mirror of
https://github.com/torvalds/linux.git
synced 2024-11-24 21:21:41 +00:00
1635e62e75
Verify that edge cases produce proper results, and some more. [npitre@baylibre.com: avoid undefined shift value] Link: https://lkml.kernel.org/r/7rrs9pn1-n266-3013-9q6n-1osp8r8s0rrn@syhkavp.arg Link: https://lkml.kernel.org/r/20240707190648.1982714-3-nico@fluxnic.net Signed-off-by: Nicolas Pitre <npitre@baylibre.com> Reviewed-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com> Cc: Biju Das <biju.das.jz@bp.renesas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
270 lines
5.8 KiB
C
270 lines
5.8 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
|
|
*
|
|
* Based on former do_div() implementation from asm-parisc/div64.h:
|
|
* Copyright (C) 1999 Hewlett-Packard Co
|
|
* Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*
|
|
*
|
|
* Generic C version of 64bit/32bit division and modulo, with
|
|
* 64bit result and 32bit remainder.
|
|
*
|
|
* The fast case for (n>>32 == 0) is handled inline by do_div().
|
|
*
|
|
* Code generated for this function might be very inefficient
|
|
* for some CPUs. __div64_32() can be overridden by linking arch-specific
|
|
* assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
|
|
* or by defining a preprocessor macro in arch/include/asm/div64.h.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/export.h>
|
|
#include <linux/math.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/minmax.h>
|
|
#include <linux/log2.h>
|
|
|
|
/* Not needed on 64bit architectures */
|
|
#if BITS_PER_LONG == 32
|
|
|
|
#ifndef __div64_32
|
|
uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
|
|
{
|
|
uint64_t rem = *n;
|
|
uint64_t b = base;
|
|
uint64_t res, d = 1;
|
|
uint32_t high = rem >> 32;
|
|
|
|
/* Reduce the thing a bit first */
|
|
res = 0;
|
|
if (high >= base) {
|
|
high /= base;
|
|
res = (uint64_t) high << 32;
|
|
rem -= (uint64_t) (high*base) << 32;
|
|
}
|
|
|
|
while ((int64_t)b > 0 && b < rem) {
|
|
b = b+b;
|
|
d = d+d;
|
|
}
|
|
|
|
do {
|
|
if (rem >= b) {
|
|
rem -= b;
|
|
res += d;
|
|
}
|
|
b >>= 1;
|
|
d >>= 1;
|
|
} while (d);
|
|
|
|
*n = res;
|
|
return rem;
|
|
}
|
|
EXPORT_SYMBOL(__div64_32);
|
|
#endif
|
|
|
|
#ifndef div_s64_rem
|
|
s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
|
|
{
|
|
u64 quotient;
|
|
|
|
if (dividend < 0) {
|
|
quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
|
|
*remainder = -*remainder;
|
|
if (divisor > 0)
|
|
quotient = -quotient;
|
|
} else {
|
|
quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
|
|
if (divisor < 0)
|
|
quotient = -quotient;
|
|
}
|
|
return quotient;
|
|
}
|
|
EXPORT_SYMBOL(div_s64_rem);
|
|
#endif
|
|
|
|
/*
|
|
* div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
|
|
* @dividend: 64bit dividend
|
|
* @divisor: 64bit divisor
|
|
* @remainder: 64bit remainder
|
|
*
|
|
* This implementation is a comparable to algorithm used by div64_u64.
|
|
* But this operation, which includes math for calculating the remainder,
|
|
* is kept distinct to avoid slowing down the div64_u64 operation on 32bit
|
|
* systems.
|
|
*/
|
|
#ifndef div64_u64_rem
|
|
u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
|
|
{
|
|
u32 high = divisor >> 32;
|
|
u64 quot;
|
|
|
|
if (high == 0) {
|
|
u32 rem32;
|
|
quot = div_u64_rem(dividend, divisor, &rem32);
|
|
*remainder = rem32;
|
|
} else {
|
|
int n = fls(high);
|
|
quot = div_u64(dividend >> n, divisor >> n);
|
|
|
|
if (quot != 0)
|
|
quot--;
|
|
|
|
*remainder = dividend - quot * divisor;
|
|
if (*remainder >= divisor) {
|
|
quot++;
|
|
*remainder -= divisor;
|
|
}
|
|
}
|
|
|
|
return quot;
|
|
}
|
|
EXPORT_SYMBOL(div64_u64_rem);
|
|
#endif
|
|
|
|
/*
|
|
* div64_u64 - unsigned 64bit divide with 64bit divisor
|
|
* @dividend: 64bit dividend
|
|
* @divisor: 64bit divisor
|
|
*
|
|
* This implementation is a modified version of the algorithm proposed
|
|
* by the book 'Hacker's Delight'. The original source and full proof
|
|
* can be found here and is available for use without restriction.
|
|
*
|
|
* 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
|
|
*/
|
|
#ifndef div64_u64
|
|
u64 div64_u64(u64 dividend, u64 divisor)
|
|
{
|
|
u32 high = divisor >> 32;
|
|
u64 quot;
|
|
|
|
if (high == 0) {
|
|
quot = div_u64(dividend, divisor);
|
|
} else {
|
|
int n = fls(high);
|
|
quot = div_u64(dividend >> n, divisor >> n);
|
|
|
|
if (quot != 0)
|
|
quot--;
|
|
if ((dividend - quot * divisor) >= divisor)
|
|
quot++;
|
|
}
|
|
|
|
return quot;
|
|
}
|
|
EXPORT_SYMBOL(div64_u64);
|
|
#endif
|
|
|
|
#ifndef div64_s64
|
|
s64 div64_s64(s64 dividend, s64 divisor)
|
|
{
|
|
s64 quot, t;
|
|
|
|
quot = div64_u64(abs(dividend), abs(divisor));
|
|
t = (dividend ^ divisor) >> 63;
|
|
|
|
return (quot ^ t) - t;
|
|
}
|
|
EXPORT_SYMBOL(div64_s64);
|
|
#endif
|
|
|
|
#endif /* BITS_PER_LONG == 32 */
|
|
|
|
/*
|
|
* Iterative div/mod for use when dividend is not expected to be much
|
|
* bigger than divisor.
|
|
*/
|
|
u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
|
|
{
|
|
return __iter_div_u64_rem(dividend, divisor, remainder);
|
|
}
|
|
EXPORT_SYMBOL(iter_div_u64_rem);
|
|
|
|
#ifndef mul_u64_u64_div_u64
|
|
u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
|
|
{
|
|
if (ilog2(a) + ilog2(b) <= 62)
|
|
return div64_u64(a * b, c);
|
|
|
|
#if defined(__SIZEOF_INT128__)
|
|
|
|
/* native 64x64=128 bits multiplication */
|
|
u128 prod = (u128)a * b;
|
|
u64 n_lo = prod, n_hi = prod >> 64;
|
|
|
|
#else
|
|
|
|
/* perform a 64x64=128 bits multiplication manually */
|
|
u32 a_lo = a, a_hi = a >> 32, b_lo = b, b_hi = b >> 32;
|
|
u64 x, y, z;
|
|
|
|
x = (u64)a_lo * b_lo;
|
|
y = (u64)a_lo * b_hi + (u32)(x >> 32);
|
|
z = (u64)a_hi * b_hi + (u32)(y >> 32);
|
|
y = (u64)a_hi * b_lo + (u32)y;
|
|
z += (u32)(y >> 32);
|
|
x = (y << 32) + (u32)x;
|
|
|
|
u64 n_lo = x, n_hi = z;
|
|
|
|
#endif
|
|
|
|
/* make sure c is not zero, trigger exception otherwise */
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wdiv-by-zero"
|
|
if (unlikely(c == 0))
|
|
return 1/0;
|
|
#pragma GCC diagnostic pop
|
|
|
|
int shift = __builtin_ctzll(c);
|
|
|
|
/* try reducing the fraction in case the dividend becomes <= 64 bits */
|
|
if ((n_hi >> shift) == 0) {
|
|
u64 n = shift ? (n_lo >> shift) | (n_hi << (64 - shift)) : n_lo;
|
|
|
|
return div64_u64(n, c >> shift);
|
|
/*
|
|
* The remainder value if needed would be:
|
|
* res = div64_u64_rem(n, c >> shift, &rem);
|
|
* rem = (rem << shift) + (n_lo - (n << shift));
|
|
*/
|
|
}
|
|
|
|
if (n_hi >= c) {
|
|
/* overflow: result is unrepresentable in a u64 */
|
|
return -1;
|
|
}
|
|
|
|
/* Do the full 128 by 64 bits division */
|
|
|
|
shift = __builtin_clzll(c);
|
|
c <<= shift;
|
|
|
|
int p = 64 + shift;
|
|
u64 res = 0;
|
|
bool carry;
|
|
|
|
do {
|
|
carry = n_hi >> 63;
|
|
shift = carry ? 1 : __builtin_clzll(n_hi);
|
|
if (p < shift)
|
|
break;
|
|
p -= shift;
|
|
n_hi <<= shift;
|
|
n_hi |= n_lo >> (64 - shift);
|
|
n_lo <<= shift;
|
|
if (carry || (n_hi >= c)) {
|
|
n_hi -= c;
|
|
res |= 1ULL << p;
|
|
}
|
|
} while (n_hi);
|
|
/* The remainder value if needed would be n_hi << p */
|
|
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(mul_u64_u64_div_u64);
|
|
#endif
|