mirror of
https://github.com/torvalds/linux.git
synced 2024-12-23 19:31:53 +00:00
3cf7ded15e
Add support for the VDD and VDDIO regulators using the regulator framework. Signed-off-by: Dan Robertson <dan@dlrobertson.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
853 lines
20 KiB
C
853 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Core IIO driver for Bosch BMA400 triaxial acceleration sensor.
|
|
*
|
|
* Copyright 2019 Dan Robertson <dan@dlrobertson.com>
|
|
*
|
|
* TODO:
|
|
* - Support for power management
|
|
* - Support events and interrupts
|
|
* - Create channel for step count
|
|
* - Create channel for sensor time
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/device.h>
|
|
#include <linux/iio/iio.h>
|
|
#include <linux/iio/sysfs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/regulator/consumer.h>
|
|
|
|
#include "bma400.h"
|
|
|
|
/*
|
|
* The G-range selection may be one of 2g, 4g, 8, or 16g. The scale may
|
|
* be selected with the acc_range bits of the ACC_CONFIG1 register.
|
|
* NB: This buffer is populated in the device init.
|
|
*/
|
|
static int bma400_scales[8];
|
|
|
|
/*
|
|
* See the ACC_CONFIG1 section of the datasheet.
|
|
* NB: This buffer is populated in the device init.
|
|
*/
|
|
static int bma400_sample_freqs[14];
|
|
|
|
static const int bma400_osr_range[] = { 0, 1, 3 };
|
|
|
|
/* See the ACC_CONFIG0 section of the datasheet */
|
|
enum bma400_power_mode {
|
|
POWER_MODE_SLEEP = 0x00,
|
|
POWER_MODE_LOW = 0x01,
|
|
POWER_MODE_NORMAL = 0x02,
|
|
POWER_MODE_INVALID = 0x03,
|
|
};
|
|
|
|
struct bma400_sample_freq {
|
|
int hz;
|
|
int uhz;
|
|
};
|
|
|
|
struct bma400_data {
|
|
struct device *dev;
|
|
struct regmap *regmap;
|
|
struct regulator_bulk_data regulators[BMA400_NUM_REGULATORS];
|
|
struct mutex mutex; /* data register lock */
|
|
struct iio_mount_matrix orientation;
|
|
enum bma400_power_mode power_mode;
|
|
struct bma400_sample_freq sample_freq;
|
|
int oversampling_ratio;
|
|
int scale;
|
|
};
|
|
|
|
static bool bma400_is_writable_reg(struct device *dev, unsigned int reg)
|
|
{
|
|
switch (reg) {
|
|
case BMA400_CHIP_ID_REG:
|
|
case BMA400_ERR_REG:
|
|
case BMA400_STATUS_REG:
|
|
case BMA400_X_AXIS_LSB_REG:
|
|
case BMA400_X_AXIS_MSB_REG:
|
|
case BMA400_Y_AXIS_LSB_REG:
|
|
case BMA400_Y_AXIS_MSB_REG:
|
|
case BMA400_Z_AXIS_LSB_REG:
|
|
case BMA400_Z_AXIS_MSB_REG:
|
|
case BMA400_SENSOR_TIME0:
|
|
case BMA400_SENSOR_TIME1:
|
|
case BMA400_SENSOR_TIME2:
|
|
case BMA400_EVENT_REG:
|
|
case BMA400_INT_STAT0_REG:
|
|
case BMA400_INT_STAT1_REG:
|
|
case BMA400_INT_STAT2_REG:
|
|
case BMA400_TEMP_DATA_REG:
|
|
case BMA400_FIFO_LENGTH0_REG:
|
|
case BMA400_FIFO_LENGTH1_REG:
|
|
case BMA400_FIFO_DATA_REG:
|
|
case BMA400_STEP_CNT0_REG:
|
|
case BMA400_STEP_CNT1_REG:
|
|
case BMA400_STEP_CNT3_REG:
|
|
case BMA400_STEP_STAT_REG:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool bma400_is_volatile_reg(struct device *dev, unsigned int reg)
|
|
{
|
|
switch (reg) {
|
|
case BMA400_ERR_REG:
|
|
case BMA400_STATUS_REG:
|
|
case BMA400_X_AXIS_LSB_REG:
|
|
case BMA400_X_AXIS_MSB_REG:
|
|
case BMA400_Y_AXIS_LSB_REG:
|
|
case BMA400_Y_AXIS_MSB_REG:
|
|
case BMA400_Z_AXIS_LSB_REG:
|
|
case BMA400_Z_AXIS_MSB_REG:
|
|
case BMA400_SENSOR_TIME0:
|
|
case BMA400_SENSOR_TIME1:
|
|
case BMA400_SENSOR_TIME2:
|
|
case BMA400_EVENT_REG:
|
|
case BMA400_INT_STAT0_REG:
|
|
case BMA400_INT_STAT1_REG:
|
|
case BMA400_INT_STAT2_REG:
|
|
case BMA400_TEMP_DATA_REG:
|
|
case BMA400_FIFO_LENGTH0_REG:
|
|
case BMA400_FIFO_LENGTH1_REG:
|
|
case BMA400_FIFO_DATA_REG:
|
|
case BMA400_STEP_CNT0_REG:
|
|
case BMA400_STEP_CNT1_REG:
|
|
case BMA400_STEP_CNT3_REG:
|
|
case BMA400_STEP_STAT_REG:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const struct regmap_config bma400_regmap_config = {
|
|
.reg_bits = 8,
|
|
.val_bits = 8,
|
|
.max_register = BMA400_CMD_REG,
|
|
.cache_type = REGCACHE_RBTREE,
|
|
.writeable_reg = bma400_is_writable_reg,
|
|
.volatile_reg = bma400_is_volatile_reg,
|
|
};
|
|
EXPORT_SYMBOL(bma400_regmap_config);
|
|
|
|
static const struct iio_mount_matrix *
|
|
bma400_accel_get_mount_matrix(const struct iio_dev *indio_dev,
|
|
const struct iio_chan_spec *chan)
|
|
{
|
|
struct bma400_data *data = iio_priv(indio_dev);
|
|
|
|
return &data->orientation;
|
|
}
|
|
|
|
static const struct iio_chan_spec_ext_info bma400_ext_info[] = {
|
|
IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma400_accel_get_mount_matrix),
|
|
{ }
|
|
};
|
|
|
|
#define BMA400_ACC_CHANNEL(_axis) { \
|
|
.type = IIO_ACCEL, \
|
|
.modified = 1, \
|
|
.channel2 = IIO_MOD_##_axis, \
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
|
|
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
|
|
BIT(IIO_CHAN_INFO_SCALE) | \
|
|
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
|
|
.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
|
|
BIT(IIO_CHAN_INFO_SCALE) | \
|
|
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
|
|
.ext_info = bma400_ext_info, \
|
|
}
|
|
|
|
static const struct iio_chan_spec bma400_channels[] = {
|
|
BMA400_ACC_CHANNEL(X),
|
|
BMA400_ACC_CHANNEL(Y),
|
|
BMA400_ACC_CHANNEL(Z),
|
|
{
|
|
.type = IIO_TEMP,
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
|
|
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ),
|
|
},
|
|
};
|
|
|
|
static int bma400_get_temp_reg(struct bma400_data *data, int *val, int *val2)
|
|
{
|
|
unsigned int raw_temp;
|
|
int host_temp;
|
|
int ret;
|
|
|
|
if (data->power_mode == POWER_MODE_SLEEP)
|
|
return -EBUSY;
|
|
|
|
ret = regmap_read(data->regmap, BMA400_TEMP_DATA_REG, &raw_temp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
host_temp = sign_extend32(raw_temp, 7);
|
|
/*
|
|
* The formula for the TEMP_DATA register in the datasheet
|
|
* is: x * 0.5 + 23
|
|
*/
|
|
*val = (host_temp >> 1) + 23;
|
|
*val2 = (host_temp & 0x1) * 500000;
|
|
return IIO_VAL_INT_PLUS_MICRO;
|
|
}
|
|
|
|
static int bma400_get_accel_reg(struct bma400_data *data,
|
|
const struct iio_chan_spec *chan,
|
|
int *val)
|
|
{
|
|
__le16 raw_accel;
|
|
int lsb_reg;
|
|
int ret;
|
|
|
|
if (data->power_mode == POWER_MODE_SLEEP)
|
|
return -EBUSY;
|
|
|
|
switch (chan->channel2) {
|
|
case IIO_MOD_X:
|
|
lsb_reg = BMA400_X_AXIS_LSB_REG;
|
|
break;
|
|
case IIO_MOD_Y:
|
|
lsb_reg = BMA400_Y_AXIS_LSB_REG;
|
|
break;
|
|
case IIO_MOD_Z:
|
|
lsb_reg = BMA400_Z_AXIS_LSB_REG;
|
|
break;
|
|
default:
|
|
dev_err(data->dev, "invalid axis channel modifier\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* bulk read two registers, with the base being the LSB register */
|
|
ret = regmap_bulk_read(data->regmap, lsb_reg, &raw_accel,
|
|
sizeof(raw_accel));
|
|
if (ret)
|
|
return ret;
|
|
|
|
*val = sign_extend32(le16_to_cpu(raw_accel), 11);
|
|
return IIO_VAL_INT;
|
|
}
|
|
|
|
static void bma400_output_data_rate_from_raw(int raw, unsigned int *val,
|
|
unsigned int *val2)
|
|
{
|
|
*val = BMA400_ACC_ODR_MAX_HZ >> (BMA400_ACC_ODR_MAX_RAW - raw);
|
|
if (raw > BMA400_ACC_ODR_MIN_RAW)
|
|
*val2 = 0;
|
|
else
|
|
*val2 = 500000;
|
|
}
|
|
|
|
static int bma400_get_accel_output_data_rate(struct bma400_data *data)
|
|
{
|
|
unsigned int val;
|
|
unsigned int odr;
|
|
int ret;
|
|
|
|
switch (data->power_mode) {
|
|
case POWER_MODE_LOW:
|
|
/*
|
|
* Runs at a fixed rate in low-power mode. See section 4.3
|
|
* in the datasheet.
|
|
*/
|
|
bma400_output_data_rate_from_raw(BMA400_ACC_ODR_LP_RAW,
|
|
&data->sample_freq.hz,
|
|
&data->sample_freq.uhz);
|
|
return 0;
|
|
case POWER_MODE_NORMAL:
|
|
/*
|
|
* In normal mode the ODR can be found in the ACC_CONFIG1
|
|
* register.
|
|
*/
|
|
ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
|
|
if (ret)
|
|
goto error;
|
|
|
|
odr = val & BMA400_ACC_ODR_MASK;
|
|
if (odr < BMA400_ACC_ODR_MIN_RAW ||
|
|
odr > BMA400_ACC_ODR_MAX_RAW) {
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
bma400_output_data_rate_from_raw(odr, &data->sample_freq.hz,
|
|
&data->sample_freq.uhz);
|
|
return 0;
|
|
case POWER_MODE_SLEEP:
|
|
data->sample_freq.hz = 0;
|
|
data->sample_freq.uhz = 0;
|
|
return 0;
|
|
default:
|
|
ret = 0;
|
|
goto error;
|
|
}
|
|
error:
|
|
data->sample_freq.hz = -1;
|
|
data->sample_freq.uhz = -1;
|
|
return ret;
|
|
}
|
|
|
|
static int bma400_set_accel_output_data_rate(struct bma400_data *data,
|
|
int hz, int uhz)
|
|
{
|
|
unsigned int idx;
|
|
unsigned int odr;
|
|
unsigned int val;
|
|
int ret;
|
|
|
|
if (hz >= BMA400_ACC_ODR_MIN_WHOLE_HZ) {
|
|
if (uhz || hz > BMA400_ACC_ODR_MAX_HZ)
|
|
return -EINVAL;
|
|
|
|
/* Note this works because MIN_WHOLE_HZ is odd */
|
|
idx = __ffs(hz);
|
|
|
|
if (hz >> idx != BMA400_ACC_ODR_MIN_WHOLE_HZ)
|
|
return -EINVAL;
|
|
|
|
idx += BMA400_ACC_ODR_MIN_RAW + 1;
|
|
} else if (hz == BMA400_ACC_ODR_MIN_HZ && uhz == 500000) {
|
|
idx = BMA400_ACC_ODR_MIN_RAW;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* preserve the range and normal mode osr */
|
|
odr = (~BMA400_ACC_ODR_MASK & val) | idx;
|
|
|
|
ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG, odr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bma400_output_data_rate_from_raw(idx, &data->sample_freq.hz,
|
|
&data->sample_freq.uhz);
|
|
return 0;
|
|
}
|
|
|
|
static int bma400_get_accel_oversampling_ratio(struct bma400_data *data)
|
|
{
|
|
unsigned int val;
|
|
unsigned int osr;
|
|
int ret;
|
|
|
|
/*
|
|
* The oversampling ratio is stored in a different register
|
|
* based on the power-mode. In normal mode the OSR is stored
|
|
* in ACC_CONFIG1. In low-power mode it is stored in
|
|
* ACC_CONFIG0.
|
|
*/
|
|
switch (data->power_mode) {
|
|
case POWER_MODE_LOW:
|
|
ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
|
|
if (ret) {
|
|
data->oversampling_ratio = -1;
|
|
return ret;
|
|
}
|
|
|
|
osr = (val & BMA400_LP_OSR_MASK) >> BMA400_LP_OSR_SHIFT;
|
|
|
|
data->oversampling_ratio = osr;
|
|
return 0;
|
|
case POWER_MODE_NORMAL:
|
|
ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
|
|
if (ret) {
|
|
data->oversampling_ratio = -1;
|
|
return ret;
|
|
}
|
|
|
|
osr = (val & BMA400_NP_OSR_MASK) >> BMA400_NP_OSR_SHIFT;
|
|
|
|
data->oversampling_ratio = osr;
|
|
return 0;
|
|
case POWER_MODE_SLEEP:
|
|
data->oversampling_ratio = 0;
|
|
return 0;
|
|
default:
|
|
data->oversampling_ratio = -1;
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int bma400_set_accel_oversampling_ratio(struct bma400_data *data,
|
|
int val)
|
|
{
|
|
unsigned int acc_config;
|
|
int ret;
|
|
|
|
if (val & ~BMA400_TWO_BITS_MASK)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The oversampling ratio is stored in a different register
|
|
* based on the power-mode.
|
|
*/
|
|
switch (data->power_mode) {
|
|
case POWER_MODE_LOW:
|
|
ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG,
|
|
&acc_config);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
|
|
(acc_config & ~BMA400_LP_OSR_MASK) |
|
|
(val << BMA400_LP_OSR_SHIFT));
|
|
if (ret) {
|
|
dev_err(data->dev, "Failed to write out OSR\n");
|
|
return ret;
|
|
}
|
|
|
|
data->oversampling_ratio = val;
|
|
return 0;
|
|
case POWER_MODE_NORMAL:
|
|
ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG,
|
|
&acc_config);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
|
|
(acc_config & ~BMA400_NP_OSR_MASK) |
|
|
(val << BMA400_NP_OSR_SHIFT));
|
|
if (ret) {
|
|
dev_err(data->dev, "Failed to write out OSR\n");
|
|
return ret;
|
|
}
|
|
|
|
data->oversampling_ratio = val;
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int bma400_accel_scale_to_raw(struct bma400_data *data,
|
|
unsigned int val)
|
|
{
|
|
int raw;
|
|
|
|
if (val == 0)
|
|
return -EINVAL;
|
|
|
|
/* Note this works because BMA400_SCALE_MIN is odd */
|
|
raw = __ffs(val);
|
|
|
|
if (val >> raw != BMA400_SCALE_MIN)
|
|
return -EINVAL;
|
|
|
|
return raw;
|
|
}
|
|
|
|
static int bma400_get_accel_scale(struct bma400_data *data)
|
|
{
|
|
unsigned int raw_scale;
|
|
unsigned int val;
|
|
int ret;
|
|
|
|
ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
raw_scale = (val & BMA400_ACC_SCALE_MASK) >> BMA400_SCALE_SHIFT;
|
|
if (raw_scale > BMA400_TWO_BITS_MASK)
|
|
return -EINVAL;
|
|
|
|
data->scale = BMA400_SCALE_MIN << raw_scale;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bma400_set_accel_scale(struct bma400_data *data, unsigned int val)
|
|
{
|
|
unsigned int acc_config;
|
|
int raw;
|
|
int ret;
|
|
|
|
ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &acc_config);
|
|
if (ret)
|
|
return ret;
|
|
|
|
raw = bma400_accel_scale_to_raw(data, val);
|
|
if (raw < 0)
|
|
return raw;
|
|
|
|
ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
|
|
(acc_config & ~BMA400_ACC_SCALE_MASK) |
|
|
(raw << BMA400_SCALE_SHIFT));
|
|
if (ret)
|
|
return ret;
|
|
|
|
data->scale = val;
|
|
return 0;
|
|
}
|
|
|
|
static int bma400_get_power_mode(struct bma400_data *data)
|
|
{
|
|
unsigned int val;
|
|
int ret;
|
|
|
|
ret = regmap_read(data->regmap, BMA400_STATUS_REG, &val);
|
|
if (ret) {
|
|
dev_err(data->dev, "Failed to read status register\n");
|
|
return ret;
|
|
}
|
|
|
|
data->power_mode = (val >> 1) & BMA400_TWO_BITS_MASK;
|
|
return 0;
|
|
}
|
|
|
|
static int bma400_set_power_mode(struct bma400_data *data,
|
|
enum bma400_power_mode mode)
|
|
{
|
|
unsigned int val;
|
|
int ret;
|
|
|
|
ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (data->power_mode == mode)
|
|
return 0;
|
|
|
|
if (mode == POWER_MODE_INVALID)
|
|
return -EINVAL;
|
|
|
|
/* Preserve the low-power oversample ratio etc */
|
|
ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
|
|
mode | (val & ~BMA400_TWO_BITS_MASK));
|
|
if (ret) {
|
|
dev_err(data->dev, "Failed to write to power-mode\n");
|
|
return ret;
|
|
}
|
|
|
|
data->power_mode = mode;
|
|
|
|
/*
|
|
* Update our cached osr and odr based on the new
|
|
* power-mode.
|
|
*/
|
|
bma400_get_accel_output_data_rate(data);
|
|
bma400_get_accel_oversampling_ratio(data);
|
|
return 0;
|
|
}
|
|
|
|
static void bma400_init_tables(void)
|
|
{
|
|
int raw;
|
|
int i;
|
|
|
|
for (i = 0; i + 1 < ARRAY_SIZE(bma400_sample_freqs); i += 2) {
|
|
raw = (i / 2) + 5;
|
|
bma400_output_data_rate_from_raw(raw, &bma400_sample_freqs[i],
|
|
&bma400_sample_freqs[i + 1]);
|
|
}
|
|
|
|
for (i = 0; i + 1 < ARRAY_SIZE(bma400_scales); i += 2) {
|
|
raw = i / 2;
|
|
bma400_scales[i] = 0;
|
|
bma400_scales[i + 1] = BMA400_SCALE_MIN << raw;
|
|
}
|
|
}
|
|
|
|
static int bma400_init(struct bma400_data *data)
|
|
{
|
|
unsigned int val;
|
|
int ret;
|
|
|
|
/* Try to read chip_id register. It must return 0x90. */
|
|
ret = regmap_read(data->regmap, BMA400_CHIP_ID_REG, &val);
|
|
if (ret) {
|
|
dev_err(data->dev, "Failed to read chip id register\n");
|
|
goto out;
|
|
}
|
|
|
|
if (val != BMA400_ID_REG_VAL) {
|
|
dev_err(data->dev, "Chip ID mismatch\n");
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
data->regulators[BMA400_VDD_REGULATOR].supply = "vdd";
|
|
data->regulators[BMA400_VDDIO_REGULATOR].supply = "vddio";
|
|
ret = devm_regulator_bulk_get(data->dev,
|
|
ARRAY_SIZE(data->regulators),
|
|
data->regulators);
|
|
if (ret) {
|
|
if (ret != -EPROBE_DEFER)
|
|
dev_err(data->dev,
|
|
"Failed to get regulators: %d\n",
|
|
ret);
|
|
|
|
goto out;
|
|
}
|
|
ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
|
|
data->regulators);
|
|
if (ret) {
|
|
dev_err(data->dev, "Failed to enable regulators: %d\n",
|
|
ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = bma400_get_power_mode(data);
|
|
if (ret) {
|
|
dev_err(data->dev, "Failed to get the initial power-mode\n");
|
|
goto err_reg_disable;
|
|
}
|
|
|
|
if (data->power_mode != POWER_MODE_NORMAL) {
|
|
ret = bma400_set_power_mode(data, POWER_MODE_NORMAL);
|
|
if (ret) {
|
|
dev_err(data->dev, "Failed to wake up the device\n");
|
|
goto err_reg_disable;
|
|
}
|
|
/*
|
|
* TODO: The datasheet waits 1500us here in the example, but
|
|
* lists 2/ODR as the wakeup time.
|
|
*/
|
|
usleep_range(1500, 2000);
|
|
}
|
|
|
|
bma400_init_tables();
|
|
|
|
ret = bma400_get_accel_output_data_rate(data);
|
|
if (ret)
|
|
goto err_reg_disable;
|
|
|
|
ret = bma400_get_accel_oversampling_ratio(data);
|
|
if (ret)
|
|
goto err_reg_disable;
|
|
|
|
ret = bma400_get_accel_scale(data);
|
|
if (ret)
|
|
goto err_reg_disable;
|
|
|
|
/*
|
|
* Once the interrupt engine is supported we might use the
|
|
* data_src_reg, but for now ensure this is set to the
|
|
* variable ODR filter selectable by the sample frequency
|
|
* channel.
|
|
*/
|
|
return regmap_write(data->regmap, BMA400_ACC_CONFIG2_REG, 0x00);
|
|
|
|
err_reg_disable:
|
|
regulator_bulk_disable(ARRAY_SIZE(data->regulators),
|
|
data->regulators);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int bma400_read_raw(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan, int *val,
|
|
int *val2, long mask)
|
|
{
|
|
struct bma400_data *data = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_PROCESSED:
|
|
mutex_lock(&data->mutex);
|
|
ret = bma400_get_temp_reg(data, val, val2);
|
|
mutex_unlock(&data->mutex);
|
|
return ret;
|
|
case IIO_CHAN_INFO_RAW:
|
|
mutex_lock(&data->mutex);
|
|
ret = bma400_get_accel_reg(data, chan, val);
|
|
mutex_unlock(&data->mutex);
|
|
return ret;
|
|
case IIO_CHAN_INFO_SAMP_FREQ:
|
|
switch (chan->type) {
|
|
case IIO_ACCEL:
|
|
if (data->sample_freq.hz < 0)
|
|
return -EINVAL;
|
|
|
|
*val = data->sample_freq.hz;
|
|
*val2 = data->sample_freq.uhz;
|
|
return IIO_VAL_INT_PLUS_MICRO;
|
|
case IIO_TEMP:
|
|
/*
|
|
* Runs at a fixed sampling frequency. See Section 4.4
|
|
* of the datasheet.
|
|
*/
|
|
*val = 6;
|
|
*val2 = 250000;
|
|
return IIO_VAL_INT_PLUS_MICRO;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
case IIO_CHAN_INFO_SCALE:
|
|
*val = 0;
|
|
*val2 = data->scale;
|
|
return IIO_VAL_INT_PLUS_MICRO;
|
|
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
|
|
/*
|
|
* TODO: We could avoid this logic and returning -EINVAL here if
|
|
* we set both the low-power and normal mode OSR registers when
|
|
* we configure the device.
|
|
*/
|
|
if (data->oversampling_ratio < 0)
|
|
return -EINVAL;
|
|
|
|
*val = data->oversampling_ratio;
|
|
return IIO_VAL_INT;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int bma400_read_avail(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan,
|
|
const int **vals, int *type, int *length,
|
|
long mask)
|
|
{
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_SCALE:
|
|
*type = IIO_VAL_INT_PLUS_MICRO;
|
|
*vals = bma400_scales;
|
|
*length = ARRAY_SIZE(bma400_scales);
|
|
return IIO_AVAIL_LIST;
|
|
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
|
|
*type = IIO_VAL_INT;
|
|
*vals = bma400_osr_range;
|
|
*length = ARRAY_SIZE(bma400_osr_range);
|
|
return IIO_AVAIL_RANGE;
|
|
case IIO_CHAN_INFO_SAMP_FREQ:
|
|
*type = IIO_VAL_INT_PLUS_MICRO;
|
|
*vals = bma400_sample_freqs;
|
|
*length = ARRAY_SIZE(bma400_sample_freqs);
|
|
return IIO_AVAIL_LIST;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int bma400_write_raw(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan, int val, int val2,
|
|
long mask)
|
|
{
|
|
struct bma400_data *data = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_SAMP_FREQ:
|
|
/*
|
|
* The sample frequency is readonly for the temperature
|
|
* register and a fixed value in low-power mode.
|
|
*/
|
|
if (chan->type != IIO_ACCEL)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&data->mutex);
|
|
ret = bma400_set_accel_output_data_rate(data, val, val2);
|
|
mutex_unlock(&data->mutex);
|
|
return ret;
|
|
case IIO_CHAN_INFO_SCALE:
|
|
if (val != 0 || val2 > BMA400_SCALE_MAX)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&data->mutex);
|
|
ret = bma400_set_accel_scale(data, val2);
|
|
mutex_unlock(&data->mutex);
|
|
return ret;
|
|
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
|
|
mutex_lock(&data->mutex);
|
|
ret = bma400_set_accel_oversampling_ratio(data, val);
|
|
mutex_unlock(&data->mutex);
|
|
return ret;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int bma400_write_raw_get_fmt(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan,
|
|
long mask)
|
|
{
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_SAMP_FREQ:
|
|
return IIO_VAL_INT_PLUS_MICRO;
|
|
case IIO_CHAN_INFO_SCALE:
|
|
return IIO_VAL_INT_PLUS_MICRO;
|
|
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
|
|
return IIO_VAL_INT;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static const struct iio_info bma400_info = {
|
|
.read_raw = bma400_read_raw,
|
|
.read_avail = bma400_read_avail,
|
|
.write_raw = bma400_write_raw,
|
|
.write_raw_get_fmt = bma400_write_raw_get_fmt,
|
|
};
|
|
|
|
int bma400_probe(struct device *dev, struct regmap *regmap, const char *name)
|
|
{
|
|
struct iio_dev *indio_dev;
|
|
struct bma400_data *data;
|
|
int ret;
|
|
|
|
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
|
|
if (!indio_dev)
|
|
return -ENOMEM;
|
|
|
|
data = iio_priv(indio_dev);
|
|
data->regmap = regmap;
|
|
data->dev = dev;
|
|
|
|
ret = bma400_init(data);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = iio_read_mount_matrix(dev, "mount-matrix", &data->orientation);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_init(&data->mutex);
|
|
indio_dev->dev.parent = dev;
|
|
indio_dev->name = name;
|
|
indio_dev->info = &bma400_info;
|
|
indio_dev->channels = bma400_channels;
|
|
indio_dev->num_channels = ARRAY_SIZE(bma400_channels);
|
|
indio_dev->modes = INDIO_DIRECT_MODE;
|
|
|
|
dev_set_drvdata(dev, indio_dev);
|
|
|
|
return iio_device_register(indio_dev);
|
|
}
|
|
EXPORT_SYMBOL(bma400_probe);
|
|
|
|
int bma400_remove(struct device *dev)
|
|
{
|
|
struct iio_dev *indio_dev = dev_get_drvdata(dev);
|
|
struct bma400_data *data = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
mutex_lock(&data->mutex);
|
|
ret = bma400_set_power_mode(data, POWER_MODE_SLEEP);
|
|
mutex_unlock(&data->mutex);
|
|
|
|
regulator_bulk_disable(ARRAY_SIZE(data->regulators),
|
|
data->regulators);
|
|
|
|
iio_device_unregister(indio_dev);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(bma400_remove);
|
|
|
|
MODULE_AUTHOR("Dan Robertson <dan@dlrobertson.com>");
|
|
MODULE_DESCRIPTION("Bosch BMA400 triaxial acceleration sensor core");
|
|
MODULE_LICENSE("GPL");
|