linux/drivers/iio/light/vl6180.c
Alexandru Ardelean d3be83244c iio: remove explicit IIO device parent assignment
This patch applies the semantic patch:
@@
expression I, P, SP;
@@
   I = devm_iio_device_alloc(P, SP);
   ...
-  I->dev.parent = P;

It updates 302 files and does 307 deletions.
This semantic patch also removes some comments like
'/* Establish that the iio_dev is a child of the i2c device */'

But this is is only done in case where the block is left empty.

The patch does not seem to cover all cases. It looks like in some cases a
different variable is used in some cases to assign the parent, but it
points to the same reference.
In other cases, the block covered by ... may be just too big to be covered
by the semantic patch.

However, this looks pretty good as well, as it does cover a big bulk of the
drivers that should remove the parent assignment.

Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2020-06-14 11:49:59 +01:00

552 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* vl6180.c - Support for STMicroelectronics VL6180 ALS, range and proximity
* sensor
*
* Copyright 2017 Peter Meerwald-Stadler <pmeerw@pmeerw.net>
* Copyright 2017 Manivannan Sadhasivam <manivannanece23@gmail.com>
*
* IIO driver for VL6180 (7-bit I2C slave address 0x29)
*
* Range: 0 to 100mm
* ALS: < 1 Lux up to 100 kLux
* IR: 850nm
*
* TODO: irq, threshold events, continuous mode, hardware buffer
*/
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/i2c.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/delay.h>
#include <linux/util_macros.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#define VL6180_DRV_NAME "vl6180"
/* Device identification register and value */
#define VL6180_MODEL_ID 0x000
#define VL6180_MODEL_ID_VAL 0xb4
/* Configuration registers */
#define VL6180_INTR_CONFIG 0x014
#define VL6180_INTR_CLEAR 0x015
#define VL6180_OUT_OF_RESET 0x016
#define VL6180_HOLD 0x017
#define VL6180_RANGE_START 0x018
#define VL6180_ALS_START 0x038
#define VL6180_ALS_GAIN 0x03f
#define VL6180_ALS_IT 0x040
/* Status registers */
#define VL6180_RANGE_STATUS 0x04d
#define VL6180_ALS_STATUS 0x04e
#define VL6180_INTR_STATUS 0x04f
/* Result value registers */
#define VL6180_ALS_VALUE 0x050
#define VL6180_RANGE_VALUE 0x062
#define VL6180_RANGE_RATE 0x066
/* bits of the RANGE_START and ALS_START register */
#define VL6180_MODE_CONT BIT(1) /* continuous mode */
#define VL6180_STARTSTOP BIT(0) /* start measurement, auto-reset */
/* bits of the INTR_STATUS and INTR_CONFIG register */
#define VL6180_ALS_READY BIT(5)
#define VL6180_RANGE_READY BIT(2)
/* bits of the INTR_CLEAR register */
#define VL6180_CLEAR_ERROR BIT(2)
#define VL6180_CLEAR_ALS BIT(1)
#define VL6180_CLEAR_RANGE BIT(0)
/* bits of the HOLD register */
#define VL6180_HOLD_ON BIT(0)
/* default value for the ALS_IT register */
#define VL6180_ALS_IT_100 0x63 /* 100 ms */
/* values for the ALS_GAIN register */
#define VL6180_ALS_GAIN_1 0x46
#define VL6180_ALS_GAIN_1_25 0x45
#define VL6180_ALS_GAIN_1_67 0x44
#define VL6180_ALS_GAIN_2_5 0x43
#define VL6180_ALS_GAIN_5 0x42
#define VL6180_ALS_GAIN_10 0x41
#define VL6180_ALS_GAIN_20 0x40
#define VL6180_ALS_GAIN_40 0x47
struct vl6180_data {
struct i2c_client *client;
struct mutex lock;
unsigned int als_gain_milli;
unsigned int als_it_ms;
};
enum { VL6180_ALS, VL6180_RANGE, VL6180_PROX };
/**
* struct vl6180_chan_regs - Registers for accessing channels
* @drdy_mask: Data ready bit in status register
* @start_reg: Conversion start register
* @value_reg: Result value register
* @word: Register word length
*/
struct vl6180_chan_regs {
u8 drdy_mask;
u16 start_reg, value_reg;
bool word;
};
static const struct vl6180_chan_regs vl6180_chan_regs_table[] = {
[VL6180_ALS] = {
.drdy_mask = VL6180_ALS_READY,
.start_reg = VL6180_ALS_START,
.value_reg = VL6180_ALS_VALUE,
.word = true,
},
[VL6180_RANGE] = {
.drdy_mask = VL6180_RANGE_READY,
.start_reg = VL6180_RANGE_START,
.value_reg = VL6180_RANGE_VALUE,
.word = false,
},
[VL6180_PROX] = {
.drdy_mask = VL6180_RANGE_READY,
.start_reg = VL6180_RANGE_START,
.value_reg = VL6180_RANGE_RATE,
.word = true,
},
};
static int vl6180_read(struct i2c_client *client, u16 cmd, void *databuf,
u8 len)
{
__be16 cmdbuf = cpu_to_be16(cmd);
struct i2c_msg msgs[2] = {
{ .addr = client->addr, .len = sizeof(cmdbuf), .buf = (u8 *) &cmdbuf },
{ .addr = client->addr, .len = len, .buf = databuf,
.flags = I2C_M_RD } };
int ret;
ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
if (ret < 0)
dev_err(&client->dev, "failed reading register 0x%04x\n", cmd);
return ret;
}
static int vl6180_read_byte(struct i2c_client *client, u16 cmd)
{
u8 data;
int ret;
ret = vl6180_read(client, cmd, &data, sizeof(data));
if (ret < 0)
return ret;
return data;
}
static int vl6180_read_word(struct i2c_client *client, u16 cmd)
{
__be16 data;
int ret;
ret = vl6180_read(client, cmd, &data, sizeof(data));
if (ret < 0)
return ret;
return be16_to_cpu(data);
}
static int vl6180_write_byte(struct i2c_client *client, u16 cmd, u8 val)
{
u8 buf[3];
struct i2c_msg msgs[1] = {
{ .addr = client->addr, .len = sizeof(buf), .buf = (u8 *) &buf } };
int ret;
buf[0] = cmd >> 8;
buf[1] = cmd & 0xff;
buf[2] = val;
ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
if (ret < 0) {
dev_err(&client->dev, "failed writing register 0x%04x\n", cmd);
return ret;
}
return 0;
}
static int vl6180_write_word(struct i2c_client *client, u16 cmd, u16 val)
{
__be16 buf[2];
struct i2c_msg msgs[1] = {
{ .addr = client->addr, .len = sizeof(buf), .buf = (u8 *) &buf } };
int ret;
buf[0] = cpu_to_be16(cmd);
buf[1] = cpu_to_be16(val);
ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
if (ret < 0) {
dev_err(&client->dev, "failed writing register 0x%04x\n", cmd);
return ret;
}
return 0;
}
static int vl6180_measure(struct vl6180_data *data, int addr)
{
struct i2c_client *client = data->client;
int tries = 20, ret;
u16 value;
mutex_lock(&data->lock);
/* Start single shot measurement */
ret = vl6180_write_byte(client,
vl6180_chan_regs_table[addr].start_reg, VL6180_STARTSTOP);
if (ret < 0)
goto fail;
while (tries--) {
ret = vl6180_read_byte(client, VL6180_INTR_STATUS);
if (ret < 0)
goto fail;
if (ret & vl6180_chan_regs_table[addr].drdy_mask)
break;
msleep(20);
}
if (tries < 0) {
ret = -EIO;
goto fail;
}
/* Read result value from appropriate registers */
ret = vl6180_chan_regs_table[addr].word ?
vl6180_read_word(client, vl6180_chan_regs_table[addr].value_reg) :
vl6180_read_byte(client, vl6180_chan_regs_table[addr].value_reg);
if (ret < 0)
goto fail;
value = ret;
/* Clear the interrupt flag after data read */
ret = vl6180_write_byte(client, VL6180_INTR_CLEAR,
VL6180_CLEAR_ERROR | VL6180_CLEAR_ALS | VL6180_CLEAR_RANGE);
if (ret < 0)
goto fail;
ret = value;
fail:
mutex_unlock(&data->lock);
return ret;
}
static const struct iio_chan_spec vl6180_channels[] = {
{
.type = IIO_LIGHT,
.address = VL6180_ALS,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_HARDWAREGAIN),
}, {
.type = IIO_DISTANCE,
.address = VL6180_RANGE,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
}, {
.type = IIO_PROXIMITY,
.address = VL6180_PROX,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
}
};
/*
* Available Ambient Light Sensor gain settings, 1/1000th, and
* corresponding setting for the VL6180_ALS_GAIN register
*/
static const int vl6180_als_gain_tab[8] = {
1000, 1250, 1670, 2500, 5000, 10000, 20000, 40000
};
static const u8 vl6180_als_gain_tab_bits[8] = {
VL6180_ALS_GAIN_1, VL6180_ALS_GAIN_1_25,
VL6180_ALS_GAIN_1_67, VL6180_ALS_GAIN_2_5,
VL6180_ALS_GAIN_5, VL6180_ALS_GAIN_10,
VL6180_ALS_GAIN_20, VL6180_ALS_GAIN_40
};
static int vl6180_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct vl6180_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = vl6180_measure(data, chan->address);
if (ret < 0)
return ret;
*val = ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_INT_TIME:
*val = data->als_it_ms;
*val2 = 1000;
return IIO_VAL_FRACTIONAL;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_LIGHT:
/* one ALS count is 0.32 Lux @ gain 1, IT 100 ms */
*val = 32000; /* 0.32 * 1000 * 100 */
*val2 = data->als_gain_milli * data->als_it_ms;
return IIO_VAL_FRACTIONAL;
case IIO_DISTANCE:
*val = 0; /* sensor reports mm, scale to meter */
*val2 = 1000;
break;
default:
return -EINVAL;
}
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_HARDWAREGAIN:
*val = data->als_gain_milli;
*val2 = 1000;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
}
static IIO_CONST_ATTR(als_gain_available, "1 1.25 1.67 2.5 5 10 20 40");
static struct attribute *vl6180_attributes[] = {
&iio_const_attr_als_gain_available.dev_attr.attr,
NULL
};
static const struct attribute_group vl6180_attribute_group = {
.attrs = vl6180_attributes,
};
/* HOLD is needed before updating any config registers */
static int vl6180_hold(struct vl6180_data *data, bool hold)
{
return vl6180_write_byte(data->client, VL6180_HOLD,
hold ? VL6180_HOLD_ON : 0);
}
static int vl6180_set_als_gain(struct vl6180_data *data, int val, int val2)
{
int i, ret, gain;
if (val < 1 || val > 40)
return -EINVAL;
gain = (val * 1000000 + val2) / 1000;
if (gain < 1 || gain > 40000)
return -EINVAL;
i = find_closest(gain, vl6180_als_gain_tab,
ARRAY_SIZE(vl6180_als_gain_tab));
mutex_lock(&data->lock);
ret = vl6180_hold(data, true);
if (ret < 0)
goto fail;
ret = vl6180_write_byte(data->client, VL6180_ALS_GAIN,
vl6180_als_gain_tab_bits[i]);
if (ret >= 0)
data->als_gain_milli = vl6180_als_gain_tab[i];
fail:
vl6180_hold(data, false);
mutex_unlock(&data->lock);
return ret;
}
static int vl6180_set_it(struct vl6180_data *data, int val, int val2)
{
int ret, it_ms;
it_ms = (val2 + 500) / 1000; /* round to ms */
if (val != 0 || it_ms < 1 || it_ms > 512)
return -EINVAL;
mutex_lock(&data->lock);
ret = vl6180_hold(data, true);
if (ret < 0)
goto fail;
ret = vl6180_write_word(data->client, VL6180_ALS_IT, it_ms - 1);
if (ret >= 0)
data->als_it_ms = it_ms;
fail:
vl6180_hold(data, false);
mutex_unlock(&data->lock);
return ret;
}
static int vl6180_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct vl6180_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
return vl6180_set_it(data, val, val2);
case IIO_CHAN_INFO_HARDWAREGAIN:
if (chan->type != IIO_LIGHT)
return -EINVAL;
return vl6180_set_als_gain(data, val, val2);
default:
return -EINVAL;
}
}
static const struct iio_info vl6180_info = {
.read_raw = vl6180_read_raw,
.write_raw = vl6180_write_raw,
.attrs = &vl6180_attribute_group,
};
static int vl6180_init(struct vl6180_data *data)
{
struct i2c_client *client = data->client;
int ret;
ret = vl6180_read_byte(client, VL6180_MODEL_ID);
if (ret < 0)
return ret;
if (ret != VL6180_MODEL_ID_VAL) {
dev_err(&client->dev, "invalid model ID %02x\n", ret);
return -ENODEV;
}
ret = vl6180_hold(data, true);
if (ret < 0)
return ret;
ret = vl6180_read_byte(client, VL6180_OUT_OF_RESET);
if (ret < 0)
return ret;
/*
* Detect false reset condition here. This bit is always set when the
* system comes out of reset.
*/
if (ret != 0x01)
dev_info(&client->dev, "device is not fresh out of reset\n");
/* Enable ALS and Range ready interrupts */
ret = vl6180_write_byte(client, VL6180_INTR_CONFIG,
VL6180_ALS_READY | VL6180_RANGE_READY);
if (ret < 0)
return ret;
/* ALS integration time: 100ms */
data->als_it_ms = 100;
ret = vl6180_write_word(client, VL6180_ALS_IT, VL6180_ALS_IT_100);
if (ret < 0)
return ret;
/* ALS gain: 1 */
data->als_gain_milli = 1000;
ret = vl6180_write_byte(client, VL6180_ALS_GAIN, VL6180_ALS_GAIN_1);
if (ret < 0)
return ret;
ret = vl6180_write_byte(client, VL6180_OUT_OF_RESET, 0x00);
if (ret < 0)
return ret;
return vl6180_hold(data, false);
}
static int vl6180_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct vl6180_data *data;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
data->client = client;
mutex_init(&data->lock);
indio_dev->info = &vl6180_info;
indio_dev->channels = vl6180_channels;
indio_dev->num_channels = ARRAY_SIZE(vl6180_channels);
indio_dev->name = VL6180_DRV_NAME;
indio_dev->modes = INDIO_DIRECT_MODE;
ret = vl6180_init(data);
if (ret < 0)
return ret;
return devm_iio_device_register(&client->dev, indio_dev);
}
static const struct of_device_id vl6180_of_match[] = {
{ .compatible = "st,vl6180", },
{ },
};
MODULE_DEVICE_TABLE(of, vl6180_of_match);
static const struct i2c_device_id vl6180_id[] = {
{ "vl6180", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, vl6180_id);
static struct i2c_driver vl6180_driver = {
.driver = {
.name = VL6180_DRV_NAME,
.of_match_table = vl6180_of_match,
},
.probe = vl6180_probe,
.id_table = vl6180_id,
};
module_i2c_driver(vl6180_driver);
MODULE_AUTHOR("Peter Meerwald-Stadler <pmeerw@pmeerw.net>");
MODULE_AUTHOR("Manivannan Sadhasivam <manivannanece23@gmail.com>");
MODULE_DESCRIPTION("STMicro VL6180 ALS, range and proximity sensor driver");
MODULE_LICENSE("GPL");