;
|
|
na.type = AT_INDEX_ALLOCATION;
|
|
na.name = name;
|
|
na.name_len = name_len;
|
|
|
|
vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
|
|
ntfs_init_locked_inode, &na);
|
|
if (unlikely(!vi))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = 0;
|
|
|
|
/* If this is a freshly allocated inode, need to read it now. */
|
|
if (vi->i_state & I_NEW) {
|
|
err = ntfs_read_locked_index_inode(base_vi, vi);
|
|
unlock_new_inode(vi);
|
|
}
|
|
/*
|
|
* There is no point in keeping bad index inodes around. This also
|
|
* simplifies things in that we never need to check for bad index
|
|
* inodes elsewhere.
|
|
*/
|
|
if (unlikely(err)) {
|
|
iput(vi);
|
|
vi = ERR_PTR(err);
|
|
}
|
|
return vi;
|
|
}
|
|
|
|
struct inode *ntfs_alloc_big_inode(struct super_block *sb)
|
|
{
|
|
ntfs_inode *ni;
|
|
|
|
ntfs_debug("Entering.");
|
|
ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
|
|
if (likely(ni != NULL)) {
|
|
ni->state = 0;
|
|
return VFS_I(ni);
|
|
}
|
|
ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
|
|
return NULL;
|
|
}
|
|
|
|
void ntfs_free_big_inode(struct inode *inode)
|
|
{
|
|
kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
|
|
}
|
|
|
|
static inline ntfs_inode *ntfs_alloc_extent_inode(void)
|
|
{
|
|
ntfs_inode *ni;
|
|
|
|
ntfs_debug("Entering.");
|
|
ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
|
|
if (likely(ni != NULL)) {
|
|
ni->state = 0;
|
|
return ni;
|
|
}
|
|
ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
|
|
return NULL;
|
|
}
|
|
|
|
static void ntfs_destroy_extent_inode(ntfs_inode *ni)
|
|
{
|
|
ntfs_debug("Entering.");
|
|
BUG_ON(ni->page);
|
|
if (!atomic_dec_and_test(&ni->count))
|
|
BUG();
|
|
kmem_cache_free(ntfs_inode_cache, ni);
|
|
}
|
|
|
|
/*
|
|
* The attribute runlist lock has separate locking rules from the
|
|
* normal runlist lock, so split the two lock-classes:
|
|
*/
|
|
static struct lock_class_key attr_list_rl_lock_class;
|
|
|
|
/**
|
|
* __ntfs_init_inode - initialize ntfs specific part of an inode
|
|
* @sb: super block of mounted volume
|
|
* @ni: freshly allocated ntfs inode which to initialize
|
|
*
|
|
* Initialize an ntfs inode to defaults.
|
|
*
|
|
* NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
|
|
* untouched. Make sure to initialize them elsewhere.
|
|
*
|
|
* Return zero on success and -ENOMEM on error.
|
|
*/
|
|
void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
|
|
{
|
|
ntfs_debug("Entering.");
|
|
rwlock_init(&ni->size_lock);
|
|
ni->initialized_size = ni->allocated_size = 0;
|
|
ni->seq_no = 0;
|
|
atomic_set(&ni->count, 1);
|
|
ni->vol = NTFS_SB(sb);
|
|
ntfs_init_runlist(&ni->runlist);
|
|
mutex_init(&ni->mrec_lock);
|
|
ni->page = NULL;
|
|
ni->page_ofs = 0;
|
|
ni->attr_list_size = 0;
|
|
ni->attr_list = NULL;
|
|
ntfs_init_runlist(&ni->attr_list_rl);
|
|
lockdep_set_class(&ni->attr_list_rl.lock,
|
|
&attr_list_rl_lock_class);
|
|
ni->itype.index.block_size = 0;
|
|
ni->itype.index.vcn_size = 0;
|
|
ni->itype.index.collation_rule = 0;
|
|
ni->itype.index.block_size_bits = 0;
|
|
ni->itype.index.vcn_size_bits = 0;
|
|
mutex_init(&ni->extent_lock);
|
|
ni->nr_extents = 0;
|
|
ni->ext.base_ntfs_ino = NULL;
|
|
}
|
|
|
|
/*
|
|
* Extent inodes get MFT-mapped in a nested way, while the base inode
|
|
* is still mapped. Teach this nesting to the lock validator by creating
|
|
* a separate class for nested inode's mrec_lock's:
|
|
*/
|
|
static struct lock_class_key extent_inode_mrec_lock_key;
|
|
|
|
inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
|
|
unsigned long mft_no)
|
|
{
|
|
ntfs_inode *ni = ntfs_alloc_extent_inode();
|
|
|
|
ntfs_debug("Entering.");
|
|
if (likely(ni != NULL)) {
|
|
__ntfs_init_inode(sb, ni);
|
|
lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
|
|
ni->mft_no = mft_no;
|
|
ni->type = AT_UNUSED;
|
|
ni->name = NULL;
|
|
ni->name_len = 0;
|
|
}
|
|
return ni;
|
|
}
|
|
|
|
/**
|
|
* ntfs_is_extended_system_file - check if a file is in the $Extend directory
|
|
* @ctx: initialized attribute search context
|
|
*
|
|
* Search all file name attributes in the inode described by the attribute
|
|
* search context @ctx and check if any of the names are in the $Extend system
|
|
* directory.
|
|
*
|
|
* Return values:
|
|
* 1: file is in $Extend directory
|
|
* 0: file is not in $Extend directory
|
|
* -errno: failed to determine if the file is in the $Extend directory
|
|
*/
|
|
static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
|
|
{
|
|
int nr_links, err;
|
|
|
|
/* Restart search. */
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
|
|
/* Get number of hard links. */
|
|
nr_links = le16_to_cpu(ctx->mrec->link_count);
|
|
|
|
/* Loop through all hard links. */
|
|
while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
|
|
ctx))) {
|
|
FILE_NAME_ATTR *file_name_attr;
|
|
ATTR_RECORD *attr = ctx->attr;
|
|
u8 *p, *p2;
|
|
|
|
nr_links--;
|
|
/*
|
|
* Maximum sanity checking as we are called on an inode that
|
|
* we suspect might be corrupt.
|
|
*/
|
|
p = (u8*)attr + le32_to_cpu(attr->length);
|
|
if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
|
|
le32_to_cpu(ctx->mrec->bytes_in_use)) {
|
|
err_corrupt_attr:
|
|
ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
|
|
"attribute. You should run chkdsk.");
|
|
return -EIO;
|
|
}
|
|
if (attr->non_resident) {
|
|
ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
|
|
"name. You should run chkdsk.");
|
|
return -EIO;
|
|
}
|
|
if (attr->flags) {
|
|
ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
|
|
"invalid flags. You should run "
|
|
"chkdsk.");
|
|
return -EIO;
|
|
}
|
|
if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
|
|
ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
|
|
"name. You should run chkdsk.");
|
|
return -EIO;
|
|
}
|
|
file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
|
|
le16_to_cpu(attr->data.resident.value_offset));
|
|
p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
|
|
if (p2 < (u8*)attr || p2 > p)
|
|
goto err_corrupt_attr;
|
|
/* This attribute is ok, but is it in the $Extend directory? */
|
|
if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
|
|
return 1; /* YES, it's an extended system file. */
|
|
}
|
|
if (unlikely(err != -ENOENT))
|
|
return err;
|
|
if (unlikely(nr_links)) {
|
|
ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
|
|
"doesn't match number of name attributes. You "
|
|
"should run chkdsk.");
|
|
return -EIO;
|
|
}
|
|
return 0; /* NO, it is not an extended system file. */
|
|
}
|
|
|
|
/**
|
|
* ntfs_read_locked_inode - read an inode from its device
|
|
* @vi: inode to read
|
|
*
|
|
* ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
|
|
* described by @vi into memory from the device.
|
|
*
|
|
* The only fields in @vi that we need to/can look at when the function is
|
|
* called are i_sb, pointing to the mounted device's super block, and i_ino,
|
|
* the number of the inode to load.
|
|
*
|
|
* ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
|
|
* for reading and sets up the necessary @vi fields as well as initializing
|
|
* the ntfs inode.
|
|
*
|
|
* Q: What locks are held when the function is called?
|
|
* A: i_state has I_NEW set, hence the inode is locked, also
|
|
* i_count is set to 1, so it is not going to go away
|
|
* i_flags is set to 0 and we have no business touching it. Only an ioctl()
|
|
* is allowed to write to them. We should of course be honouring them but
|
|
* we need to do that using the IS_* macros defined in include/linux/fs.h.
|
|
* In any case ntfs_read_locked_inode() has nothing to do with i_flags.
|
|
*
|
|
* Return 0 on success and -errno on error. In the error case, the inode will
|
|
* have had make_bad_inode() executed on it.
|
|
*/
|
|
static int ntfs_read_locked_inode(struct inode *vi)
|
|
{
|
|
ntfs_volume *vol = NTFS_SB(vi->i_sb);
|
|
ntfs_inode *ni;
|
|
struct inode *bvi;
|
|
MFT_RECORD *m;
|
|
ATTR_RECORD *a;
|
|
STANDARD_INFORMATION *si;
|
|
ntfs_attr_search_ctx *ctx;
|
|
int err = 0;
|
|
|
|
ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
|
|
|
|
/* Setup the generic vfs inode parts now. */
|
|
vi->i_uid = vol->uid;
|
|
vi->i_gid = vol->gid;
|
|
vi->i_mode = 0;
|
|
|
|
/*
|
|
* Initialize the ntfs specific part of @vi special casing
|
|
* FILE_MFT which we need to do at mount time.
|
|
*/
|
|
if (vi->i_ino != FILE_MFT)
|
|
ntfs_init_big_inode(vi);
|
|
ni = NTFS_I(vi);
|
|
|
|
m = map_mft_record(ni);
|
|
if (IS_ERR(m)) {
|
|
err = PTR_ERR(m);
|
|
goto err_out;
|
|
}
|
|
ctx = ntfs_attr_get_search_ctx(ni, m);
|
|
if (!ctx) {
|
|
err = -ENOMEM;
|
|
goto unm_err_out;
|
|
}
|
|
|
|
if (!(m->flags & MFT_RECORD_IN_USE)) {
|
|
ntfs_error(vi->i_sb, "Inode is not in use!");
|
|
goto unm_err_out;
|
|
}
|
|
if (m->base_mft_record) {
|
|
ntfs_error(vi->i_sb, "Inode is an extent inode!");
|
|
goto unm_err_out;
|
|
}
|
|
|
|
/* Transfer information from mft record into vfs and ntfs inodes. */
|
|
vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
|
|
|
|
/*
|
|
* FIXME: Keep in mind that link_count is two for files which have both
|
|
* a long file name and a short file name as separate entries, so if
|
|
* we are hiding short file names this will be too high. Either we need
|
|
* to account for the short file names by subtracting them or we need
|
|
* to make sure we delete files even though i_nlink is not zero which
|
|
* might be tricky due to vfs interactions. Need to think about this
|
|
* some more when implementing the unlink command.
|
|
*/
|
|
set_nlink(vi, le16_to_cpu(m->link_count));
|
|
/*
|
|
* FIXME: Reparse points can have the directory bit set even though
|
|
* they would be S_IFLNK. Need to deal with this further below when we
|
|
* implement reparse points / symbolic links but it will do for now.
|
|
* Also if not a directory, it could be something else, rather than
|
|
* a regular file. But again, will do for now.
|
|
*/
|
|
/* Everyone gets all permissions. */
|
|
vi->i_mode |= S_IRWXUGO;
|
|
/* If read-only, no one gets write permissions. */
|
|
if (IS_RDONLY(vi))
|
|
vi->i_mode &= ~S_IWUGO;
|
|
if (m->flags & MFT_RECORD_IS_DIRECTORY) {
|
|
vi->i_mode |= S_IFDIR;
|
|
/*
|
|
* Apply the directory permissions mask set in the mount
|
|
* options.
|
|
*/
|
|
vi->i_mode &= ~vol->dmask;
|
|
/* Things break without this kludge! */
|
|
if (vi->i_nlink > 1)
|
|
set_nlink(vi, 1);
|
|
} else {
|
|
vi->i_mode |= S_IFREG;
|
|
/* Apply the file permissions mask set in the mount options. */
|
|
vi->i_mode &= ~vol->fmask;
|
|
}
|
|
/*
|
|
* Find the standard information attribute in the mft record. At this
|
|
* stage we haven't setup the attribute list stuff yet, so this could
|
|
* in fact fail if the standard information is in an extent record, but
|
|
* I don't think this actually ever happens.
|
|
*/
|
|
err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
|
|
ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT) {
|
|
/*
|
|
* TODO: We should be performing a hot fix here (if the
|
|
* recover mount option is set) by creating a new
|
|
* attribute.
|
|
*/
|
|
ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
|
|
"is missing.");
|
|
}
|
|
goto unm_err_out;
|
|
}
|
|
a = ctx->attr;
|
|
/* Get the standard information attribute value. */
|
|
si = (STANDARD_INFORMATION*)((u8*)a +
|
|
le16_to_cpu(a->data.resident.value_offset));
|
|
|
|
/* Transfer information from the standard information into vi. */
|
|
/*
|
|
* Note: The i_?times do not quite map perfectly onto the NTFS times,
|
|
* but they are close enough, and in the end it doesn't really matter
|
|
* that much...
|
|
*/
|
|
/*
|
|
* mtime is the last change of the data within the file. Not changed
|
|
* when only metadata is changed, e.g. a rename doesn't affect mtime.
|
|
*/
|
|
vi->i_mtime = ntfs2utc(si->last_data_change_time);
|
|
/*
|
|
* ctime is the last change of the metadata of the file. This obviously
|
|
* always changes, when mtime is changed. ctime can be changed on its
|
|
* own, mtime is then not changed, e.g. when a file is renamed.
|
|
*/
|
|
vi->i_ctime = ntfs2utc(si->last_mft_change_time);
|
|
/*
|
|
* Last access to the data within the file. Not changed during a rename
|
|
* for example but changed whenever the file is written to.
|
|
*/
|
|
vi->i_atime = ntfs2utc(si->last_access_time);
|
|
|
|
/* Find the attribute list attribute if present. */
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
|
|
if (err) {
|
|
if (unlikely(err != -ENOENT)) {
|
|
ntfs_error(vi->i_sb, "Failed to lookup attribute list "
|
|
"attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
} else /* if (!err) */ {
|
|
if (vi->i_ino == FILE_MFT)
|
|
goto skip_attr_list_load;
|
|
ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
|
|
NInoSetAttrList(ni);
|
|
a = ctx->attr;
|
|
if (a->flags & ATTR_COMPRESSION_MASK) {
|
|
ntfs_error(vi->i_sb, "Attribute list attribute is "
|
|
"compressed.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_IS_ENCRYPTED ||
|
|
a->flags & ATTR_IS_SPARSE) {
|
|
if (a->non_resident) {
|
|
ntfs_error(vi->i_sb, "Non-resident attribute "
|
|
"list attribute is encrypted/"
|
|
"sparse.");
|
|
goto unm_err_out;
|
|
}
|
|
ntfs_warning(vi->i_sb, "Resident attribute list "
|
|
"attribute in inode 0x%lx is marked "
|
|
"encrypted/sparse which is not true. "
|
|
"However, Windows allows this and "
|
|
"chkdsk does not detect or correct it "
|
|
"so we will just ignore the invalid "
|
|
"flags and pretend they are not set.",
|
|
vi->i_ino);
|
|
}
|
|
/* Now allocate memory for the attribute list. */
|
|
ni->attr_list_size = (u32)ntfs_attr_size(a);
|
|
ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
|
|
if (!ni->attr_list) {
|
|
ntfs_error(vi->i_sb, "Not enough memory to allocate "
|
|
"buffer for attribute list.");
|
|
err = -ENOMEM;
|
|
goto unm_err_out;
|
|
}
|
|
if (a->non_resident) {
|
|
NInoSetAttrListNonResident(ni);
|
|
if (a->data.non_resident.lowest_vcn) {
|
|
ntfs_error(vi->i_sb, "Attribute list has non "
|
|
"zero lowest_vcn.");
|
|
goto unm_err_out;
|
|
}
|
|
/*
|
|
* Setup the runlist. No need for locking as we have
|
|
* exclusive access to the inode at this time.
|
|
*/
|
|
ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
|
|
a, NULL);
|
|
if (IS_ERR(ni->attr_list_rl.rl)) {
|
|
err = PTR_ERR(ni->attr_list_rl.rl);
|
|
ni->attr_list_rl.rl = NULL;
|
|
ntfs_error(vi->i_sb, "Mapping pairs "
|
|
"decompression failed.");
|
|
goto unm_err_out;
|
|
}
|
|
/* Now load the attribute list. */
|
|
if ((err = load_attribute_list(vol, &ni->attr_list_rl,
|
|
ni->attr_list, ni->attr_list_size,
|
|
sle64_to_cpu(a->data.non_resident.
|
|
initialized_size)))) {
|
|
ntfs_error(vi->i_sb, "Failed to load "
|
|
"attribute list attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
} else /* if (!a->non_resident) */ {
|
|
if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
|
|
+ le32_to_cpu(
|
|
a->data.resident.value_length) >
|
|
(u8*)ctx->mrec + vol->mft_record_size) {
|
|
ntfs_error(vi->i_sb, "Corrupt attribute list "
|
|
"in inode.");
|
|
goto unm_err_out;
|
|
}
|
|
/* Now copy the attribute list. */
|
|
memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
|
|
a->data.resident.value_offset),
|
|
le32_to_cpu(
|
|
a->data.resident.value_length));
|
|
}
|
|
}
|
|
skip_attr_list_load:
|
|
/*
|
|
* If an attribute list is present we now have the attribute list value
|
|
* in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
|
|
*/
|
|
if (S_ISDIR(vi->i_mode)) {
|
|
loff_t bvi_size;
|
|
ntfs_inode *bni;
|
|
INDEX_ROOT *ir;
|
|
u8 *ir_end, *index_end;
|
|
|
|
/* It is a directory, find index root attribute. */
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
|
|
0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT) {
|
|
// FIXME: File is corrupt! Hot-fix with empty
|
|
// index root attribute if recovery option is
|
|
// set.
|
|
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
|
|
"is missing.");
|
|
}
|
|
goto unm_err_out;
|
|
}
|
|
a = ctx->attr;
|
|
/* Set up the state. */
|
|
if (unlikely(a->non_resident)) {
|
|
ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
|
|
"resident.");
|
|
goto unm_err_out;
|
|
}
|
|
/* Ensure the attribute name is placed before the value. */
|
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
|
|
le16_to_cpu(a->data.resident.value_offset)))) {
|
|
ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
|
|
"placed after the attribute value.");
|
|
goto unm_err_out;
|
|
}
|
|
/*
|
|
* Compressed/encrypted index root just means that the newly
|
|
* created files in that directory should be created compressed/
|
|
* encrypted. However index root cannot be both compressed and
|
|
* encrypted.
|
|
*/
|
|
if (a->flags & ATTR_COMPRESSION_MASK)
|
|
NInoSetCompressed(ni);
|
|
if (a->flags & ATTR_IS_ENCRYPTED) {
|
|
if (a->flags & ATTR_COMPRESSION_MASK) {
|
|
ntfs_error(vi->i_sb, "Found encrypted and "
|
|
"compressed attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
NInoSetEncrypted(ni);
|
|
}
|
|
if (a->flags & ATTR_IS_SPARSE)
|
|
NInoSetSparse(ni);
|
|
ir = (INDEX_ROOT*)((u8*)a +
|
|
le16_to_cpu(a->data.resident.value_offset));
|
|
ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
|
|
if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
|
|
"corrupt.");
|
|
goto unm_err_out;
|
|
}
|
|
index_end = (u8*)&ir->index +
|
|
le32_to_cpu(ir->index.index_length);
|
|
if (index_end > ir_end) {
|
|
ntfs_error(vi->i_sb, "Directory index is corrupt.");
|
|
goto unm_err_out;
|
|
}
|
|
if (ir->type != AT_FILE_NAME) {
|
|
ntfs_error(vi->i_sb, "Indexed attribute is not "
|
|
"$FILE_NAME.");
|
|
goto unm_err_out;
|
|
}
|
|
if (ir->collation_rule != COLLATION_FILE_NAME) {
|
|
ntfs_error(vi->i_sb, "Index collation rule is not "
|
|
"COLLATION_FILE_NAME.");
|
|
goto unm_err_out;
|
|
}
|
|
ni->itype.index.collation_rule = ir->collation_rule;
|
|
ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
|
|
if (ni->itype.index.block_size &
|
|
(ni->itype.index.block_size - 1)) {
|
|
ntfs_error(vi->i_sb, "Index block size (%u) is not a "
|
|
"power of two.",
|
|
ni->itype.index.block_size);
|
|
goto unm_err_out;
|
|
}
|
|
if (ni->itype.index.block_size > PAGE_SIZE) {
|
|
ntfs_error(vi->i_sb, "Index block size (%u) > "
|
|
"PAGE_SIZE (%ld) is not "
|
|
"supported. Sorry.",
|
|
ni->itype.index.block_size,
|
|
PAGE_SIZE);
|
|
err = -EOPNOTSUPP;
|
|
goto unm_err_out;
|
|
}
|
|
if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
|
|
ntfs_error(vi->i_sb, "Index block size (%u) < "
|
|
"NTFS_BLOCK_SIZE (%i) is not "
|
|
"supported. Sorry.",
|
|
ni->itype.index.block_size,
|
|
NTFS_BLOCK_SIZE);
|
|
err = -EOPNOTSUPP;
|
|
goto unm_err_out;
|
|
}
|
|
ni->itype.index.block_size_bits =
|
|
ffs(ni->itype.index.block_size) - 1;
|
|
/* Determine the size of a vcn in the directory index. */
|
|
if (vol->cluster_size <= ni->itype.index.block_size) {
|
|
ni->itype.index.vcn_size = vol->cluster_size;
|
|
ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
|
|
} else {
|
|
ni->itype.index.vcn_size = vol->sector_size;
|
|
ni->itype.index.vcn_size_bits = vol->sector_size_bits;
|
|
}
|
|
|
|
/* Setup the index allocation attribute, even if not present. */
|
|
NInoSetMstProtected(ni);
|
|
ni->type = AT_INDEX_ALLOCATION;
|
|
ni->name = I30;
|
|
ni->name_len = 4;
|
|
|
|
if (!(ir->index.flags & LARGE_INDEX)) {
|
|
/* No index allocation. */
|
|
vi->i_size = ni->initialized_size =
|
|
ni->allocated_size = 0;
|
|
/* We are done with the mft record, so we release it. */
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(ni);
|
|
m = NULL;
|
|
ctx = NULL;
|
|
goto skip_large_dir_stuff;
|
|
} /* LARGE_INDEX: Index allocation present. Setup state. */
|
|
NInoSetIndexAllocPresent(ni);
|
|
/* Find index allocation attribute. */
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT)
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
|
|
"attribute is not present but "
|
|
"$INDEX_ROOT indicated it is.");
|
|
else
|
|
ntfs_error(vi->i_sb, "Failed to lookup "
|
|
"$INDEX_ALLOCATION "
|
|
"attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
a = ctx->attr;
|
|
if (!a->non_resident) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
|
|
"is resident.");
|
|
goto unm_err_out;
|
|
}
|
|
/*
|
|
* Ensure the attribute name is placed before the mapping pairs
|
|
* array.
|
|
*/
|
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
|
|
le16_to_cpu(
|
|
a->data.non_resident.mapping_pairs_offset)))) {
|
|
ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
|
|
"is placed after the mapping pairs "
|
|
"array.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_IS_ENCRYPTED) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
|
|
"is encrypted.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_IS_SPARSE) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
|
|
"is sparse.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_COMPRESSION_MASK) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
|
|
"is compressed.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->data.non_resident.lowest_vcn) {
|
|
ntfs_error(vi->i_sb, "First extent of "
|
|
"$INDEX_ALLOCATION attribute has non "
|
|
"zero lowest_vcn.");
|
|
goto unm_err_out;
|
|
}
|
|
vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
|
|
ni->initialized_size = sle64_to_cpu(
|
|
a->data.non_resident.initialized_size);
|
|
ni->allocated_size = sle64_to_cpu(
|
|
a->data.non_resident.allocated_size);
|
|
/*
|
|
* We are done with the mft record, so we release it. Otherwise
|
|
* we would deadlock in ntfs_attr_iget().
|
|
*/
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(ni);
|
|
m = NULL;
|
|
ctx = NULL;
|
|
/* Get the index bitmap attribute inode. */
|
|
bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
|
|
if (IS_ERR(bvi)) {
|
|
ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
|
|
err = PTR_ERR(bvi);
|
|
goto unm_err_out;
|
|
}
|
|
bni = NTFS_I(bvi);
|
|
if (NInoCompressed(bni) || NInoEncrypted(bni) ||
|
|
NInoSparse(bni)) {
|
|
ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
|
|
"and/or encrypted and/or sparse.");
|
|
goto iput_unm_err_out;
|
|
}
|
|
/* Consistency check bitmap size vs. index allocation size. */
|
|
bvi_size = i_size_read(bvi);
|
|
if ((bvi_size << 3) < (vi->i_size >>
|
|
ni->itype.index.block_size_bits)) {
|
|
ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
|
|
"for index allocation (0x%llx).",
|
|
bvi_size << 3, vi->i_size);
|
|
goto iput_unm_err_out;
|
|
}
|
|
/* No longer need the bitmap attribute inode. */
|
|
iput(bvi);
|
|
skip_large_dir_stuff:
|
|
/* Setup the operations for this inode. */
|
|
vi->i_op = &ntfs_dir_inode_ops;
|
|
vi->i_fop = &ntfs_dir_ops;
|
|
vi->i_mapping->a_ops = &ntfs_mst_aops;
|
|
} else {
|
|
/* It is a file. */
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
|
|
/* Setup the data attribute, even if not present. */
|
|
ni->type = AT_DATA;
|
|
ni->name = NULL;
|
|
ni->name_len = 0;
|
|
|
|
/* Find first extent of the unnamed data attribute. */
|
|
err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
vi->i_size = ni->initialized_size =
|
|
ni->allocated_size = 0;
|
|
if (err != -ENOENT) {
|
|
ntfs_error(vi->i_sb, "Failed to lookup $DATA "
|
|
"attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
/*
|
|
* FILE_Secure does not have an unnamed $DATA
|
|
* attribute, so we special case it here.
|
|
*/
|
|
if (vi->i_ino == FILE_Secure)
|
|
goto no_data_attr_special_case;
|
|
/*
|
|
* Most if not all the system files in the $Extend
|
|
* system directory do not have unnamed data
|
|
* attributes so we need to check if the parent
|
|
* directory of the file is FILE_Extend and if it is
|
|
* ignore this error. To do this we need to get the
|
|
* name of this inode from the mft record as the name
|
|
* contains the back reference to the parent directory.
|
|
*/
|
|
if (ntfs_is_extended_system_file(ctx) > 0)
|
|
goto no_data_attr_special_case;
|
|
// FIXME: File is corrupt! Hot-fix with empty data
|
|
// attribute if recovery option is set.
|
|
ntfs_error(vi->i_sb, "$DATA attribute is missing.");
|
|
goto unm_err_out;
|
|
}
|
|
a = ctx->attr;
|
|
/* Setup the state. */
|
|
if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
|
|
if (a->flags & ATTR_COMPRESSION_MASK) {
|
|
NInoSetCompressed(ni);
|
|
if (vol->cluster_size > 4096) {
|
|
ntfs_error(vi->i_sb, "Found "
|
|
"compressed data but "
|
|
"compression is "
|
|
"disabled due to "
|
|
"cluster size (%i) > "
|
|
"4kiB.",
|
|
vol->cluster_size);
|
|
goto unm_err_out;
|
|
}
|
|
if ((a->flags & ATTR_COMPRESSION_MASK)
|
|
!= ATTR_IS_COMPRESSED) {
|
|
ntfs_error(vi->i_sb, "Found unknown "
|
|
"compression method "
|
|
"or corrupt file.");
|
|
goto unm_err_out;
|
|
}
|
|
}
|
|
if (a->flags & ATTR_IS_SPARSE)
|
|
NInoSetSparse(ni);
|
|
}
|
|
if (a->flags & ATTR_IS_ENCRYPTED) {
|
|
if (NInoCompressed(ni)) {
|
|
ntfs_error(vi->i_sb, "Found encrypted and "
|
|
"compressed data.");
|
|
goto unm_err_out;
|
|
}
|
|
NInoSetEncrypted(ni);
|
|
}
|
|
if (a->non_resident) {
|
|
NInoSetNonResident(ni);
|
|
if (NInoCompressed(ni) || NInoSparse(ni)) {
|
|
if (NInoCompressed(ni) && a->data.non_resident.
|
|
compression_unit != 4) {
|
|
ntfs_error(vi->i_sb, "Found "
|
|
"non-standard "
|
|
"compression unit (%u "
|
|
"instead of 4). "
|
|
"Cannot handle this.",
|
|
a->data.non_resident.
|
|
compression_unit);
|
|
err = -EOPNOTSUPP;
|
|
goto unm_err_out;
|
|
}
|
|
if (a->data.non_resident.compression_unit) {
|
|
ni->itype.compressed.block_size = 1U <<
|
|
(a->data.non_resident.
|
|
compression_unit +
|
|
vol->cluster_size_bits);
|
|
ni->itype.compressed.block_size_bits =
|
|
ffs(ni->itype.
|
|
compressed.
|
|
block_size) - 1;
|
|
ni->itype.compressed.block_clusters =
|
|
1U << a->data.
|
|
non_resident.
|
|
compression_unit;
|
|
} else {
|
|
ni->itype.compressed.block_size = 0;
|
|
ni->itype.compressed.block_size_bits =
|
|
0;
|
|
ni->itype.compressed.block_clusters =
|
|
0;
|
|
}
|
|
ni->itype.compressed.size = sle64_to_cpu(
|
|
a->data.non_resident.
|
|
compressed_size);
|
|
}
|
|
if (a->data.non_resident.lowest_vcn) {
|
|
ntfs_error(vi->i_sb, "First extent of $DATA "
|
|
"attribute has non zero "
|
|
"lowest_vcn.");
|
|
goto unm_err_out;
|
|
}
|
|
vi->i_size = sle64_to_cpu(
|
|
a->data.non_resident.data_size);
|
|
ni->initialized_size = sle64_to_cpu(
|
|
a->data.non_resident.initialized_size);
|
|
ni->allocated_size = sle64_to_cpu(
|
|
a->data.non_resident.allocated_size);
|
|
} else { /* Resident attribute. */
|
|
vi->i_size = ni->initialized_size = le32_to_cpu(
|
|
a->data.resident.value_length);
|
|
ni->allocated_size = le32_to_cpu(a->length) -
|
|
le16_to_cpu(
|
|
a->data.resident.value_offset);
|
|
if (vi->i_size > ni->allocated_size) {
|
|
ntfs_error(vi->i_sb, "Resident data attribute "
|
|
"is corrupt (size exceeds "
|
|
"allocation).");
|
|
goto unm_err_out;
|
|
}
|
|
}
|
|
no_data_attr_special_case:
|
|
/* We are done with the mft record, so we release it. */
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(ni);
|
|
m = NULL;
|
|
ctx = NULL;
|
|
/* Setup the operations for this inode. */
|
|
vi->i_op = &ntfs_file_inode_ops;
|
|
vi->i_fop = &ntfs_file_ops;
|
|
vi->i_mapping->a_ops = &ntfs_normal_aops;
|
|
if (NInoMstProtected(ni))
|
|
vi->i_mapping->a_ops = &ntfs_mst_aops;
|
|
else if (NInoCompressed(ni))
|
|
vi->i_mapping->a_ops = &ntfs_compressed_aops;
|
|
}
|
|
/*
|
|
* The number of 512-byte blocks used on disk (for stat). This is in so
|
|
* far inaccurate as it doesn't account for any named streams or other
|
|
* special non-resident attributes, but that is how Windows works, too,
|
|
* so we are at least consistent with Windows, if not entirely
|
|
* consistent with the Linux Way. Doing it the Linux Way would cause a
|
|
* significant slowdown as it would involve iterating over all
|
|
* attributes in the mft record and adding the allocated/compressed
|
|
* sizes of all non-resident attributes present to give us the Linux
|
|
* correct size that should go into i_blocks (after division by 512).
|
|
*/
|
|
if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
|
|
vi->i_blocks = ni->itype.compressed.size >> 9;
|
|
else
|
|
vi->i_blocks = ni->allocated_size >> 9;
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
iput_unm_err_out:
|
|
iput(bvi);
|
|
unm_err_out:
|
|
if (!err)
|
|
err = -EIO;
|
|
if (ctx)
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
if (m)
|
|
unmap_mft_record(ni);
|
|
err_out:
|
|
ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
|
|
"inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
|
|
make_bad_inode(vi);
|
|
if (err != -EOPNOTSUPP && err != -ENOMEM)
|
|
NVolSetErrors(vol);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_read_locked_attr_inode - read an attribute inode from its base inode
|
|
* @base_vi: base inode
|
|
* @vi: attribute inode to read
|
|
*
|
|
* ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
|
|
* attribute inode described by @vi into memory from the base mft record
|
|
* described by @base_ni.
|
|
*
|
|
* ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
|
|
* reading and looks up the attribute described by @vi before setting up the
|
|
* necessary fields in @vi as well as initializing the ntfs inode.
|
|
*
|
|
* Q: What locks are held when the function is called?
|
|
* A: i_state has I_NEW set, hence the inode is locked, also
|
|
* i_count is set to 1, so it is not going to go away
|
|
*
|
|
* Return 0 on success and -errno on error. In the error case, the inode will
|
|
* have had make_bad_inode() executed on it.
|
|
*
|
|
* Note this cannot be called for AT_INDEX_ALLOCATION.
|
|
*/
|
|
static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
|
|
{
|
|
ntfs_volume *vol = NTFS_SB(vi->i_sb);
|
|
ntfs_inode *ni, *base_ni;
|
|
MFT_RECORD *m;
|
|
ATTR_RECORD *a;
|
|
ntfs_attr_search_ctx *ctx;
|
|
int err = 0;
|
|
|
|
ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
|
|
|
|
ntfs_init_big_inode(vi);
|
|
|
|
ni = NTFS_I(vi);
|
|
base_ni = NTFS_I(base_vi);
|
|
|
|
/* Just mirror the values from the base inode. */
|
|
vi->i_uid = base_vi->i_uid;
|
|
vi->i_gid = base_vi->i_gid;
|
|
set_nlink(vi, base_vi->i_nlink);
|
|
vi->i_mtime = base_vi->i_mtime;
|
|
vi->i_ctime = base_vi->i_ctime;
|
|
vi->i_atime = base_vi->i_atime;
|
|
vi->i_generation = ni->seq_no = base_ni->seq_no;
|
|
|
|
/* Set inode type to zero but preserve permissions. */
|
|
vi->i_mode = base_vi->i_mode & ~S_IFMT;
|
|
|
|
m = map_mft_record(base_ni);
|
|
if (IS_ERR(m)) {
|
|
err = PTR_ERR(m);
|
|
goto err_out;
|
|
}
|
|
ctx = ntfs_attr_get_search_ctx(base_ni, m);
|
|
if (!ctx) {
|
|
err = -ENOMEM;
|
|
goto unm_err_out;
|
|
}
|
|
/* Find the attribute. */
|
|
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err))
|
|
goto unm_err_out;
|
|
a = ctx->attr;
|
|
if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
|
|
if (a->flags & ATTR_COMPRESSION_MASK) {
|
|
NInoSetCompressed(ni);
|
|
if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
|
|
ni->name_len)) {
|
|
ntfs_error(vi->i_sb, "Found compressed "
|
|
"non-data or named data "
|
|
"attribute. Please report "
|
|
"you saw this message to "
|
|
"linux-ntfs-dev@lists."
|
|
"sourceforge.net");
|
|
goto unm_err_out;
|
|
}
|
|
if (vol->cluster_size > 4096) {
|
|
ntfs_error(vi->i_sb, "Found compressed "
|
|
"attribute but compression is "
|
|
"disabled due to cluster size "
|
|
"(%i) > 4kiB.",
|
|
vol->cluster_size);
|
|
goto unm_err_out;
|
|
}
|
|
if ((a->flags & ATTR_COMPRESSION_MASK) !=
|
|
ATTR_IS_COMPRESSED) {
|
|
ntfs_error(vi->i_sb, "Found unknown "
|
|
"compression method.");
|
|
goto unm_err_out;
|
|
}
|
|
}
|
|
/*
|
|
* The compressed/sparse flag set in an index root just means
|
|
* to compress all files.
|
|
*/
|
|
if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
|
|
ntfs_error(vi->i_sb, "Found mst protected attribute "
|
|
"but the attribute is %s. Please "
|
|
"report you saw this message to "
|
|
"linux-ntfs-dev@lists.sourceforge.net",
|
|
NInoCompressed(ni) ? "compressed" :
|
|
"sparse");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_IS_SPARSE)
|
|
NInoSetSparse(ni);
|
|
}
|
|
if (a->flags & ATTR_IS_ENCRYPTED) {
|
|
if (NInoCompressed(ni)) {
|
|
ntfs_error(vi->i_sb, "Found encrypted and compressed "
|
|
"data.");
|
|
goto unm_err_out;
|
|
}
|
|
/*
|
|
* The encryption flag set in an index root just means to
|
|
* encrypt all files.
|
|
*/
|
|
if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
|
|
ntfs_error(vi->i_sb, "Found mst protected attribute "
|
|
"but the attribute is encrypted. "
|
|
"Please report you saw this message "
|
|
"to linux-ntfs-dev@lists.sourceforge."
|
|
"net");
|
|
goto unm_err_out;
|
|
}
|
|
if (ni->type != AT_DATA) {
|
|
ntfs_error(vi->i_sb, "Found encrypted non-data "
|
|
"attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
NInoSetEncrypted(ni);
|
|
}
|
|
if (!a->non_resident) {
|
|
/* Ensure the attribute name is placed before the value. */
|
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
|
|
le16_to_cpu(a->data.resident.value_offset)))) {
|
|
ntfs_error(vol->sb, "Attribute name is placed after "
|
|
"the attribute value.");
|
|
goto unm_err_out;
|
|
}
|
|
if (NInoMstProtected(ni)) {
|
|
ntfs_error(vi->i_sb, "Found mst protected attribute "
|
|
"but the attribute is resident. "
|
|
"Please report you saw this message to "
|
|
"linux-ntfs-dev@lists.sourceforge.net");
|
|
goto unm_err_out;
|
|
}
|
|
vi->i_size = ni->initialized_size = le32_to_cpu(
|
|
a->data.resident.value_length);
|
|
ni->allocated_size = le32_to_cpu(a->length) -
|
|
le16_to_cpu(a->data.resident.value_offset);
|
|
if (vi->i_size > ni->allocated_size) {
|
|
ntfs_error(vi->i_sb, "Resident attribute is corrupt "
|
|
"(size exceeds allocation).");
|
|
goto unm_err_out;
|
|
}
|
|
} else {
|
|
NInoSetNonResident(ni);
|
|
/*
|
|
* Ensure the attribute name is placed before the mapping pairs
|
|
* array.
|
|
*/
|
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
|
|
le16_to_cpu(
|
|
a->data.non_resident.mapping_pairs_offset)))) {
|
|
ntfs_error(vol->sb, "Attribute name is placed after "
|
|
"the mapping pairs array.");
|
|
goto unm_err_out;
|
|
}
|
|
if (NInoCompressed(ni) || NInoSparse(ni)) {
|
|
if (NInoCompressed(ni) && a->data.non_resident.
|
|
compression_unit != 4) {
|
|
ntfs_error(vi->i_sb, "Found non-standard "
|
|
"compression unit (%u instead "
|
|
"of 4). Cannot handle this.",
|
|
a->data.non_resident.
|
|
compression_unit);
|
|
err = -EOPNOTSUPP;
|
|
goto unm_err_out;
|
|
}
|
|
if (a->data.non_resident.compression_unit) {
|
|
ni->itype.compressed.block_size = 1U <<
|
|
(a->data.non_resident.
|
|
compression_unit +
|
|
vol->cluster_size_bits);
|
|
ni->itype.compressed.block_size_bits =
|
|
ffs(ni->itype.compressed.
|
|
block_size) - 1;
|
|
ni->itype.compressed.block_clusters = 1U <<
|
|
a->data.non_resident.
|
|
compression_unit;
|
|
} else {
|
|
ni->itype.compressed.block_size = 0;
|
|
ni->itype.compressed.block_size_bits = 0;
|
|
ni->itype.compressed.block_clusters = 0;
|
|
}
|
|
ni->itype.compressed.size = sle64_to_cpu(
|
|
a->data.non_resident.compressed_size);
|
|
}
|
|
if (a->data.non_resident.lowest_vcn) {
|
|
ntfs_error(vi->i_sb, "First extent of attribute has "
|
|
"non-zero lowest_vcn.");
|
|
goto unm_err_out;
|
|
}
|
|
vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
|
|
ni->initialized_size = sle64_to_cpu(
|
|
a->data.non_resident.initialized_size);
|
|
ni->allocated_size = sle64_to_cpu(
|
|
a->data.non_resident.allocated_size);
|
|
}
|
|
vi->i_mapping->a_ops = &ntfs_normal_aops;
|
|
if (NInoMstProtected(ni))
|
|
vi->i_mapping->a_ops = &ntfs_mst_aops;
|
|
else if (NInoCompressed(ni))
|
|
vi->i_mapping->a_ops = &ntfs_compressed_aops;
|
|
if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
|
|
vi->i_blocks = ni->itype.compressed.size >> 9;
|
|
else
|
|
vi->i_blocks = ni->allocated_size >> 9;
|
|
/*
|
|
* Make sure the base inode does not go away and attach it to the
|
|
* attribute inode.
|
|
*/
|
|
igrab(base_vi);
|
|
ni->ext.base_ntfs_ino = base_ni;
|
|
ni->nr_extents = -1;
|
|
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
|
|
unm_err_out:
|
|
if (!err)
|
|
err = -EIO;
|
|
if (ctx)
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
err_out:
|
|
ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
|
|
"inode (mft_no 0x%lx, type 0x%x, name_len %i). "
|
|
"Marking corrupt inode and base inode 0x%lx as bad. "
|
|
"Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
|
|
base_vi->i_ino);
|
|
make_bad_inode(vi);
|
|
if (err != -ENOMEM)
|
|
NVolSetErrors(vol);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_read_locked_index_inode - read an index inode from its base inode
|
|
* @base_vi: base inode
|
|
* @vi: index inode to read
|
|
*
|
|
* ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
|
|
* index inode described by @vi into memory from the base mft record described
|
|
* by @base_ni.
|
|
*
|
|
* ntfs_read_locked_index_inode() maps, pins and locks the base inode for
|
|
* reading and looks up the attributes relating to the index described by @vi
|
|
* before setting up the necessary fields in @vi as well as initializing the
|
|
* ntfs inode.
|
|
*
|
|
* Note, index inodes are essentially attribute inodes (NInoAttr() is true)
|
|
* with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
|
|
* are setup like directory inodes since directories are a special case of
|
|
* indices ao they need to be treated in much the same way. Most importantly,
|
|
* for small indices the index allocation attribute might not actually exist.
|
|
* However, the index root attribute always exists but this does not need to
|
|
* have an inode associated with it and this is why we define a new inode type
|
|
* index. Also, like for directories, we need to have an attribute inode for
|
|
* the bitmap attribute corresponding to the index allocation attribute and we
|
|
* can store this in the appropriate field of the inode, just like we do for
|
|
* normal directory inodes.
|
|
*
|
|
* Q: What locks are held when the function is called?
|
|
* A: i_state has I_NEW set, hence the inode is locked, also
|
|
* i_count is set to 1, so it is not going to go away
|
|
*
|
|
* Return 0 on success and -errno on error. In the error case, the inode will
|
|
* have had make_bad_inode() executed on it.
|
|
*/
|
|
static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
|
|
{
|
|
loff_t bvi_size;
|
|
ntfs_volume *vol = NTFS_SB(vi->i_sb);
|
|
ntfs_inode *ni, *base_ni, *bni;
|
|
struct inode *bvi;
|
|
MFT_RECORD *m;
|
|
ATTR_RECORD *a;
|
|
ntfs_attr_search_ctx *ctx;
|
|
INDEX_ROOT *ir;
|
|
u8 *ir_end, *index_end;
|
|
int err = 0;
|
|
|
|
ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
|
|
ntfs_init_big_inode(vi);
|
|
ni = NTFS_I(vi);
|
|
base_ni = NTFS_I(base_vi);
|
|
/* Just mirror the values from the base inode. */
|
|
vi->i_uid = base_vi->i_uid;
|
|
vi->i_gid = base_vi->i_gid;
|
|
set_nlink(vi, base_vi->i_nlink);
|
|
vi->i_mtime = base_vi->i_mtime;
|
|
vi->i_ctime = base_vi->i_ctime;
|
|
vi->i_atime = base_vi->i_atime;
|
|
vi->i_generation = ni->seq_no = base_ni->seq_no;
|
|
/* Set inode type to zero but preserve permissions. */
|
|
vi->i_mode = base_vi->i_mode & ~S_IFMT;
|
|
/* Map the mft record for the base inode. */
|
|
m = map_mft_record(base_ni);
|
|
if (IS_ERR(m)) {
|
|
err = PTR_ERR(m);
|
|
goto err_out;
|
|
}
|
|
ctx = ntfs_attr_get_search_ctx(base_ni, m);
|
|
if (!ctx) {
|
|
err = -ENOMEM;
|
|
goto unm_err_out;
|
|
}
|
|
/* Find the index root attribute. */
|
|
err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT)
|
|
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
|
|
"missing.");
|
|
goto unm_err_out;
|
|
}
|
|
a = ctx->attr;
|
|
/* Set up the state. */
|
|
if (unlikely(a->non_resident)) {
|
|
ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
|
|
goto unm_err_out;
|
|
}
|
|
/* Ensure the attribute name is placed before the value. */
|
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
|
|
le16_to_cpu(a->data.resident.value_offset)))) {
|
|
ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
|
|
"after the attribute value.");
|
|
goto unm_err_out;
|
|
}
|
|
/*
|
|
* Compressed/encrypted/sparse index root is not allowed, except for
|
|
* directories of course but those are not dealt with here.
|
|
*/
|
|
if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
|
|
ATTR_IS_SPARSE)) {
|
|
ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
|
|
"root attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
|
|
ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
|
|
if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
|
|
goto unm_err_out;
|
|
}
|
|
index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
|
|
if (index_end > ir_end) {
|
|
ntfs_error(vi->i_sb, "Index is corrupt.");
|
|
goto unm_err_out;
|
|
}
|
|
if (ir->type) {
|
|
ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
|
|
le32_to_cpu(ir->type));
|
|
goto unm_err_out;
|
|
}
|
|
ni->itype.index.collation_rule = ir->collation_rule;
|
|
ntfs_debug("Index collation rule is 0x%x.",
|
|
le32_to_cpu(ir->collation_rule));
|
|
ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
|
|
if (!is_power_of_2(ni->itype.index.block_size)) {
|
|
ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
|
|
"two.", ni->itype.index.block_size);
|
|
goto unm_err_out;
|
|
}
|
|
if (ni->itype.index.block_size > PAGE_SIZE) {
|
|
ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
|
|
"(%ld) is not supported. Sorry.",
|
|
ni->itype.index.block_size, PAGE_SIZE);
|
|
err = -EOPNOTSUPP;
|
|
goto unm_err_out;
|
|
}
|
|
if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
|
|
ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
|
|
"(%i) is not supported. Sorry.",
|
|
ni->itype.index.block_size, NTFS_BLOCK_SIZE);
|
|
err = -EOPNOTSUPP;
|
|
goto unm_err_out;
|
|
}
|
|
ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
|
|
/* Determine the size of a vcn in the index. */
|
|
if (vol->cluster_size <= ni->itype.index.block_size) {
|
|
ni->itype.index.vcn_size = vol->cluster_size;
|
|
ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
|
|
} else {
|
|
ni->itype.index.vcn_size = vol->sector_size;
|
|
ni->itype.index.vcn_size_bits = vol->sector_size_bits;
|
|
}
|
|
/* Check for presence of index allocation attribute. */
|
|
if (!(ir->index.flags & LARGE_INDEX)) {
|
|
/* No index allocation. */
|
|
vi->i_size = ni->initialized_size = ni->allocated_size = 0;
|
|
/* We are done with the mft record, so we release it. */
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
m = NULL;
|
|
ctx = NULL;
|
|
goto skip_large_index_stuff;
|
|
} /* LARGE_INDEX: Index allocation present. Setup state. */
|
|
NInoSetIndexAllocPresent(ni);
|
|
/* Find index allocation attribute. */
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT)
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
|
|
"not present but $INDEX_ROOT "
|
|
"indicated it is.");
|
|
else
|
|
ntfs_error(vi->i_sb, "Failed to lookup "
|
|
"$INDEX_ALLOCATION attribute.");
|
|
goto unm_err_out;
|
|
}
|
|
a = ctx->attr;
|
|
if (!a->non_resident) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
|
|
"resident.");
|
|
goto unm_err_out;
|
|
}
|
|
/*
|
|
* Ensure the attribute name is placed before the mapping pairs array.
|
|
*/
|
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
|
|
le16_to_cpu(
|
|
a->data.non_resident.mapping_pairs_offset)))) {
|
|
ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
|
|
"placed after the mapping pairs array.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_IS_ENCRYPTED) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
|
|
"encrypted.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_IS_SPARSE) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->flags & ATTR_COMPRESSION_MASK) {
|
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
|
|
"compressed.");
|
|
goto unm_err_out;
|
|
}
|
|
if (a->data.non_resident.lowest_vcn) {
|
|
ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
|
|
"attribute has non zero lowest_vcn.");
|
|
goto unm_err_out;
|
|
}
|
|
vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
|
|
ni->initialized_size = sle64_to_cpu(
|
|
a->data.non_resident.initialized_size);
|
|
ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
|
|
/*
|
|
* We are done with the mft record, so we release it. Otherwise
|
|
* we would deadlock in ntfs_attr_iget().
|
|
*/
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
m = NULL;
|
|
ctx = NULL;
|
|
/* Get the index bitmap attribute inode. */
|
|
bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
|
|
if (IS_ERR(bvi)) {
|
|
ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
|
|
err = PTR_ERR(bvi);
|
|
goto unm_err_out;
|
|
}
|
|
bni = NTFS_I(bvi);
|
|
if (NInoCompressed(bni) || NInoEncrypted(bni) ||
|
|
NInoSparse(bni)) {
|
|
ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
|
|
"encrypted and/or sparse.");
|
|
goto iput_unm_err_out;
|
|
}
|
|
/* Consistency check bitmap size vs. index allocation size. */
|
|
bvi_size = i_size_read(bvi);
|
|
if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
|
|
ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
|
|
"index allocation (0x%llx).", bvi_size << 3,
|
|
vi->i_size);
|
|
goto iput_unm_err_out;
|
|
}
|
|
iput(bvi);
|
|
skip_large_index_stuff:
|
|
/* Setup the operations for this index inode. */
|
|
vi->i_mapping->a_ops = &ntfs_mst_aops;
|
|
vi->i_blocks = ni->allocated_size >> 9;
|
|
/*
|
|
* Make sure the base inode doesn't go away and attach it to the
|
|
* index inode.
|
|
*/
|
|
igrab(base_vi);
|
|
ni->ext.base_ntfs_ino = base_ni;
|
|
ni->nr_extents = -1;
|
|
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
iput_unm_err_out:
|
|
iput(bvi);
|
|
unm_err_out:
|
|
if (!err)
|
|
err = -EIO;
|
|
if (ctx)
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
if (m)
|
|
unmap_mft_record(base_ni);
|
|
err_out:
|
|
ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
|
|
"inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
|
|
ni->name_len);
|
|
make_bad_inode(vi);
|
|
if (err != -EOPNOTSUPP && err != -ENOMEM)
|
|
NVolSetErrors(vol);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* The MFT inode has special locking, so teach the lock validator
|
|
* about this by splitting off the locking rules of the MFT from
|
|
* the locking rules of other inodes. The MFT inode can never be
|
|
* accessed from the VFS side (or even internally), only by the
|
|
* map_mft functions.
|
|
*/
|
|
static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
|
|
|
|
/**
|
|
* ntfs_read_inode_mount - special read_inode for mount time use only
|
|
* @vi: inode to read
|
|
*
|
|
* Read inode FILE_MFT at mount time, only called with super_block lock
|
|
* held from within the read_super() code path.
|
|
*
|
|
* This function exists because when it is called the page cache for $MFT/$DATA
|
|
* is not initialized and hence we cannot get at the contents of mft records
|
|
* by calling map_mft_record*().
|
|
*
|
|
* Further it needs to cope with the circular references problem, i.e. cannot
|
|
* load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
|
|
* we do not know where the other extent mft records are yet and again, because
|
|
* we cannot call map_mft_record*() yet. Obviously this applies only when an
|
|
* attribute list is actually present in $MFT inode.
|
|
*
|
|
* We solve these problems by starting with the $DATA attribute before anything
|
|
* else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
|
|
* extent is found, we ntfs_mapping_pairs_decompress() including the implied
|
|
* ntfs_runlists_merge(). Each step of the iteration necessarily provides
|
|
* sufficient information for the next step to complete.
|
|
*
|
|
* This should work but there are two possible pit falls (see inline comments
|
|
* below), but only time will tell if they are real pits or just smoke...
|
|
*/
|
|
int ntfs_read_inode_mount(struct inode *vi)
|
|
{
|
|
VCN next_vcn, last_vcn, highest_vcn;
|
|
s64 block;
|
|
struct super_block *sb = vi->i_sb;
|
|
ntfs_volume *vol = NTFS_SB(sb);
|
|
struct buffer_head *bh;
|
|
ntfs_inode *ni;
|
|
MFT_RECORD *m = NULL;
|
|
ATTR_RECORD *a;
|
|
ntfs_attr_search_ctx *ctx;
|
|
unsigned int i, nr_blocks;
|
|
int err;
|
|
|
|
ntfs_debug("Entering.");
|
|
|
|
/* Initialize the ntfs specific part of @vi. */
|
|
ntfs_init_big_inode(vi);
|
|
|
|
ni = NTFS_I(vi);
|
|
|
|
/* Setup the data attribute. It is special as it is mst protected. */
|
|
NInoSetNonResident(ni);
|
|
NInoSetMstProtected(ni);
|
|
NInoSetSparseDisabled(ni);
|
|
ni->type = AT_DATA;
|
|
ni->name = NULL;
|
|
ni->name_len = 0;
|
|
/*
|
|
* This sets up our little cheat allowing us to reuse the async read io
|
|
* completion handler for directories.
|
|
*/
|
|
ni->itype.index.block_size = vol->mft_record_size;
|
|
ni->itype.index.block_size_bits = vol->mft_record_size_bits;
|
|
|
|
/* Very important! Needed to be able to call map_mft_record*(). */
|
|
vol->mft_ino = vi;
|
|
|
|
/* Allocate enough memory to read the first mft record. */
|
|
if (vol->mft_record_size > 64 * 1024) {
|
|
ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
|
|
vol->mft_record_size);
|
|
goto err_out;
|
|
}
|
|
i = vol->mft_record_size;
|
|
if (i < sb->s_blocksize)
|
|
i = sb->s_blocksize;
|
|
m = (MFT_RECORD*)ntfs_malloc_nofs(i);
|
|
if (!m) {
|
|
ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
|
|
goto err_out;
|
|
}
|
|
|
|
/* Determine the first block of the $MFT/$DATA attribute. */
|
|
block = vol->mft_lcn << vol->cluster_size_bits >>
|
|
sb->s_blocksize_bits;
|
|
nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
|
|
if (!nr_blocks)
|
|
nr_blocks = 1;
|
|
|
|
/* Load $MFT/$DATA's first mft record. */
|
|
for (i = 0; i < nr_blocks; i++) {
|
|
bh = sb_bread(sb, block++);
|
|
if (!bh) {
|
|
ntfs_error(sb, "Device read failed.");
|
|
goto err_out;
|
|
}
|
|
memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
|
|
sb->s_blocksize);
|
|
brelse(bh);
|
|
}
|
|
|
|
/* Apply the mst fixups. */
|
|
if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
|
|
/* FIXME: Try to use the $MFTMirr now. */
|
|
ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
|
|
goto err_out;
|
|
}
|
|
|
|
/* Need this to sanity check attribute list references to $MFT. */
|
|
vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
|
|
|
|
/* Provides readpage() for map_mft_record(). */
|
|
vi->i_mapping->a_ops = &ntfs_mst_aops;
|
|
|
|
ctx = ntfs_attr_get_search_ctx(ni, m);
|
|
if (!ctx) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
/* Find the attribute list attribute if present. */
|
|
err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
|
|
if (err) {
|
|
if (unlikely(err != -ENOENT)) {
|
|
ntfs_error(sb, "Failed to lookup attribute list "
|
|
"attribute. You should run chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
} else /* if (!err) */ {
|
|
ATTR_LIST_ENTRY *al_entry, *next_al_entry;
|
|
u8 *al_end;
|
|
static const char *es = " Not allowed. $MFT is corrupt. "
|
|
"You should run chkdsk.";
|
|
|
|
ntfs_debug("Attribute list attribute found in $MFT.");
|
|
NInoSetAttrList(ni);
|
|
a = ctx->attr;
|
|
if (a->flags & ATTR_COMPRESSION_MASK) {
|
|
ntfs_error(sb, "Attribute list attribute is "
|
|
"compressed.%s", es);
|
|
goto put_err_out;
|
|
}
|
|
if (a->flags & ATTR_IS_ENCRYPTED ||
|
|
a->flags & ATTR_IS_SPARSE) {
|
|
if (a->non_resident) {
|
|
ntfs_error(sb, "Non-resident attribute list "
|
|
"attribute is encrypted/"
|
|
"sparse.%s", es);
|
|
goto put_err_out;
|
|
}
|
|
ntfs_warning(sb, "Resident attribute list attribute "
|
|
"in $MFT system file is marked "
|
|
"encrypted/sparse which is not true. "
|
|
"However, Windows allows this and "
|
|
"chkdsk does not detect or correct it "
|
|
"so we will just ignore the invalid "
|
|
"flags and pretend they are not set.");
|
|
}
|
|
/* Now allocate memory for the attribute list. */
|
|
ni->attr_list_size = (u32)ntfs_attr_size(a);
|
|
ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
|
|
if (!ni->attr_list) {
|
|
ntfs_error(sb, "Not enough memory to allocate buffer "
|
|
"for attribute list.");
|
|
goto put_err_out;
|
|
}
|
|
if (a->non_resident) {
|
|
NInoSetAttrListNonResident(ni);
|
|
if (a->data.non_resident.lowest_vcn) {
|
|
ntfs_error(sb, "Attribute list has non zero "
|
|
"lowest_vcn. $MFT is corrupt. "
|
|
"You should run chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
/* Setup the runlist. */
|
|
ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
|
|
a, NULL);
|
|
if (IS_ERR(ni->attr_list_rl.rl)) {
|
|
err = PTR_ERR(ni->attr_list_rl.rl);
|
|
ni->attr_list_rl.rl = NULL;
|
|
ntfs_error(sb, "Mapping pairs decompression "
|
|
"failed with error code %i.",
|
|
-err);
|
|
goto put_err_out;
|
|
}
|
|
/* Now load the attribute list. */
|
|
if ((err = load_attribute_list(vol, &ni->attr_list_rl,
|
|
ni->attr_list, ni->attr_list_size,
|
|
sle64_to_cpu(a->data.
|
|
non_resident.initialized_size)))) {
|
|
ntfs_error(sb, "Failed to load attribute list "
|
|
"attribute with error code %i.",
|
|
-err);
|
|
goto put_err_out;
|
|
}
|
|
} else /* if (!ctx.attr->non_resident) */ {
|
|
if ((u8*)a + le16_to_cpu(
|
|
a->data.resident.value_offset) +
|
|
le32_to_cpu(
|
|
a->data.resident.value_length) >
|
|
(u8*)ctx->mrec + vol->mft_record_size) {
|
|
ntfs_error(sb, "Corrupt attribute list "
|
|
"attribute.");
|
|
goto put_err_out;
|
|
}
|
|
/* Now copy the attribute list. */
|
|
memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
|
|
a->data.resident.value_offset),
|
|
le32_to_cpu(
|
|
a->data.resident.value_length));
|
|
}
|
|
/* The attribute list is now setup in memory. */
|
|
/*
|
|
* FIXME: I don't know if this case is actually possible.
|
|
* According to logic it is not possible but I have seen too
|
|
* many weird things in MS software to rely on logic... Thus we
|
|
* perform a manual search and make sure the first $MFT/$DATA
|
|
* extent is in the base inode. If it is not we abort with an
|
|
* error and if we ever see a report of this error we will need
|
|
* to do some magic in order to have the necessary mft record
|
|
* loaded and in the right place in the page cache. But
|
|
* hopefully logic will prevail and this never happens...
|
|
*/
|
|
al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
|
|
al_end = (u8*)al_entry + ni->attr_list_size;
|
|
for (;; al_entry = next_al_entry) {
|
|
/* Out of bounds check. */
|
|
if ((u8*)al_entry < ni->attr_list ||
|
|
(u8*)al_entry > al_end)
|
|
goto em_put_err_out;
|
|
/* Catch the end of the attribute list. */
|
|
if ((u8*)al_entry == al_end)
|
|
goto em_put_err_out;
|
|
if (!al_entry->length)
|
|
goto em_put_err_out;
|
|
if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
|
|
le16_to_cpu(al_entry->length) > al_end)
|
|
goto em_put_err_out;
|
|
next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
|
|
le16_to_cpu(al_entry->length));
|
|
if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
|
|
goto em_put_err_out;
|
|
if (AT_DATA != al_entry->type)
|
|
continue;
|
|
/* We want an unnamed attribute. */
|
|
if (al_entry->name_length)
|
|
goto em_put_err_out;
|
|
/* Want the first entry, i.e. lowest_vcn == 0. */
|
|
if (al_entry->lowest_vcn)
|
|
goto em_put_err_out;
|
|
/* First entry has to be in the base mft record. */
|
|
if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
|
|
/* MFT references do not match, logic fails. */
|
|
ntfs_error(sb, "BUG: The first $DATA extent "
|
|
"of $MFT is not in the base "
|
|
"mft record. Please report "
|
|
"you saw this message to "
|
|
"linux-ntfs-dev@lists."
|
|
"sourceforge.net");
|
|
goto put_err_out;
|
|
} else {
|
|
/* Sequence numbers must match. */
|
|
if (MSEQNO_LE(al_entry->mft_reference) !=
|
|
ni->seq_no)
|
|
goto em_put_err_out;
|
|
/* Got it. All is ok. We can stop now. */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
|
|
/* Now load all attribute extents. */
|
|
a = NULL;
|
|
next_vcn = last_vcn = highest_vcn = 0;
|
|
while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
|
|
ctx))) {
|
|
runlist_element *nrl;
|
|
|
|
/* Cache the current attribute. */
|
|
a = ctx->attr;
|
|
/* $MFT must be non-resident. */
|
|
if (!a->non_resident) {
|
|
ntfs_error(sb, "$MFT must be non-resident but a "
|
|
"resident extent was found. $MFT is "
|
|
"corrupt. Run chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
/* $MFT must be uncompressed and unencrypted. */
|
|
if (a->flags & ATTR_COMPRESSION_MASK ||
|
|
a->flags & ATTR_IS_ENCRYPTED ||
|
|
a->flags & ATTR_IS_SPARSE) {
|
|
ntfs_error(sb, "$MFT must be uncompressed, "
|
|
"non-sparse, and unencrypted but a "
|
|
"compressed/sparse/encrypted extent "
|
|
"was found. $MFT is corrupt. Run "
|
|
"chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
/*
|
|
* Decompress the mapping pairs array of this extent and merge
|
|
* the result into the existing runlist. No need for locking
|
|
* as we have exclusive access to the inode at this time and we
|
|
* are a mount in progress task, too.
|
|
*/
|
|
nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
|
|
if (IS_ERR(nrl)) {
|
|
ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
|
|
"failed with error code %ld. $MFT is "
|
|
"corrupt.", PTR_ERR(nrl));
|
|
goto put_err_out;
|
|
}
|
|
ni->runlist.rl = nrl;
|
|
|
|
/* Are we in the first extent? */
|
|
if (!next_vcn) {
|
|
if (a->data.non_resident.lowest_vcn) {
|
|
ntfs_error(sb, "First extent of $DATA "
|
|
"attribute has non zero "
|
|
"lowest_vcn. $MFT is corrupt. "
|
|
"You should run chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
/* Get the last vcn in the $DATA attribute. */
|
|
last_vcn = sle64_to_cpu(
|
|
a->data.non_resident.allocated_size)
|
|
>> vol->cluster_size_bits;
|
|
/* Fill in the inode size. */
|
|
vi->i_size = sle64_to_cpu(
|
|
a->data.non_resident.data_size);
|
|
ni->initialized_size = sle64_to_cpu(
|
|
a->data.non_resident.initialized_size);
|
|
ni->allocated_size = sle64_to_cpu(
|
|
a->data.non_resident.allocated_size);
|
|
/*
|
|
* Verify the number of mft records does not exceed
|
|
* 2^32 - 1.
|
|
*/
|
|
if ((vi->i_size >> vol->mft_record_size_bits) >=
|
|
(1ULL << 32)) {
|
|
ntfs_error(sb, "$MFT is too big! Aborting.");
|
|
goto put_err_out;
|
|
}
|
|
/*
|
|
* We have got the first extent of the runlist for
|
|
* $MFT which means it is now relatively safe to call
|
|
* the normal ntfs_read_inode() function.
|
|
* Complete reading the inode, this will actually
|
|
* re-read the mft record for $MFT, this time entering
|
|
* it into the page cache with which we complete the
|
|
* kick start of the volume. It should be safe to do
|
|
* this now as the first extent of $MFT/$DATA is
|
|
* already known and we would hope that we don't need
|
|
* further extents in order to find the other
|
|
* attributes belonging to $MFT. Only time will tell if
|
|
* this is really the case. If not we will have to play
|
|
* magic at this point, possibly duplicating a lot of
|
|
* ntfs_read_inode() at this point. We will need to
|
|
* ensure we do enough of its work to be able to call
|
|
* ntfs_read_inode() on extents of $MFT/$DATA. But lets
|
|
* hope this never happens...
|
|
*/
|
|
ntfs_read_locked_inode(vi);
|
|
if (is_bad_inode(vi)) {
|
|
ntfs_error(sb, "ntfs_read_inode() of $MFT "
|
|
"failed. BUG or corrupt $MFT. "
|
|
"Run chkdsk and if no errors "
|
|
"are found, please report you "
|
|
"saw this message to "
|
|
"linux-ntfs-dev@lists."
|
|
"sourceforge.net");
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
/* Revert to the safe super operations. */
|
|
ntfs_free(m);
|
|
return -1;
|
|
}
|
|
/*
|
|
* Re-initialize some specifics about $MFT's inode as
|
|
* ntfs_read_inode() will have set up the default ones.
|
|
*/
|
|
/* Set uid and gid to root. */
|
|
vi->i_uid = GLOBAL_ROOT_UID;
|
|
vi->i_gid = GLOBAL_ROOT_GID;
|
|
/* Regular file. No access for anyone. */
|
|
vi->i_mode = S_IFREG;
|
|
/* No VFS initiated operations allowed for $MFT. */
|
|
vi->i_op = &ntfs_empty_inode_ops;
|
|
vi->i_fop = &ntfs_empty_file_ops;
|
|
}
|
|
|
|
/* Get the lowest vcn for the next extent. */
|
|
highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
|
|
next_vcn = highest_vcn + 1;
|
|
|
|
/* Only one extent or error, which we catch below. */
|
|
if (next_vcn <= 0)
|
|
break;
|
|
|
|
/* Avoid endless loops due to corruption. */
|
|
if (next_vcn < sle64_to_cpu(
|
|
a->data.non_resident.lowest_vcn)) {
|
|
ntfs_error(sb, "$MFT has corrupt attribute list "
|
|
"attribute. Run chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
}
|
|
if (err != -ENOENT) {
|
|
ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
|
|
"$MFT is corrupt. Run chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
if (!a) {
|
|
ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
|
|
"corrupt. Run chkdsk.");
|
|
goto put_err_out;
|
|
}
|
|
if (highest_vcn && highest_vcn != last_vcn - 1) {
|
|
ntfs_error(sb, "Failed to load the complete runlist for "
|
|
"$MFT/$DATA. Driver bug or corrupt $MFT. "
|
|
"Run chkdsk.");
|
|
ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
|
|
(unsigned long long)highest_vcn,
|
|
(unsigned long long)last_vcn - 1);
|
|
goto put_err_out;
|
|
}
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
ntfs_debug("Done.");
|
|
ntfs_free(m);
|
|
|
|
/*
|
|
* Split the locking rules of the MFT inode from the
|
|
* locking rules of other inodes:
|
|
*/
|
|
lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
|
|
lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
|
|
|
|
return 0;
|
|
|
|
em_put_err_out:
|
|
ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
|
|
"attribute list. $MFT is corrupt. Run chkdsk.");
|
|
put_err_out:
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
err_out:
|
|
ntfs_error(sb, "Failed. Marking inode as bad.");
|
|
make_bad_inode(vi);
|
|
ntfs_free(m);
|
|
return -1;
|
|
}
|
|
|
|
static void __ntfs_clear_inode(ntfs_inode *ni)
|
|
{
|
|
/* Free all alocated memory. */
|
|
down_write(&ni->runlist.lock);
|
|
if (ni->runlist.rl) {
|
|
ntfs_free(ni->runlist.rl);
|
|
ni->runlist.rl = NULL;
|
|
}
|
|
up_write(&ni->runlist.lock);
|
|
|
|
if (ni->attr_list) {
|
|
ntfs_free(ni->attr_list);
|
|
ni->attr_list = NULL;
|
|
}
|
|
|
|
down_write(&ni->attr_list_rl.lock);
|
|
if (ni->attr_list_rl.rl) {
|
|
ntfs_free(ni->attr_list_rl.rl);
|
|
ni->attr_list_rl.rl = NULL;
|
|
}
|
|
up_write(&ni->attr_list_rl.lock);
|
|
|
|
if (ni->name_len && ni->name != I30) {
|
|
/* Catch bugs... */
|
|
BUG_ON(!ni->name);
|
|
kfree(ni->name);
|
|
}
|
|
}
|
|
|
|
void ntfs_clear_extent_inode(ntfs_inode *ni)
|
|
{
|
|
ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
|
|
|
|
BUG_ON(NInoAttr(ni));
|
|
BUG_ON(ni->nr_extents != -1);
|
|
|
|
#ifdef NTFS_RW
|
|
if (NInoDirty(ni)) {
|
|
if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
|
|
ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
|
|
"Losing data! This is a BUG!!!");
|
|
// FIXME: Do something!!!
|
|
}
|
|
#endif /* NTFS_RW */
|
|
|
|
__ntfs_clear_inode(ni);
|
|
|
|
/* Bye, bye... */
|
|
ntfs_destroy_extent_inode(ni);
|
|
}
|
|
|
|
/**
|
|
* ntfs_evict_big_inode - clean up the ntfs specific part of an inode
|
|
* @vi: vfs inode pending annihilation
|
|
*
|
|
* When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
|
|
* is called, which deallocates all memory belonging to the NTFS specific part
|
|
* of the inode and returns.
|
|
*
|
|
* If the MFT record is dirty, we commit it before doing anything else.
|
|
*/
|
|
void ntfs_evict_big_inode(struct inode *vi)
|
|
{
|
|
ntfs_inode *ni = NTFS_I(vi);
|
|
|
|
truncate_inode_pages_final(&vi->i_data);
|
|
clear_inode(vi);
|
|
|
|
#ifdef NTFS_RW
|
|
if (NInoDirty(ni)) {
|
|
bool was_bad = (is_bad_inode(vi));
|
|
|
|
/* Committing the inode also commits all extent inodes. */
|
|
ntfs_commit_inode(vi);
|
|
|
|
if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
|
|
ntfs_error(vi->i_sb, "Failed to commit dirty inode "
|
|
"0x%lx. Losing data!", vi->i_ino);
|
|
// FIXME: Do something!!!
|
|
}
|
|
}
|
|
#endif /* NTFS_RW */
|
|
|
|
/* No need to lock at this stage as no one else has a reference. */
|
|
if (ni->nr_extents > 0) {
|
|
int i;
|
|
|
|
for (i = 0; i < ni->nr_extents; i++)
|
|
ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
|
|
kfree(ni->ext.extent_ntfs_inos);
|
|
}
|
|
|
|
__ntfs_clear_inode(ni);
|
|
|
|
if (NInoAttr(ni)) {
|
|
/* Release the base inode if we are holding it. */
|
|
if (ni->nr_extents == -1) {
|
|
iput(VFS_I(ni->ext.base_ntfs_ino));
|
|
ni->nr_extents = 0;
|
|
ni->ext.base_ntfs_ino = NULL;
|
|
}
|
|
}
|
|
BUG_ON(ni->page);
|
|
if (!atomic_dec_and_test(&ni->count))
|
|
BUG();
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* ntfs_show_options - show mount options in /proc/mounts
|
|
* @sf: seq_file in which to write our mount options
|
|
* @root: root of the mounted tree whose mount options to display
|
|
*
|
|
* Called by the VFS once for each mounted ntfs volume when someone reads
|
|
* /proc/mounts in order to display the NTFS specific mount options of each
|
|
* mount. The mount options of fs specified by @root are written to the seq file
|
|
* @sf and success is returned.
|
|
*/
|
|
int ntfs_show_options(struct seq_file *sf, struct dentry *root)
|
|
{
|
|
ntfs_volume *vol = NTFS_SB(root->d_sb);
|
|
int i;
|
|
|
|
seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
|
|
seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
|
|
if (vol->fmask == vol->dmask)
|
|
seq_printf(sf, ",umask=0%o", vol->fmask);
|
|
else {
|
|
seq_printf(sf, ",fmask=0%o", vol->fmask);
|
|
seq_printf(sf, ",dmask=0%o", vol->dmask);
|
|
}
|
|
seq_printf(sf, ",nls=%s", vol->nls_map->charset);
|
|
if (NVolCaseSensitive(vol))
|
|
seq_printf(sf, ",case_sensitive");
|
|
if (NVolShowSystemFiles(vol))
|
|
seq_printf(sf, ",show_sys_files");
|
|
if (!NVolSparseEnabled(vol))
|
|
seq_printf(sf, ",disable_sparse");
|
|
for (i = 0; on_errors_arr[i].val; i++) {
|
|
if (on_errors_arr[i].val & vol->on_errors)
|
|
seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
|
|
}
|
|
seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef NTFS_RW
|
|
|
|
static const char *es = " Leaving inconsistent metadata. Unmount and run "
|
|
"chkdsk.";
|
|
|
|
/**
|
|
* ntfs_truncate - called when the i_size of an ntfs inode is changed
|
|
* @vi: inode for which the i_size was changed
|
|
*
|
|
* We only support i_size changes for normal files at present, i.e. not
|
|
* compressed and not encrypted. This is enforced in ntfs_setattr(), see
|
|
* below.
|
|
*
|
|
* The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
|
|
* that the change is allowed.
|
|
*
|
|
* This implies for us that @vi is a file inode rather than a directory, index,
|
|
* or attribute inode as well as that @vi is a base inode.
|
|
*
|
|
* Returns 0 on success or -errno on error.
|
|
*
|
|
* Called with ->i_mutex held.
|
|
*/
|
|
int ntfs_truncate(struct inode *vi)
|
|
{
|
|
s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
|
|
VCN highest_vcn;
|
|
unsigned long flags;
|
|
ntfs_inode *base_ni, *ni = NTFS_I(vi);
|
|
ntfs_volume *vol = ni->vol;
|
|
ntfs_attr_search_ctx *ctx;
|
|
MFT_RECORD *m;
|
|
ATTR_RECORD *a;
|
|
const char *te = " Leaving file length out of sync with i_size.";
|
|
int err, mp_size, size_change, alloc_change;
|
|
u32 attr_len;
|
|
|
|
ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
|
|
BUG_ON(NInoAttr(ni));
|
|
BUG_ON(S_ISDIR(vi->i_mode));
|
|
BUG_ON(NInoMstProtected(ni));
|
|
BUG_ON(ni->nr_extents < 0);
|
|
retry_truncate:
|
|
/*
|
|
* Lock the runlist for writing and map the mft record to ensure it is
|
|
* safe to mess with the attribute runlist and sizes.
|
|
*/
|
|
down_write(&ni->runlist.lock);
|
|
if (!NInoAttr(ni))
|
|
base_ni = ni;
|
|
else
|
|
base_ni = ni->ext.base_ntfs_ino;
|
|
m = map_mft_record(base_ni);
|
|
if (IS_ERR(m)) {
|
|
err = PTR_ERR(m);
|
|
ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
|
|
"(error code %d).%s", vi->i_ino, err, te);
|
|
ctx = NULL;
|
|
m = NULL;
|
|
goto old_bad_out;
|
|
}
|
|
ctx = ntfs_attr_get_search_ctx(base_ni, m);
|
|
if (unlikely(!ctx)) {
|
|
ntfs_error(vi->i_sb, "Failed to allocate a search context for "
|
|
"inode 0x%lx (not enough memory).%s",
|
|
vi->i_ino, te);
|
|
err = -ENOMEM;
|
|
goto old_bad_out;
|
|
}
|
|
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT) {
|
|
ntfs_error(vi->i_sb, "Open attribute is missing from "
|
|
"mft record. Inode 0x%lx is corrupt. "
|
|
"Run chkdsk.%s", vi->i_ino, te);
|
|
err = -EIO;
|
|
} else
|
|
ntfs_error(vi->i_sb, "Failed to lookup attribute in "
|
|
"inode 0x%lx (error code %d).%s",
|
|
vi->i_ino, err, te);
|
|
goto old_bad_out;
|
|
}
|
|
m = ctx->mrec;
|
|
a = ctx->attr;
|
|
/*
|
|
* The i_size of the vfs inode is the new size for the attribute value.
|
|
*/
|
|
new_size = i_size_read(vi);
|
|
/* The current size of the attribute value is the old size. */
|
|
old_size = ntfs_attr_size(a);
|
|
/* Calculate the new allocated size. */
|
|
if (NInoNonResident(ni))
|
|
new_alloc_size = (new_size + vol->cluster_size - 1) &
|
|
~(s64)vol->cluster_size_mask;
|
|
else
|
|
new_alloc_size = (new_size + 7) & ~7;
|
|
/* The current allocated size is the old allocated size. */
|
|
read_lock_irqsave(&ni->size_lock, flags);
|
|
old_alloc_size = ni->allocated_size;
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
/*
|
|
* The change in the file size. This will be 0 if no change, >0 if the
|
|
* size is growing, and <0 if the size is shrinking.
|
|
*/
|
|
size_change = -1;
|
|
if (new_size - old_size >= 0) {
|
|
size_change = 1;
|
|
if (new_size == old_size)
|
|
size_change = 0;
|
|
}
|
|
/* As above for the allocated size. */
|
|
alloc_change = -1;
|
|
if (new_alloc_size - old_alloc_size >= 0) {
|
|
alloc_change = 1;
|
|
if (new_alloc_size == old_alloc_size)
|
|
alloc_change = 0;
|
|
}
|
|
/*
|
|
* If neither the size nor the allocation are being changed there is
|
|
* nothing to do.
|
|
*/
|
|
if (!size_change && !alloc_change)
|
|
goto unm_done;
|
|
/* If the size is changing, check if new size is allowed in $AttrDef. */
|
|
if (size_change) {
|
|
err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
|
|
if (unlikely(err)) {
|
|
if (err == -ERANGE) {
|
|
ntfs_error(vol->sb, "Truncate would cause the "
|
|
"inode 0x%lx to %simum size "
|
|
"for its attribute type "
|
|
"(0x%x). Aborting truncate.",
|
|
vi->i_ino,
|
|
new_size > old_size ? "exceed "
|
|
"the max" : "go under the min",
|
|
le32_to_cpu(ni->type));
|
|
err = -EFBIG;
|
|
} else {
|
|
ntfs_error(vol->sb, "Inode 0x%lx has unknown "
|
|
"attribute type 0x%x. "
|
|
"Aborting truncate.",
|
|
vi->i_ino,
|
|
le32_to_cpu(ni->type));
|
|
err = -EIO;
|
|
}
|
|
/* Reset the vfs inode size to the old size. */
|
|
i_size_write(vi, old_size);
|
|
goto err_out;
|
|
}
|
|
}
|
|
if (NInoCompressed(ni) || NInoEncrypted(ni)) {
|
|
ntfs_warning(vi->i_sb, "Changes in inode size are not "
|
|
"supported yet for %s files, ignoring.",
|
|
NInoCompressed(ni) ? "compressed" :
|
|
"encrypted");
|
|
err = -EOPNOTSUPP;
|
|
goto bad_out;
|
|
}
|
|
if (a->non_resident)
|
|
goto do_non_resident_truncate;
|
|
BUG_ON(NInoNonResident(ni));
|
|
/* Resize the attribute record to best fit the new attribute size. */
|
|
if (new_size < vol->mft_record_size &&
|
|
!ntfs_resident_attr_value_resize(m, a, new_size)) {
|
|
/* The resize succeeded! */
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
mark_mft_record_dirty(ctx->ntfs_ino);
|
|
write_lock_irqsave(&ni->size_lock, flags);
|
|
/* Update the sizes in the ntfs inode and all is done. */
|
|
ni->allocated_size = le32_to_cpu(a->length) -
|
|
le16_to_cpu(a->data.resident.value_offset);
|
|
/*
|
|
* Note ntfs_resident_attr_value_resize() has already done any
|
|
* necessary data clearing in the attribute record. When the
|
|
* file is being shrunk vmtruncate() will already have cleared
|
|
* the top part of the last partial page, i.e. since this is
|
|
* the resident case this is the page with index 0. However,
|
|
* when the file is being expanded, the page cache page data
|
|
* between the old data_size, i.e. old_size, and the new_size
|
|
* has not been zeroed. Fortunately, we do not need to zero it
|
|
* either since on one hand it will either already be zero due
|
|
* to both readpage and writepage clearing partial page data
|
|
* beyond i_size in which case there is nothing to do or in the
|
|
* case of the file being mmap()ped at the same time, POSIX
|
|
* specifies that the behaviour is unspecified thus we do not
|
|
* have to do anything. This means that in our implementation
|
|
* in the rare case that the file is mmap()ped and a write
|
|
* occurred into the mmap()ped region just beyond the file size
|
|
* and writepage has not yet been called to write out the page
|
|
* (which would clear the area beyond the file size) and we now
|
|
* extend the file size to incorporate this dirty region
|
|
* outside the file size, a write of the page would result in
|
|
* this data being written to disk instead of being cleared.
|
|
* Given both POSIX and the Linux mmap(2) man page specify that
|
|
* this corner case is undefined, we choose to leave it like
|
|
* that as this is much simpler for us as we cannot lock the
|
|
* relevant page now since we are holding too many ntfs locks
|
|
* which would result in a lock reversal deadlock.
|
|
*/
|
|
ni->initialized_size = new_size;
|
|
write_unlock_irqrestore(&ni->size_lock, flags);
|
|
goto unm_done;
|
|
}
|
|
/* If the above resize failed, this must be an attribute extension. */
|
|
BUG_ON(size_change < 0);
|
|
/*
|
|
* We have to drop all the locks so we can call
|
|
* ntfs_attr_make_non_resident(). This could be optimised by try-
|
|
* locking the first page cache page and only if that fails dropping
|
|
* the locks, locking the page, and redoing all the locking and
|
|
* lookups. While this would be a huge optimisation, it is not worth
|
|
* it as this is definitely a slow code path as it only ever can happen
|
|
* once for any given file.
|
|
*/
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
up_write(&ni->runlist.lock);
|
|
/*
|
|
* Not enough space in the mft record, try to make the attribute
|
|
* non-resident and if successful restart the truncation process.
|
|
*/
|
|
err = ntfs_attr_make_non_resident(ni, old_size);
|
|
if (likely(!err))
|
|
goto retry_truncate;
|
|
/*
|
|
* Could not make non-resident. If this is due to this not being
|
|
* permitted for this attribute type or there not being enough space,
|
|
* try to make other attributes non-resident. Otherwise fail.
|
|
*/
|
|
if (unlikely(err != -EPERM && err != -ENOSPC)) {
|
|
ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
|
|
"type 0x%x, because the conversion from "
|
|
"resident to non-resident attribute failed "
|
|
"with error code %i.", vi->i_ino,
|
|
(unsigned)le32_to_cpu(ni->type), err);
|
|
if (err != -ENOMEM)
|
|
err = -EIO;
|
|
goto conv_err_out;
|
|
}
|
|
/* TODO: Not implemented from here, abort. */
|
|
if (err == -ENOSPC)
|
|
ntfs_error(vol->sb, "Not enough space in the mft record/on "
|
|
"disk for the non-resident attribute value. "
|
|
"This case is not implemented yet.");
|
|
else /* if (err == -EPERM) */
|
|
ntfs_error(vol->sb, "This attribute type may not be "
|
|
"non-resident. This case is not implemented "
|
|
"yet.");
|
|
err = -EOPNOTSUPP;
|
|
goto conv_err_out;
|
|
#if 0
|
|
// TODO: Attempt to make other attributes non-resident.
|
|
if (!err)
|
|
goto do_resident_extend;
|
|
/*
|
|
* Both the attribute list attribute and the standard information
|
|
* attribute must remain in the base inode. Thus, if this is one of
|
|
* these attributes, we have to try to move other attributes out into
|
|
* extent mft records instead.
|
|
*/
|
|
if (ni->type == AT_ATTRIBUTE_LIST ||
|
|
ni->type == AT_STANDARD_INFORMATION) {
|
|
// TODO: Attempt to move other attributes into extent mft
|
|
// records.
|
|
err = -EOPNOTSUPP;
|
|
if (!err)
|
|
goto do_resident_extend;
|
|
goto err_out;
|
|
}
|
|
// TODO: Attempt to move this attribute to an extent mft record, but
|
|
// only if it is not already the only attribute in an mft record in
|
|
// which case there would be nothing to gain.
|
|
err = -EOPNOTSUPP;
|
|
if (!err)
|
|
goto do_resident_extend;
|
|
/* There is nothing we can do to make enough space. )-: */
|
|
goto err_out;
|
|
#endif
|
|
do_non_resident_truncate:
|
|
BUG_ON(!NInoNonResident(ni));
|
|
if (alloc_change < 0) {
|
|
highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
|
|
if (highest_vcn > 0 &&
|
|
old_alloc_size >> vol->cluster_size_bits >
|
|
highest_vcn + 1) {
|
|
/*
|
|
* This attribute has multiple extents. Not yet
|
|
* supported.
|
|
*/
|
|
ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
|
|
"attribute type 0x%x, because the "
|
|
"attribute is highly fragmented (it "
|
|
"consists of multiple extents) and "
|
|
"this case is not implemented yet.",
|
|
vi->i_ino,
|
|
(unsigned)le32_to_cpu(ni->type));
|
|
err = -EOPNOTSUPP;
|
|
goto bad_out;
|
|
}
|
|
}
|
|
/*
|
|
* If the size is shrinking, need to reduce the initialized_size and
|
|
* the data_size before reducing the allocation.
|
|
*/
|
|
if (size_change < 0) {
|
|
/*
|
|
* Make the valid size smaller (i_size is already up-to-date).
|
|
*/
|
|
write_lock_irqsave(&ni->size_lock, flags);
|
|
if (new_size < ni->initialized_size) {
|
|
ni->initialized_size = new_size;
|
|
a->data.non_resident.initialized_size =
|
|
cpu_to_sle64(new_size);
|
|
}
|
|
a->data.non_resident.data_size = cpu_to_sle64(new_size);
|
|
write_unlock_irqrestore(&ni->size_lock, flags);
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
mark_mft_record_dirty(ctx->ntfs_ino);
|
|
/* If the allocated size is not changing, we are done. */
|
|
if (!alloc_change)
|
|
goto unm_done;
|
|
/*
|
|
* If the size is shrinking it makes no sense for the
|
|
* allocation to be growing.
|
|
*/
|
|
BUG_ON(alloc_change > 0);
|
|
} else /* if (size_change >= 0) */ {
|
|
/*
|
|
* The file size is growing or staying the same but the
|
|
* allocation can be shrinking, growing or staying the same.
|
|
*/
|
|
if (alloc_change > 0) {
|
|
/*
|
|
* We need to extend the allocation and possibly update
|
|
* the data size. If we are updating the data size,
|
|
* since we are not touching the initialized_size we do
|
|
* not need to worry about the actual data on disk.
|
|
* And as far as the page cache is concerned, there
|
|
* will be no pages beyond the old data size and any
|
|
* partial region in the last page between the old and
|
|
* new data size (or the end of the page if the new
|
|
* data size is outside the page) does not need to be
|
|
* modified as explained above for the resident
|
|
* attribute truncate case. To do this, we simply drop
|
|
* the locks we hold and leave all the work to our
|
|
* friendly helper ntfs_attr_extend_allocation().
|
|
*/
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
up_write(&ni->runlist.lock);
|
|
err = ntfs_attr_extend_allocation(ni, new_size,
|
|
size_change > 0 ? new_size : -1, -1);
|
|
/*
|
|
* ntfs_attr_extend_allocation() will have done error
|
|
* output already.
|
|
*/
|
|
goto done;
|
|
}
|
|
if (!alloc_change)
|
|
goto alloc_done;
|
|
}
|
|
/* alloc_change < 0 */
|
|
/* Free the clusters. */
|
|
nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
|
|
vol->cluster_size_bits, -1, ctx);
|
|
m = ctx->mrec;
|
|
a = ctx->attr;
|
|
if (unlikely(nr_freed < 0)) {
|
|
ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
|
|
"%lli). Unmount and run chkdsk to recover "
|
|
"the lost cluster(s).", (long long)nr_freed);
|
|
NVolSetErrors(vol);
|
|
nr_freed = 0;
|
|
}
|
|
/* Truncate the runlist. */
|
|
err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
|
|
new_alloc_size >> vol->cluster_size_bits);
|
|
/*
|
|
* If the runlist truncation failed and/or the search context is no
|
|
* longer valid, we cannot resize the attribute record or build the
|
|
* mapping pairs array thus we mark the inode bad so that no access to
|
|
* the freed clusters can happen.
|
|
*/
|
|
if (unlikely(err || IS_ERR(m))) {
|
|
ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
|
|
IS_ERR(m) ?
|
|
"restore attribute search context" :
|
|
"truncate attribute runlist",
|
|
IS_ERR(m) ? PTR_ERR(m) : err, es);
|
|
err = -EIO;
|
|
goto bad_out;
|
|
}
|
|
/* Get the size for the shrunk mapping pairs array for the runlist. */
|
|
mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
|
|
if (unlikely(mp_size <= 0)) {
|
|
ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
|
|
"attribute type 0x%x, because determining the "
|
|
"size for the mapping pairs failed with error "
|
|
"code %i.%s", vi->i_ino,
|
|
(unsigned)le32_to_cpu(ni->type), mp_size, es);
|
|
err = -EIO;
|
|
goto bad_out;
|
|
}
|
|
/*
|
|
* Shrink the attribute record for the new mapping pairs array. Note,
|
|
* this cannot fail since we are making the attribute smaller thus by
|
|
* definition there is enough space to do so.
|
|
*/
|
|
attr_len = le32_to_cpu(a->length);
|
|
err = ntfs_attr_record_resize(m, a, mp_size +
|
|
le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
|
|
BUG_ON(err);
|
|
/*
|
|
* Generate the mapping pairs array directly into the attribute record.
|
|
*/
|
|
err = ntfs_mapping_pairs_build(vol, (u8*)a +
|
|
le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
|
|
mp_size, ni->runlist.rl, 0, -1, NULL);
|
|
if (unlikely(err)) {
|
|
ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
|
|
"attribute type 0x%x, because building the "
|
|
"mapping pairs failed with error code %i.%s",
|
|
vi->i_ino, (unsigned)le32_to_cpu(ni->type),
|
|
err, es);
|
|
err = -EIO;
|
|
goto bad_out;
|
|
}
|
|
/* Update the allocated/compressed size as well as the highest vcn. */
|
|
a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
|
|
vol->cluster_size_bits) - 1);
|
|
write_lock_irqsave(&ni->size_lock, flags);
|
|
ni->allocated_size = new_alloc_size;
|
|
a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
|
|
if (NInoSparse(ni) || NInoCompressed(ni)) {
|
|
if (nr_freed) {
|
|
ni->itype.compressed.size -= nr_freed <<
|
|
vol->cluster_size_bits;
|
|
BUG_ON(ni->itype.compressed.size < 0);
|
|
a->data.non_resident.compressed_size = cpu_to_sle64(
|
|
ni->itype.compressed.size);
|
|
vi->i_blocks = ni->itype.compressed.size >> 9;
|
|
}
|
|
} else
|
|
vi->i_blocks = new_alloc_size >> 9;
|
|
write_unlock_irqrestore(&ni->size_lock, flags);
|
|
/*
|
|
* We have shrunk the allocation. If this is a shrinking truncate we
|
|
* have already dealt with the initialized_size and the data_size above
|
|
* and we are done. If the truncate is only changing the allocation
|
|
* and not the data_size, we are also done. If this is an extending
|
|
* truncate, need to extend the data_size now which is ensured by the
|
|
* fact that @size_change is positive.
|
|
*/
|
|
alloc_done:
|
|
/*
|
|
* If the size is growing, need to update it now. If it is shrinking,
|
|
* we have already updated it above (before the allocation change).
|
|
*/
|
|
if (size_change > 0)
|
|
a->data.non_resident.data_size = cpu_to_sle64(new_size);
|
|
/* Ensure the modified mft record is written out. */
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
mark_mft_record_dirty(ctx->ntfs_ino);
|
|
unm_done:
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
up_write(&ni->runlist.lock);
|
|
done:
|
|
/* Update the mtime and ctime on the base inode. */
|
|
/* normally ->truncate shouldn't update ctime or mtime,
|
|
* but ntfs did before so it got a copy & paste version
|
|
* of file_update_time. one day someone should fix this
|
|
* for real.
|
|
*/
|
|
if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
|
|
struct timespec64 now = current_time(VFS_I(base_ni));
|
|
int sync_it = 0;
|
|
|
|
if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
|
|
!timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
|
|
sync_it = 1;
|
|
VFS_I(base_ni)->i_mtime = now;
|
|
VFS_I(base_ni)->i_ctime = now;
|
|
|
|
if (sync_it)
|
|
mark_inode_dirty_sync(VFS_I(base_ni));
|
|
}
|
|
|
|
if (likely(!err)) {
|
|
NInoClearTruncateFailed(ni);
|
|
ntfs_debug("Done.");
|
|
}
|
|
return err;
|
|
old_bad_out:
|
|
old_size = -1;
|
|
bad_out:
|
|
if (err != -ENOMEM && err != -EOPNOTSUPP)
|
|
NVolSetErrors(vol);
|
|
if (err != -EOPNOTSUPP)
|
|
NInoSetTruncateFailed(ni);
|
|
else if (old_size >= 0)
|
|
i_size_write(vi, old_size);
|
|
err_out:
|
|
if (ctx)
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
if (m)
|
|
unmap_mft_record(base_ni);
|
|
up_write(&ni->runlist.lock);
|
|
out:
|
|
ntfs_debug("Failed. Returning error code %i.", err);
|
|
return err;
|
|
conv_err_out:
|
|
if (err != -ENOMEM && err != -EOPNOTSUPP)
|
|
NVolSetErrors(vol);
|
|
if (err != -EOPNOTSUPP)
|
|
NInoSetTruncateFailed(ni);
|
|
else
|
|
i_size_write(vi, old_size);
|
|
goto out;
|
|
}
|
|
|
|
/**
|
|
* ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
|
|
* @vi: inode for which the i_size was changed
|
|
*
|
|
* Wrapper for ntfs_truncate() that has no return value.
|
|
*
|
|
* See ntfs_truncate() description above for details.
|
|
*/
|
|
#ifdef NTFS_RW
|
|
void ntfs_truncate_vfs(struct inode *vi) {
|
|
ntfs_truncate(vi);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* ntfs_setattr - called from notify_change() when an attribute is being changed
|
|
* @dentry: dentry whose attributes to change
|
|
* @attr: structure describing the attributes and the changes
|
|
*
|
|
* We have to trap VFS attempts to truncate the file described by @dentry as
|
|
* soon as possible, because we do not implement changes in i_size yet. So we
|
|
* abort all i_size changes here.
|
|
*
|
|
* We also abort all changes of user, group, and mode as we do not implement
|
|
* the NTFS ACLs yet.
|
|
*
|
|
* Called with ->i_mutex held.
|
|
*/
|
|
int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
|
|
{
|
|
struct inode *vi = d_inode(dentry);
|
|
int err;
|
|
unsigned int ia_valid = attr->ia_valid;
|
|
|
|
err = setattr_prepare(dentry, attr);
|
|
if (err)
|
|
goto out;
|
|
/* We do not support NTFS ACLs yet. */
|
|
if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
|
|
ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
|
|
"supported yet, ignoring.");
|
|
err = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
if (ia_valid & ATTR_SIZE) {
|
|
if (attr->ia_size != i_size_read(vi)) {
|
|
ntfs_inode *ni = NTFS_I(vi);
|
|
/*
|
|
* FIXME: For now we do not support resizing of
|
|
* compressed or encrypted files yet.
|
|
*/
|
|
if (NInoCompressed(ni) || NInoEncrypted(ni)) {
|
|
ntfs_warning(vi->i_sb, "Changes in inode size "
|
|
"are not supported yet for "
|
|
"%s files, ignoring.",
|
|
NInoCompressed(ni) ?
|
|
"compressed" : "encrypted");
|
|
err = -EOPNOTSUPP;
|
|
} else {
|
|
truncate_setsize(vi, attr->ia_size);
|
|
ntfs_truncate_vfs(vi);
|
|
}
|
|
if (err || ia_valid == ATTR_SIZE)
|
|
goto out;
|
|
} else {
|
|
/*
|
|
* We skipped the truncate but must still update
|
|
* timestamps.
|
|
*/
|
|
ia_valid |= ATTR_MTIME | ATTR_CTIME;
|
|
}
|
|
}
|
|
if (ia_valid & ATTR_ATIME)
|
|
vi->i_atime = attr->ia_atime;
|
|
if (ia_valid & ATTR_MTIME)
|
|
vi->i_mtime = attr->ia_mtime;
|
|
if (ia_valid & ATTR_CTIME)
|
|
vi->i_ctime = attr->ia_ctime;
|
|
mark_inode_dirty(vi);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_write_inode - write out a dirty inode
|
|
* @vi: inode to write out
|
|
* @sync: if true, write out synchronously
|
|
*
|
|
* Write out a dirty inode to disk including any extent inodes if present.
|
|
*
|
|
* If @sync is true, commit the inode to disk and wait for io completion. This
|
|
* is done using write_mft_record().
|
|
*
|
|
* If @sync is false, just schedule the write to happen but do not wait for i/o
|
|
* completion. In 2.6 kernels, scheduling usually happens just by virtue of
|
|
* marking the page (and in this case mft record) dirty but we do not implement
|
|
* this yet as write_mft_record() largely ignores the @sync parameter and
|
|
* always performs synchronous writes.
|
|
*
|
|
* Return 0 on success and -errno on error.
|
|
*/
|
|
int __ntfs_write_inode(struct inode *vi, int sync)
|
|
{
|
|
sle64 nt;
|
|
ntfs_inode *ni = NTFS_I(vi);
|
|
ntfs_attr_search_ctx *ctx;
|
|
MFT_RECORD *m;
|
|
STANDARD_INFORMATION *si;
|
|
int err = 0;
|
|
bool modified = false;
|
|
|
|
ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
|
|
vi->i_ino);
|
|
/*
|
|
* Dirty attribute inodes are written via their real inodes so just
|
|
* clean them here. Access time updates are taken care off when the
|
|
* real inode is written.
|
|
*/
|
|
if (NInoAttr(ni)) {
|
|
NInoClearDirty(ni);
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
}
|
|
/* Map, pin, and lock the mft record belonging to the inode. */
|
|
m = map_mft_record(ni);
|
|
if (IS_ERR(m)) {
|
|
err = PTR_ERR(m);
|
|
goto err_out;
|
|
}
|
|
/* Update the access times in the standard information attribute. */
|
|
ctx = ntfs_attr_get_search_ctx(ni, m);
|
|
if (unlikely(!ctx)) {
|
|
err = -ENOMEM;
|
|
goto unm_err_out;
|
|
}
|
|
err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
goto unm_err_out;
|
|
}
|
|
si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
|
|
le16_to_cpu(ctx->attr->data.resident.value_offset));
|
|
/* Update the access times if they have changed. */
|
|
nt = utc2ntfs(vi->i_mtime);
|
|
if (si->last_data_change_time != nt) {
|
|
ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
|
|
"new = 0x%llx", vi->i_ino, (long long)
|
|
sle64_to_cpu(si->last_data_change_time),
|
|
(long long)sle64_to_cpu(nt));
|
|
si->last_data_change_time = nt;
|
|
modified = true;
|
|
}
|
|
nt = utc2ntfs(vi->i_ctime);
|
|
if (si->last_mft_change_time != nt) {
|
|
ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
|
|
"new = 0x%llx", vi->i_ino, (long long)
|
|
sle64_to_cpu(si->last_mft_change_time),
|
|
(long long)sle64_to_cpu(nt));
|
|
si->last_mft_change_time = nt;
|
|
modified = true;
|
|
}
|
|
nt = utc2ntfs(vi->i_atime);
|
|
if (si->last_access_time != nt) {
|
|
ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
|
|
"new = 0x%llx", vi->i_ino,
|
|
(long long)sle64_to_cpu(si->last_access_time),
|
|
(long long)sle64_to_cpu(nt));
|
|
si->last_access_time = nt;
|
|
modified = true;
|
|
}
|
|
/*
|
|
* If we just modified the standard information attribute we need to
|
|
* mark the mft record it is in dirty. We do this manually so that
|
|
* mark_inode_dirty() is not called which would redirty the inode and
|
|
* hence result in an infinite loop of trying to write the inode.
|
|
* There is no need to mark the base inode nor the base mft record
|
|
* dirty, since we are going to write this mft record below in any case
|
|
* and the base mft record may actually not have been modified so it
|
|
* might not need to be written out.
|
|
* NOTE: It is not a problem when the inode for $MFT itself is being
|
|
* written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
|
|
* on the $MFT inode and hence ntfs_write_inode() will not be
|
|
* re-invoked because of it which in turn is ok since the dirtied mft
|
|
* record will be cleaned and written out to disk below, i.e. before
|
|
* this function returns.
|
|
*/
|
|
if (modified) {
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
if (!NInoTestSetDirty(ctx->ntfs_ino))
|
|
mark_ntfs_record_dirty(ctx->ntfs_ino->page,
|
|
ctx->ntfs_ino->page_ofs);
|
|
}
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
/* Now the access times are updated, write the base mft record. */
|
|
if (NInoDirty(ni))
|
|
err = write_mft_record(ni, m, sync);
|
|
/* Write all attached extent mft records. */
|
|
mutex_lock(&ni->extent_lock);
|
|
if (ni->nr_extents > 0) {
|
|
ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
|
|
int i;
|
|
|
|
ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
|
|
for (i = 0; i < ni->nr_extents; i++) {
|
|
ntfs_inode *tni = extent_nis[i];
|
|
|
|
if (NInoDirty(tni)) {
|
|
MFT_RECORD *tm = map_mft_record(tni);
|
|
int ret;
|
|
|
|
if (IS_ERR(tm)) {
|
|
if (!err || err == -ENOMEM)
|
|
err = PTR_ERR(tm);
|
|
continue;
|
|
}
|
|
ret = write_mft_record(tni, tm, sync);
|
|
unmap_mft_record(tni);
|
|
if (unlikely(ret)) {
|
|
if (!err || err == -ENOMEM)
|
|
err = ret;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
mutex_unlock(&ni->extent_lock);
|
|
unmap_mft_record(ni);
|
|
if (unlikely(err))
|
|
goto err_out;
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
unm_err_out:
|
|
unmap_mft_record(ni);
|
|
err_out:
|
|
if (err == -ENOMEM) {
|
|
ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
|
|
"Marking the inode dirty again, so the VFS "
|
|
"retries later.");
|
|
mark_inode_dirty(vi);
|
|
} else {
|
|
ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
|
|
NVolSetErrors(ni->vol);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
#endif /* NTFS_RW */
|