linux/drivers/clk/xilinx/clk-xlnx-clock-wizard.c
Shubhrajyoti Datta 3a96393a46 clocking-wizard: Add support for versal clocking wizard
Add support for Clocking Wizard for Versal adaptive compute
acceleration platforms. The Versal clocking wizard differs
in the programming model and the register layout.
The CLKFBOUT_1 registers are at offset of 0x200
instead of the 0x330 in Versal. In Versal clocking wizard the low and
high time is programmed instead of the divisor.

Signed-off-by: Shubhrajyoti Datta <shubhrajyoti.datta@amd.com>
Link: https://lore.kernel.org/r/20231214105125.26919-3-shubhrajyoti.datta@amd.com
[sboyd@kernel.org: Stop initializing spinlock flags]
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2023-12-17 14:55:14 -08:00

1267 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Xilinx 'Clocking Wizard' driver
*
* Copyright (C) 2013 - 2021 Xilinx
*
* Sören Brinkmann <soren.brinkmann@xilinx.com>
*
*/
#include <linux/bitfield.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#define WZRD_NUM_OUTPUTS 7
#define WZRD_ACLK_MAX_FREQ 250000000UL
#define WZRD_CLK_CFG_REG(v, n) (0x200 + 0x130 * (v) + 4 * (n))
#define WZRD_CLKOUT0_FRAC_EN BIT(18)
#define WZRD_CLKFBOUT_1 0
#define WZRD_CLKFBOUT_2 1
#define WZRD_CLKOUT0_1 2
#define WZRD_CLKOUT0_2 3
#define WZRD_DESKEW_2 20
#define WZRD_DIVCLK 21
#define WZRD_CLKFBOUT_4 51
#define WZRD_CLKFBOUT_3 48
#define WZRD_DUTY_CYCLE 2
#define WZRD_O_DIV 4
#define WZRD_CLKFBOUT_FRAC_EN BIT(1)
#define WZRD_CLKFBOUT_PREDIV2 (BIT(11) | BIT(12) | BIT(9))
#define WZRD_MULT_PREDIV2 (BIT(10) | BIT(9) | BIT(12))
#define WZRD_CLKFBOUT_EDGE BIT(8)
#define WZRD_P5EN BIT(13)
#define WZRD_P5EN_SHIFT 13
#define WZRD_P5FEDGE BIT(15)
#define WZRD_DIVCLK_EDGE BIT(10)
#define WZRD_P5FEDGE_SHIFT 15
#define WZRD_CLKOUT0_PREDIV2 BIT(11)
#define WZRD_EDGE_SHIFT 8
#define WZRD_CLKFBOUT_MULT_SHIFT 8
#define WZRD_CLKFBOUT_MULT_MASK (0xff << WZRD_CLKFBOUT_MULT_SHIFT)
#define WZRD_CLKFBOUT_L_SHIFT 0
#define WZRD_CLKFBOUT_H_SHIFT 8
#define WZRD_CLKFBOUT_L_MASK GENMASK(7, 0)
#define WZRD_CLKFBOUT_H_MASK GENMASK(15, 8)
#define WZRD_CLKFBOUT_FRAC_SHIFT 16
#define WZRD_CLKFBOUT_FRAC_MASK (0x3ff << WZRD_CLKFBOUT_FRAC_SHIFT)
#define WZRD_VERSAL_FRAC_MASK GENMASK(5, 0)
#define WZRD_DIVCLK_DIVIDE_SHIFT 0
#define WZRD_DIVCLK_DIVIDE_MASK (0xff << WZRD_DIVCLK_DIVIDE_SHIFT)
#define WZRD_CLKOUT_DIVIDE_SHIFT 0
#define WZRD_CLKOUT_DIVIDE_WIDTH 8
#define WZRD_CLKOUT_DIVIDE_MASK (0xff << WZRD_DIVCLK_DIVIDE_SHIFT)
#define WZRD_CLKOUT_FRAC_SHIFT 8
#define WZRD_CLKOUT_FRAC_MASK 0x3ff
#define WZRD_CLKOUT0_FRAC_MASK GENMASK(17, 8)
#define WZRD_DR_MAX_INT_DIV_VALUE 255
#define WZRD_DR_STATUS_REG_OFFSET 0x04
#define WZRD_DR_LOCK_BIT_MASK 0x00000001
#define WZRD_DR_INIT_REG_OFFSET 0x25C
#define WZRD_DR_INIT_VERSAL_OFFSET 0x14
#define WZRD_DR_DIV_TO_PHASE_OFFSET 4
#define WZRD_DR_BEGIN_DYNA_RECONF 0x03
#define WZRD_DR_BEGIN_DYNA_RECONF_5_2 0x07
#define WZRD_DR_BEGIN_DYNA_RECONF1_5_2 0x02
#define WZRD_USEC_POLL 10
#define WZRD_TIMEOUT_POLL 1000
#define WZRD_FRAC_GRADIENT 64
#define PREDIV2_MULT 2
/* Divider limits, from UG572 Table 3-4 for Ultrascale+ */
#define DIV_O 0x01
#define DIV_ALL 0x03
#define WZRD_M_MIN 2
#define WZRD_M_MAX 128
#define WZRD_D_MIN 1
#define WZRD_D_MAX 106
#define WZRD_VCO_MIN 800000000
#define WZRD_VCO_MAX 1600000000
#define WZRD_O_MIN 1
#define WZRD_O_MAX 128
#define VER_WZRD_M_MIN 4
#define VER_WZRD_M_MAX 432
#define VER_WZRD_D_MIN 1
#define VER_WZRD_D_MAX 123
#define VER_WZRD_VCO_MIN 2160000000ULL
#define VER_WZRD_VCO_MAX 4320000000ULL
#define VER_WZRD_O_MIN 2
#define VER_WZRD_O_MAX 511
#define WZRD_MIN_ERR 20000
#define WZRD_FRAC_POINTS 1000
/* Get the mask from width */
#define div_mask(width) ((1 << (width)) - 1)
/* Extract divider instance from clock hardware instance */
#define to_clk_wzrd_divider(_hw) container_of(_hw, struct clk_wzrd_divider, hw)
enum clk_wzrd_int_clks {
wzrd_clk_mul,
wzrd_clk_mul_div,
wzrd_clk_mul_frac,
wzrd_clk_int_max
};
/**
* struct clk_wzrd - Clock wizard private data structure
*
* @clk_data: Clock data
* @nb: Notifier block
* @base: Memory base
* @clk_in1: Handle to input clock 'clk_in1'
* @axi_clk: Handle to input clock 's_axi_aclk'
* @clks_internal: Internal clocks
* @clkout: Output clocks
* @speed_grade: Speed grade of the device
* @suspended: Flag indicating power state of the device
*/
struct clk_wzrd {
struct clk_onecell_data clk_data;
struct notifier_block nb;
void __iomem *base;
struct clk *clk_in1;
struct clk *axi_clk;
struct clk *clks_internal[wzrd_clk_int_max];
struct clk *clkout[WZRD_NUM_OUTPUTS];
unsigned int speed_grade;
bool suspended;
};
/**
* struct clk_wzrd_divider - clock divider specific to clk_wzrd
*
* @hw: handle between common and hardware-specific interfaces
* @base: base address of register containing the divider
* @offset: offset address of register containing the divider
* @shift: shift to the divider bit field
* @width: width of the divider bit field
* @flags: clk_wzrd divider flags
* @table: array of value/divider pairs, last entry should have div = 0
* @m: value of the multiplier
* @d: value of the common divider
* @o: value of the leaf divider
* @lock: register lock
*/
struct clk_wzrd_divider {
struct clk_hw hw;
void __iomem *base;
u16 offset;
u8 shift;
u8 width;
u8 flags;
const struct clk_div_table *table;
u32 m;
u32 d;
u32 o;
spinlock_t *lock; /* divider lock */
};
struct versal_clk_data {
bool is_versal;
};
#define to_clk_wzrd(_nb) container_of(_nb, struct clk_wzrd, nb)
/* maximum frequencies for input/output clocks per speed grade */
static const unsigned long clk_wzrd_max_freq[] = {
800000000UL,
933000000UL,
1066000000UL
};
/* spin lock variable for clk_wzrd */
static DEFINE_SPINLOCK(clkwzrd_lock);
static unsigned long clk_wzrd_recalc_rate_ver(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
void __iomem *div_addr = divider->base + divider->offset;
u32 div, p5en, edge, prediv2, all;
unsigned int vall, valh;
edge = !!(readl(div_addr) & WZRD_CLKFBOUT_EDGE);
p5en = !!(readl(div_addr) & WZRD_P5EN);
prediv2 = !!(readl(div_addr) & WZRD_CLKOUT0_PREDIV2);
vall = readl(div_addr + 4) & WZRD_CLKFBOUT_L_MASK;
valh = readl(div_addr + 4) >> WZRD_CLKFBOUT_H_SHIFT;
all = valh + vall + edge;
if (!all)
all = 1;
if (prediv2)
div = 2 * all + prediv2 * p5en;
else
div = all;
return DIV_ROUND_UP_ULL((u64)parent_rate, div);
}
static unsigned long clk_wzrd_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
void __iomem *div_addr = divider->base + divider->offset;
unsigned int val;
val = readl(div_addr) >> divider->shift;
val &= div_mask(divider->width);
return divider_recalc_rate(hw, parent_rate, val, divider->table,
divider->flags, divider->width);
}
static int clk_wzrd_ver_dynamic_reconfig(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
void __iomem *div_addr = divider->base + divider->offset;
u32 value, regh, edged, p5en, p5fedge, regval, regval1;
unsigned long flags;
int err;
spin_lock_irqsave(divider->lock, flags);
value = DIV_ROUND_CLOSEST(parent_rate, rate);
regh = (value / 4);
regval1 = readl(div_addr);
regval1 |= WZRD_CLKFBOUT_PREDIV2;
regval1 = regval1 & ~(WZRD_CLKFBOUT_EDGE | WZRD_P5EN | WZRD_P5FEDGE);
if (value % 4 > 1) {
edged = 1;
regval1 |= (edged << WZRD_EDGE_SHIFT);
}
p5fedge = value % 2;
p5en = value % 2;
regval1 = regval1 | p5en << WZRD_P5EN_SHIFT | p5fedge << WZRD_P5FEDGE_SHIFT;
writel(regval1, div_addr);
regval = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
writel(regval, div_addr + 4);
/* Check status register */
err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
value, value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
if (err)
goto err_reconfig;
/* Initiate reconfiguration */
writel(WZRD_DR_BEGIN_DYNA_RECONF,
divider->base + WZRD_DR_INIT_VERSAL_OFFSET);
/* Check status register */
err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
value, value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
err_reconfig:
spin_unlock_irqrestore(divider->lock, flags);
return err;
}
static int clk_wzrd_dynamic_reconfig(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
void __iomem *div_addr = divider->base + divider->offset;
unsigned long flags;
u32 value;
int err;
spin_lock_irqsave(divider->lock, flags);
value = DIV_ROUND_CLOSEST(parent_rate, rate);
/* Cap the value to max */
min_t(u32, value, WZRD_DR_MAX_INT_DIV_VALUE);
/* Set divisor and clear phase offset */
writel(value, div_addr);
writel(0x00, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET);
/* Check status register */
err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
value, value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
if (err)
goto err_reconfig;
/* Initiate reconfiguration */
writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2,
divider->base + WZRD_DR_INIT_REG_OFFSET);
writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2,
divider->base + WZRD_DR_INIT_REG_OFFSET);
/* Check status register */
err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
value, value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
err_reconfig:
spin_unlock_irqrestore(divider->lock, flags);
return err;
}
static long clk_wzrd_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
u8 div;
/*
* since we don't change parent rate we just round rate to closest
* achievable
*/
div = DIV_ROUND_CLOSEST(*prate, rate);
return *prate / div;
}
static int clk_wzrd_get_divisors_ver(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
u64 vco_freq, freq, diff, vcomin, vcomax;
u32 m, d, o;
u32 mmin, mmax, dmin, dmax, omin, omax;
mmin = VER_WZRD_M_MIN;
mmax = VER_WZRD_M_MAX;
dmin = VER_WZRD_D_MIN;
dmax = VER_WZRD_D_MAX;
omin = VER_WZRD_O_MIN;
omax = VER_WZRD_O_MAX;
vcomin = VER_WZRD_VCO_MIN;
vcomax = VER_WZRD_VCO_MAX;
for (m = mmin; m <= mmax; m++) {
for (d = dmin; d <= dmax; d++) {
vco_freq = DIV_ROUND_CLOSEST((parent_rate * m), d);
if (vco_freq >= vcomin && vco_freq <= vcomax) {
for (o = omin; o <= omax; o++) {
freq = DIV_ROUND_CLOSEST_ULL(vco_freq, o);
diff = abs(freq - rate);
if (diff < WZRD_MIN_ERR) {
divider->m = m;
divider->d = d;
divider->o = o;
return 0;
}
}
}
}
}
return -EBUSY;
}
static int clk_wzrd_get_divisors(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
u64 vco_freq, freq, diff, vcomin, vcomax;
u32 m, d, o;
u32 mmin, mmax, dmin, dmax, omin, omax;
mmin = WZRD_M_MIN;
mmax = WZRD_M_MAX;
dmin = WZRD_D_MIN;
dmax = WZRD_D_MAX;
omin = WZRD_O_MIN;
omax = WZRD_O_MAX;
vcomin = WZRD_VCO_MIN;
vcomax = WZRD_VCO_MAX;
for (m = mmin; m <= mmax; m++) {
for (d = dmin; d <= dmax; d++) {
vco_freq = DIV_ROUND_CLOSEST((parent_rate * m), d);
if (vco_freq >= vcomin && vco_freq <= vcomax) {
for (o = omin; o <= omax; o++) {
freq = DIV_ROUND_CLOSEST_ULL(vco_freq, o);
diff = abs(freq - rate);
if (diff < WZRD_MIN_ERR) {
divider->m = m;
divider->d = d;
divider->o = o;
return 0;
}
}
}
}
}
return -EBUSY;
}
static int clk_wzrd_reconfig(struct clk_wzrd_divider *divider, void __iomem *div_addr)
{
u32 value;
int err;
/* Check status register */
err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
if (err)
return -ETIMEDOUT;
/* Initiate reconfiguration */
writel(WZRD_DR_BEGIN_DYNA_RECONF, div_addr);
/* Check status register */
return readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
}
static int clk_wzrd_dynamic_ver_all_nolock(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
u32 regh, edged, p5en, p5fedge, value2, m, regval, regval1, value;
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
void __iomem *div_addr;
int err;
err = clk_wzrd_get_divisors_ver(hw, rate, parent_rate);
if (err)
return err;
writel(0, divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_4));
m = divider->m;
edged = m % WZRD_DUTY_CYCLE;
regh = m / WZRD_DUTY_CYCLE;
regval1 = readl(divider->base + WZRD_CLK_CFG_REG(1,
WZRD_CLKFBOUT_1));
regval1 |= WZRD_MULT_PREDIV2;
if (edged)
regval1 = regval1 | WZRD_CLKFBOUT_EDGE;
else
regval1 = regval1 & ~WZRD_CLKFBOUT_EDGE;
writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
WZRD_CLKFBOUT_1));
regval1 = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
WZRD_CLKFBOUT_2));
value2 = divider->d;
edged = value2 % WZRD_DUTY_CYCLE;
regh = (value2 / WZRD_DUTY_CYCLE);
regval1 = FIELD_PREP(WZRD_DIVCLK_EDGE, edged);
writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
WZRD_DESKEW_2));
regval1 = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
writel(regval1, divider->base + WZRD_CLK_CFG_REG(1, WZRD_DIVCLK));
value = divider->o;
regh = value / WZRD_O_DIV;
regval1 = readl(divider->base + WZRD_CLK_CFG_REG(1,
WZRD_CLKOUT0_1));
regval1 |= WZRD_CLKFBOUT_PREDIV2;
regval1 = regval1 & ~(WZRD_CLKFBOUT_EDGE | WZRD_P5EN | WZRD_P5FEDGE);
if (value % WZRD_O_DIV > 1) {
edged = 1;
regval1 |= edged << WZRD_CLKFBOUT_H_SHIFT;
}
p5fedge = value % WZRD_DUTY_CYCLE;
p5en = value % WZRD_DUTY_CYCLE;
regval1 = regval1 | FIELD_PREP(WZRD_P5EN, p5en) | FIELD_PREP(WZRD_P5FEDGE, p5fedge);
writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
WZRD_CLKOUT0_1));
regval = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
writel(regval, divider->base + WZRD_CLK_CFG_REG(1,
WZRD_CLKOUT0_2));
div_addr = divider->base + WZRD_DR_INIT_VERSAL_OFFSET;
return clk_wzrd_reconfig(divider, div_addr);
}
static int clk_wzrd_dynamic_all_nolock(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
unsigned long vco_freq, rate_div, clockout0_div;
void __iomem *div_addr = divider->base;
u32 reg, pre, f;
int err;
err = clk_wzrd_get_divisors(hw, rate, parent_rate);
if (err)
return err;
vco_freq = DIV_ROUND_CLOSEST(parent_rate * divider->m, divider->d);
rate_div = DIV_ROUND_CLOSEST_ULL((vco_freq * WZRD_FRAC_POINTS), rate);
clockout0_div = div_u64(rate_div, WZRD_FRAC_POINTS);
pre = DIV_ROUND_CLOSEST_ULL(vco_freq * WZRD_FRAC_POINTS, rate);
f = (pre - (clockout0_div * WZRD_FRAC_POINTS));
f &= WZRD_CLKOUT_FRAC_MASK;
reg = FIELD_PREP(WZRD_CLKOUT_DIVIDE_MASK, clockout0_div) |
FIELD_PREP(WZRD_CLKOUT0_FRAC_MASK, f);
writel(reg, divider->base + WZRD_CLK_CFG_REG(0, 2));
/* Set divisor and clear phase offset */
reg = FIELD_PREP(WZRD_CLKFBOUT_MULT_MASK, divider->m) |
FIELD_PREP(WZRD_DIVCLK_DIVIDE_MASK, divider->d);
writel(reg, divider->base + WZRD_CLK_CFG_REG(0, 0));
writel(divider->o, divider->base + WZRD_CLK_CFG_REG(0, 2));
writel(0, divider->base + WZRD_CLK_CFG_REG(0, 3));
div_addr = divider->base + WZRD_DR_INIT_REG_OFFSET;
return clk_wzrd_reconfig(divider, div_addr);
}
static int clk_wzrd_dynamic_all(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
unsigned long flags;
int ret;
spin_lock_irqsave(divider->lock, flags);
ret = clk_wzrd_dynamic_all_nolock(hw, rate, parent_rate);
spin_unlock_irqrestore(divider->lock, flags);
return ret;
}
static int clk_wzrd_dynamic_all_ver(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
unsigned long flags;
int ret;
spin_lock_irqsave(divider->lock, flags);
ret = clk_wzrd_dynamic_ver_all_nolock(hw, rate, parent_rate);
spin_unlock_irqrestore(divider->lock, flags);
return ret;
}
static unsigned long clk_wzrd_recalc_rate_all(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
u32 m, d, o, div, reg, f;
reg = readl(divider->base + WZRD_CLK_CFG_REG(0, 0));
d = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg);
m = FIELD_GET(WZRD_CLKFBOUT_MULT_MASK, reg);
reg = readl(divider->base + WZRD_CLK_CFG_REG(0, 2));
o = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg);
f = FIELD_GET(WZRD_CLKOUT0_FRAC_MASK, reg);
div = DIV_ROUND_CLOSEST(d * (WZRD_FRAC_POINTS * o + f), WZRD_FRAC_POINTS);
return divider_recalc_rate(hw, parent_rate * m, div, divider->table,
divider->flags, divider->width);
}
static unsigned long clk_wzrd_recalc_rate_all_ver(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
u32 edged, div2, p5en, edge, prediv2, all, regl, regh, mult;
u32 div, reg;
edge = !!(readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_1)) &
WZRD_CLKFBOUT_EDGE);
reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_2));
regl = FIELD_GET(WZRD_CLKFBOUT_L_MASK, reg);
regh = FIELD_GET(WZRD_CLKFBOUT_H_MASK, reg);
mult = regl + regh + edge;
if (!mult)
mult = 1;
regl = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_4)) &
WZRD_CLKFBOUT_FRAC_EN;
if (regl) {
regl = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_3))
& WZRD_VERSAL_FRAC_MASK;
mult = mult * WZRD_FRAC_GRADIENT + regl;
parent_rate = DIV_ROUND_CLOSEST((parent_rate * mult), WZRD_FRAC_GRADIENT);
} else {
parent_rate = parent_rate * mult;
}
/* O Calculation */
reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKOUT0_1));
edged = FIELD_GET(WZRD_CLKFBOUT_EDGE, reg);
p5en = FIELD_GET(WZRD_P5EN, reg);
prediv2 = FIELD_GET(WZRD_CLKOUT0_PREDIV2, reg);
reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKOUT0_2));
/* Low time */
regl = FIELD_GET(WZRD_CLKFBOUT_L_MASK, reg);
/* High time */
regh = FIELD_GET(WZRD_CLKFBOUT_H_MASK, reg);
all = regh + regl + edged;
if (!all)
all = 1;
if (prediv2)
div2 = PREDIV2_MULT * all + p5en;
else
div2 = all;
/* D calculation */
edged = !!(readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_DESKEW_2)) &
WZRD_DIVCLK_EDGE);
reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_DIVCLK));
/* Low time */
regl = FIELD_GET(WZRD_CLKFBOUT_L_MASK, reg);
/* High time */
regh = FIELD_GET(WZRD_CLKFBOUT_H_MASK, reg);
div = regl + regh + edged;
if (!div)
div = 1;
div = div * div2;
return divider_recalc_rate(hw, parent_rate, div, divider->table,
divider->flags, divider->width);
}
static long clk_wzrd_round_rate_all(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
unsigned long int_freq;
u32 m, d, o, div, f;
int err;
err = clk_wzrd_get_divisors(hw, rate, *prate);
if (err)
return err;
m = divider->m;
d = divider->d;
o = divider->o;
div = d * o;
int_freq = divider_recalc_rate(hw, *prate * m, div, divider->table,
divider->flags, divider->width);
if (rate > int_freq) {
f = DIV_ROUND_CLOSEST_ULL(rate * WZRD_FRAC_POINTS, int_freq);
rate = DIV_ROUND_CLOSEST(int_freq * f, WZRD_FRAC_POINTS);
}
return rate;
}
static const struct clk_ops clk_wzrd_ver_divider_ops = {
.round_rate = clk_wzrd_round_rate,
.set_rate = clk_wzrd_ver_dynamic_reconfig,
.recalc_rate = clk_wzrd_recalc_rate_ver,
};
static const struct clk_ops clk_wzrd_ver_div_all_ops = {
.round_rate = clk_wzrd_round_rate_all,
.set_rate = clk_wzrd_dynamic_all_ver,
.recalc_rate = clk_wzrd_recalc_rate_all_ver,
};
static const struct clk_ops clk_wzrd_clk_divider_ops = {
.round_rate = clk_wzrd_round_rate,
.set_rate = clk_wzrd_dynamic_reconfig,
.recalc_rate = clk_wzrd_recalc_rate,
};
static const struct clk_ops clk_wzrd_clk_div_all_ops = {
.round_rate = clk_wzrd_round_rate_all,
.set_rate = clk_wzrd_dynamic_all,
.recalc_rate = clk_wzrd_recalc_rate_all,
};
static unsigned long clk_wzrd_recalc_ratef(struct clk_hw *hw,
unsigned long parent_rate)
{
unsigned int val;
u32 div, frac;
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
void __iomem *div_addr = divider->base + divider->offset;
val = readl(div_addr);
div = val & div_mask(divider->width);
frac = (val >> WZRD_CLKOUT_FRAC_SHIFT) & WZRD_CLKOUT_FRAC_MASK;
return mult_frac(parent_rate, 1000, (div * 1000) + frac);
}
static int clk_wzrd_dynamic_reconfig_f(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
int err;
u32 value, pre;
unsigned long rate_div, f, clockout0_div;
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
void __iomem *div_addr = divider->base + divider->offset;
rate_div = DIV_ROUND_DOWN_ULL(parent_rate * 1000, rate);
clockout0_div = rate_div / 1000;
pre = DIV_ROUND_CLOSEST((parent_rate * 1000), rate);
f = (u32)(pre - (clockout0_div * 1000));
f = f & WZRD_CLKOUT_FRAC_MASK;
f = f << WZRD_CLKOUT_DIVIDE_WIDTH;
value = (f | (clockout0_div & WZRD_CLKOUT_DIVIDE_MASK));
/* Set divisor and clear phase offset */
writel(value, div_addr);
writel(0x0, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET);
/* Check status register */
err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
if (err)
return err;
/* Initiate reconfiguration */
writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2,
divider->base + WZRD_DR_INIT_REG_OFFSET);
writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2,
divider->base + WZRD_DR_INIT_REG_OFFSET);
/* Check status register */
return readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
}
static long clk_wzrd_round_rate_f(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
return rate;
}
static const struct clk_ops clk_wzrd_clk_divider_ops_f = {
.round_rate = clk_wzrd_round_rate_f,
.set_rate = clk_wzrd_dynamic_reconfig_f,
.recalc_rate = clk_wzrd_recalc_ratef,
};
static struct clk *clk_wzrd_register_divf(struct device *dev,
const char *name,
const char *parent_name,
unsigned long flags,
void __iomem *base, u16 offset,
u8 shift, u8 width,
u8 clk_divider_flags,
u32 div_type,
spinlock_t *lock)
{
struct clk_wzrd_divider *div;
struct clk_hw *hw;
struct clk_init_data init;
int ret;
div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
if (!div)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &clk_wzrd_clk_divider_ops_f;
init.flags = flags;
init.parent_names = &parent_name;
init.num_parents = 1;
div->base = base;
div->offset = offset;
div->shift = shift;
div->width = width;
div->flags = clk_divider_flags;
div->lock = lock;
div->hw.init = &init;
hw = &div->hw;
ret = devm_clk_hw_register(dev, hw);
if (ret)
return ERR_PTR(ret);
return hw->clk;
}
static struct clk *clk_wzrd_ver_register_divider(struct device *dev,
const char *name,
const char *parent_name,
unsigned long flags,
void __iomem *base,
u16 offset,
u8 shift, u8 width,
u8 clk_divider_flags,
u32 div_type,
spinlock_t *lock)
{
struct clk_wzrd_divider *div;
struct clk_hw *hw;
struct clk_init_data init;
int ret;
div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
if (!div)
return ERR_PTR(-ENOMEM);
init.name = name;
if (clk_divider_flags & CLK_DIVIDER_READ_ONLY)
init.ops = &clk_divider_ro_ops;
else if (div_type == DIV_O)
init.ops = &clk_wzrd_ver_divider_ops;
else
init.ops = &clk_wzrd_ver_div_all_ops;
init.flags = flags;
init.parent_names = &parent_name;
init.num_parents = 1;
div->base = base;
div->offset = offset;
div->shift = shift;
div->width = width;
div->flags = clk_divider_flags;
div->lock = lock;
div->hw.init = &init;
hw = &div->hw;
ret = devm_clk_hw_register(dev, hw);
if (ret)
return ERR_PTR(ret);
return hw->clk;
}
static struct clk *clk_wzrd_register_divider(struct device *dev,
const char *name,
const char *parent_name,
unsigned long flags,
void __iomem *base, u16 offset,
u8 shift, u8 width,
u8 clk_divider_flags,
u32 div_type,
spinlock_t *lock)
{
struct clk_wzrd_divider *div;
struct clk_hw *hw;
struct clk_init_data init;
int ret;
div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
if (!div)
return ERR_PTR(-ENOMEM);
init.name = name;
if (clk_divider_flags & CLK_DIVIDER_READ_ONLY)
init.ops = &clk_divider_ro_ops;
else if (div_type == DIV_O)
init.ops = &clk_wzrd_clk_divider_ops;
else
init.ops = &clk_wzrd_clk_div_all_ops;
init.flags = flags;
init.parent_names = &parent_name;
init.num_parents = 1;
div->base = base;
div->offset = offset;
div->shift = shift;
div->width = width;
div->flags = clk_divider_flags;
div->lock = lock;
div->hw.init = &init;
hw = &div->hw;
ret = devm_clk_hw_register(dev, hw);
if (ret)
return ERR_PTR(ret);
return hw->clk;
}
static int clk_wzrd_clk_notifier(struct notifier_block *nb, unsigned long event,
void *data)
{
unsigned long max;
struct clk_notifier_data *ndata = data;
struct clk_wzrd *clk_wzrd = to_clk_wzrd(nb);
if (clk_wzrd->suspended)
return NOTIFY_OK;
if (ndata->clk == clk_wzrd->clk_in1)
max = clk_wzrd_max_freq[clk_wzrd->speed_grade - 1];
else if (ndata->clk == clk_wzrd->axi_clk)
max = WZRD_ACLK_MAX_FREQ;
else
return NOTIFY_DONE; /* should never happen */
switch (event) {
case PRE_RATE_CHANGE:
if (ndata->new_rate > max)
return NOTIFY_BAD;
return NOTIFY_OK;
case POST_RATE_CHANGE:
case ABORT_RATE_CHANGE:
default:
return NOTIFY_DONE;
}
}
static int __maybe_unused clk_wzrd_suspend(struct device *dev)
{
struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev);
clk_disable_unprepare(clk_wzrd->axi_clk);
clk_wzrd->suspended = true;
return 0;
}
static int __maybe_unused clk_wzrd_resume(struct device *dev)
{
int ret;
struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev);
ret = clk_prepare_enable(clk_wzrd->axi_clk);
if (ret) {
dev_err(dev, "unable to enable s_axi_aclk\n");
return ret;
}
clk_wzrd->suspended = false;
return 0;
}
static SIMPLE_DEV_PM_OPS(clk_wzrd_dev_pm_ops, clk_wzrd_suspend,
clk_wzrd_resume);
static const struct versal_clk_data versal_data = {
.is_versal = true,
};
static int clk_wzrd_probe(struct platform_device *pdev)
{
const char *clkout_name, *clk_name, *clk_mul_name;
u32 regl, regh, edge, regld, reghd, edged, div;
struct device_node *np = pdev->dev.of_node;
const struct versal_clk_data *data;
struct clk_wzrd *clk_wzrd;
unsigned long flags = 0;
void __iomem *ctrl_reg;
u32 reg, reg_f, mult;
bool is_versal = false;
unsigned long rate;
int nr_outputs;
int i, ret;
clk_wzrd = devm_kzalloc(&pdev->dev, sizeof(*clk_wzrd), GFP_KERNEL);
if (!clk_wzrd)
return -ENOMEM;
platform_set_drvdata(pdev, clk_wzrd);
clk_wzrd->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(clk_wzrd->base))
return PTR_ERR(clk_wzrd->base);
ret = of_property_read_u32(np, "xlnx,speed-grade", &clk_wzrd->speed_grade);
if (!ret) {
if (clk_wzrd->speed_grade < 1 || clk_wzrd->speed_grade > 3) {
dev_warn(&pdev->dev, "invalid speed grade '%d'\n",
clk_wzrd->speed_grade);
clk_wzrd->speed_grade = 0;
}
}
clk_wzrd->clk_in1 = devm_clk_get(&pdev->dev, "clk_in1");
if (IS_ERR(clk_wzrd->clk_in1))
return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->clk_in1),
"clk_in1 not found\n");
clk_wzrd->axi_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
if (IS_ERR(clk_wzrd->axi_clk))
return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->axi_clk),
"s_axi_aclk not found\n");
ret = clk_prepare_enable(clk_wzrd->axi_clk);
if (ret) {
dev_err(&pdev->dev, "enabling s_axi_aclk failed\n");
return ret;
}
rate = clk_get_rate(clk_wzrd->axi_clk);
if (rate > WZRD_ACLK_MAX_FREQ) {
dev_err(&pdev->dev, "s_axi_aclk frequency (%lu) too high\n",
rate);
ret = -EINVAL;
goto err_disable_clk;
}
data = device_get_match_data(&pdev->dev);
if (data)
is_versal = data->is_versal;
ret = of_property_read_u32(np, "xlnx,nr-outputs", &nr_outputs);
if (ret || nr_outputs > WZRD_NUM_OUTPUTS) {
ret = -EINVAL;
goto err_disable_clk;
}
clkout_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_out0", dev_name(&pdev->dev));
if (!clkout_name) {
ret = -ENOMEM;
goto err_disable_clk;
}
if (is_versal) {
if (nr_outputs == 1) {
clk_wzrd->clkout[0] = clk_wzrd_ver_register_divider
(&pdev->dev, clkout_name,
__clk_get_name(clk_wzrd->clk_in1), 0,
clk_wzrd->base, WZRD_CLK_CFG_REG(is_versal, 3),
WZRD_CLKOUT_DIVIDE_SHIFT,
WZRD_CLKOUT_DIVIDE_WIDTH,
CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
DIV_ALL, &clkwzrd_lock);
goto out;
}
/* register multiplier */
edge = !!(readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 0)) &
BIT(8));
regl = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 1)) &
WZRD_CLKFBOUT_L_MASK) >> WZRD_CLKFBOUT_L_SHIFT;
regh = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 1)) &
WZRD_CLKFBOUT_H_MASK) >> WZRD_CLKFBOUT_H_SHIFT;
mult = regl + regh + edge;
if (!mult)
mult = 1;
mult = mult * WZRD_FRAC_GRADIENT;
regl = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 51)) &
WZRD_CLKFBOUT_FRAC_EN;
if (regl) {
regl = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 48)) &
WZRD_VERSAL_FRAC_MASK;
mult = mult + regl;
}
div = 64;
} else {
if (nr_outputs == 1) {
clk_wzrd->clkout[0] = clk_wzrd_register_divider
(&pdev->dev, clkout_name,
__clk_get_name(clk_wzrd->clk_in1), 0,
clk_wzrd->base, WZRD_CLK_CFG_REG(is_versal, 3),
WZRD_CLKOUT_DIVIDE_SHIFT,
WZRD_CLKOUT_DIVIDE_WIDTH,
CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
DIV_ALL, &clkwzrd_lock);
goto out;
}
reg = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 0));
reg_f = reg & WZRD_CLKFBOUT_FRAC_MASK;
reg_f = reg_f >> WZRD_CLKFBOUT_FRAC_SHIFT;
reg = reg & WZRD_CLKFBOUT_MULT_MASK;
reg = reg >> WZRD_CLKFBOUT_MULT_SHIFT;
mult = (reg * 1000) + reg_f;
div = 1000;
}
clk_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_mul", dev_name(&pdev->dev));
if (!clk_name) {
ret = -ENOMEM;
goto err_disable_clk;
}
clk_wzrd->clks_internal[wzrd_clk_mul] = clk_register_fixed_factor
(&pdev->dev, clk_name,
__clk_get_name(clk_wzrd->clk_in1),
0, mult, div);
if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul])) {
dev_err(&pdev->dev, "unable to register fixed-factor clock\n");
ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul]);
goto err_disable_clk;
}
clk_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_mul_div", dev_name(&pdev->dev));
if (!clk_name) {
ret = -ENOMEM;
goto err_rm_int_clk;
}
if (is_versal) {
edged = !!(readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 20)) &
BIT(10));
regld = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 21)) &
WZRD_CLKFBOUT_L_MASK) >> WZRD_CLKFBOUT_L_SHIFT;
reghd = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 21)) &
WZRD_CLKFBOUT_H_MASK) >> WZRD_CLKFBOUT_H_SHIFT;
div = (regld + reghd + edged);
if (!div)
div = 1;
clk_mul_name = __clk_get_name(clk_wzrd->clks_internal[wzrd_clk_mul]);
clk_wzrd->clks_internal[wzrd_clk_mul_div] =
clk_register_fixed_factor(&pdev->dev, clk_name,
clk_mul_name, 0, 1, div);
} else {
ctrl_reg = clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 0);
clk_wzrd->clks_internal[wzrd_clk_mul_div] = clk_register_divider
(&pdev->dev, clk_name,
__clk_get_name(clk_wzrd->clks_internal[wzrd_clk_mul]),
flags, ctrl_reg, 0, 8, CLK_DIVIDER_ONE_BASED |
CLK_DIVIDER_ALLOW_ZERO, &clkwzrd_lock);
}
if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div])) {
dev_err(&pdev->dev, "unable to register divider clock\n");
ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div]);
goto err_rm_int_clk;
}
/* register div per output */
for (i = nr_outputs - 1; i >= 0 ; i--) {
clkout_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
"%s_out%d", dev_name(&pdev->dev), i);
if (!clkout_name) {
ret = -ENOMEM;
goto err_rm_int_clk;
}
if (is_versal) {
clk_wzrd->clkout[i] = clk_wzrd_ver_register_divider
(&pdev->dev,
clkout_name, clk_name, 0,
clk_wzrd->base,
(WZRD_CLK_CFG_REG(is_versal, 3) + i * 8),
WZRD_CLKOUT_DIVIDE_SHIFT,
WZRD_CLKOUT_DIVIDE_WIDTH,
CLK_DIVIDER_ONE_BASED |
CLK_DIVIDER_ALLOW_ZERO,
DIV_O, &clkwzrd_lock);
} else {
if (!i)
clk_wzrd->clkout[i] = clk_wzrd_register_divf
(&pdev->dev, clkout_name, clk_name, flags, clk_wzrd->base,
(WZRD_CLK_CFG_REG(is_versal, 2) + i * 12),
WZRD_CLKOUT_DIVIDE_SHIFT,
WZRD_CLKOUT_DIVIDE_WIDTH,
CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
DIV_O, &clkwzrd_lock);
else
clk_wzrd->clkout[i] = clk_wzrd_register_divider
(&pdev->dev, clkout_name, clk_name, 0, clk_wzrd->base,
(WZRD_CLK_CFG_REG(is_versal, 2) + i * 12),
WZRD_CLKOUT_DIVIDE_SHIFT,
WZRD_CLKOUT_DIVIDE_WIDTH,
CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
DIV_O, &clkwzrd_lock);
}
if (IS_ERR(clk_wzrd->clkout[i])) {
int j;
for (j = i + 1; j < nr_outputs; j++)
clk_unregister(clk_wzrd->clkout[j]);
dev_err(&pdev->dev,
"unable to register divider clock\n");
ret = PTR_ERR(clk_wzrd->clkout[i]);
goto err_rm_int_clks;
}
}
out:
clk_wzrd->clk_data.clks = clk_wzrd->clkout;
clk_wzrd->clk_data.clk_num = ARRAY_SIZE(clk_wzrd->clkout);
of_clk_add_provider(np, of_clk_src_onecell_get, &clk_wzrd->clk_data);
if (clk_wzrd->speed_grade) {
clk_wzrd->nb.notifier_call = clk_wzrd_clk_notifier;
ret = clk_notifier_register(clk_wzrd->clk_in1,
&clk_wzrd->nb);
if (ret)
dev_warn(&pdev->dev,
"unable to register clock notifier\n");
ret = clk_notifier_register(clk_wzrd->axi_clk, &clk_wzrd->nb);
if (ret)
dev_warn(&pdev->dev,
"unable to register clock notifier\n");
}
return 0;
err_rm_int_clks:
clk_unregister(clk_wzrd->clks_internal[1]);
err_rm_int_clk:
clk_unregister(clk_wzrd->clks_internal[0]);
err_disable_clk:
clk_disable_unprepare(clk_wzrd->axi_clk);
return ret;
}
static void clk_wzrd_remove(struct platform_device *pdev)
{
int i;
struct clk_wzrd *clk_wzrd = platform_get_drvdata(pdev);
of_clk_del_provider(pdev->dev.of_node);
for (i = 0; i < WZRD_NUM_OUTPUTS; i++)
clk_unregister(clk_wzrd->clkout[i]);
for (i = 0; i < wzrd_clk_int_max; i++)
clk_unregister(clk_wzrd->clks_internal[i]);
if (clk_wzrd->speed_grade) {
clk_notifier_unregister(clk_wzrd->axi_clk, &clk_wzrd->nb);
clk_notifier_unregister(clk_wzrd->clk_in1, &clk_wzrd->nb);
}
clk_disable_unprepare(clk_wzrd->axi_clk);
}
static const struct of_device_id clk_wzrd_ids[] = {
{ .compatible = "xlnx,versal-clk-wizard", .data = &versal_data },
{ .compatible = "xlnx,clocking-wizard" },
{ .compatible = "xlnx,clocking-wizard-v5.2" },
{ .compatible = "xlnx,clocking-wizard-v6.0" },
{ },
};
MODULE_DEVICE_TABLE(of, clk_wzrd_ids);
static struct platform_driver clk_wzrd_driver = {
.driver = {
.name = "clk-wizard",
.of_match_table = clk_wzrd_ids,
.pm = &clk_wzrd_dev_pm_ops,
},
.probe = clk_wzrd_probe,
.remove_new = clk_wzrd_remove,
};
module_platform_driver(clk_wzrd_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Soeren Brinkmann <soren.brinkmann@xilinx.com");
MODULE_DESCRIPTION("Driver for the Xilinx Clocking Wizard IP core");