linux/arch/powerpc/perf/isa207-common.c
Kajol Jain 82d2c16b35 powerpc/perf: Adds support for programming of Thresholding in P10
Thresholding, a performance monitoring unit feature, can be
used to identify marked instructions which take more than
expected cycles between start event and end event.
Threshold compare (thresh_cmp) bits are programmed in MMCRA
register. In Power9, thresh_cmp bits were part of the
event code. But in case of P10, thresh_cmp are not part of
event code due to inclusion of MMCR3 bits.

Patch here adds an option to use attr.config1 variable
to be used to pass thresh_cmp value to be programmed in
MMCRA register. A new ppmu flag called PPMU_HAS_ATTR_CONFIG1
has been added and this flag is used to notify the use of
attr.config1 variable.

Patch has extended the parameter list of 'compute_mmcr',
to include power_pmu's 'flags' element and parameter list of
get_constraint to include attr.config1 value. It also extend
parameter list of power_check_constraints inorder to pass
perf_event list.

As stated by commit ef0e3b650f ("powerpc/perf: Fix Threshold
Event Counter Multiplier width for P10"), constraint bits for
thresh_cmp is also needed to be increased to 11 bits, which is
handled as part of this patch. We added bit number 53 as part
of constraint bits of thresh_cmp for power10 to make it an
11 bit field.

Updated layout for p10:

/*
 * Layout of constraint bits:
 *
 *        60        56        52        48        44        40        36        32
 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
 *   [   fab_match   ]         [       thresh_cmp      ] [   thresh_ctl    ] [   ]
 *                                          |                                  |
 *                           [  thresh_cmp bits for p10]           thresh_sel -*
 *
 *        28        24        20        16        12         8         4         0
 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
 *               [ ] |   [ ] |  [  sample ]   [     ]   [6] [5]   [4] [3]   [2] [1]
 *                |  |    |  |                  |
 *      BHRB IFM -*  |    |  |*radix_scope      |      Count of events for each PMC.
 *              EBB -*    |                     |        p1, p2, p3, p4, p5, p6.
 *      L1 I/D qualifier -*                     |
 *                     nc - number of counters -*
 *
 * The PMC fields P1..P6, and NC, are adder fields. As we accumulate constraints
 * we want the low bit of each field to be added to any existing value.
 *
 * Everything else is a value field.
 */

Result:
command#: cat /sys/devices/cpu/format/thresh_cmp
config1:0-17

ex. usage:

command#: perf record -I --weight -d  -e
	 cpu/event=0x67340101EC,thresh_cmp=500/ ./ebizzy -S 2 -t 1 -s 4096
1826636 records/s
real  2.00 s
user  2.00 s
sys   0.00 s
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.038 MB perf.data (61 samples) ]

Signed-off-by: Kajol Jain <kjain@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210209095234.837356-1-kjain@linux.ibm.com
2021-02-11 23:35:36 +11:00

697 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Common Performance counter support functions for PowerISA v2.07 processors.
*
* Copyright 2009 Paul Mackerras, IBM Corporation.
* Copyright 2013 Michael Ellerman, IBM Corporation.
* Copyright 2016 Madhavan Srinivasan, IBM Corporation.
*/
#include "isa207-common.h"
PMU_FORMAT_ATTR(event, "config:0-49");
PMU_FORMAT_ATTR(pmcxsel, "config:0-7");
PMU_FORMAT_ATTR(mark, "config:8");
PMU_FORMAT_ATTR(combine, "config:11");
PMU_FORMAT_ATTR(unit, "config:12-15");
PMU_FORMAT_ATTR(pmc, "config:16-19");
PMU_FORMAT_ATTR(cache_sel, "config:20-23");
PMU_FORMAT_ATTR(sample_mode, "config:24-28");
PMU_FORMAT_ATTR(thresh_sel, "config:29-31");
PMU_FORMAT_ATTR(thresh_stop, "config:32-35");
PMU_FORMAT_ATTR(thresh_start, "config:36-39");
PMU_FORMAT_ATTR(thresh_cmp, "config:40-49");
struct attribute *isa207_pmu_format_attr[] = {
&format_attr_event.attr,
&format_attr_pmcxsel.attr,
&format_attr_mark.attr,
&format_attr_combine.attr,
&format_attr_unit.attr,
&format_attr_pmc.attr,
&format_attr_cache_sel.attr,
&format_attr_sample_mode.attr,
&format_attr_thresh_sel.attr,
&format_attr_thresh_stop.attr,
&format_attr_thresh_start.attr,
&format_attr_thresh_cmp.attr,
NULL,
};
struct attribute_group isa207_pmu_format_group = {
.name = "format",
.attrs = isa207_pmu_format_attr,
};
static inline bool event_is_fab_match(u64 event)
{
/* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
event &= 0xff0fe;
/* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
return (event == 0x30056 || event == 0x4f052);
}
static bool is_event_valid(u64 event)
{
u64 valid_mask = EVENT_VALID_MASK;
if (cpu_has_feature(CPU_FTR_ARCH_31))
valid_mask = p10_EVENT_VALID_MASK;
else if (cpu_has_feature(CPU_FTR_ARCH_300))
valid_mask = p9_EVENT_VALID_MASK;
return !(event & ~valid_mask);
}
static inline bool is_event_marked(u64 event)
{
if (event & EVENT_IS_MARKED)
return true;
return false;
}
static unsigned long sdar_mod_val(u64 event)
{
if (cpu_has_feature(CPU_FTR_ARCH_31))
return p10_SDAR_MODE(event);
return p9_SDAR_MODE(event);
}
static void mmcra_sdar_mode(u64 event, unsigned long *mmcra)
{
/*
* MMCRA[SDAR_MODE] specifices how the SDAR should be updated in
* continous sampling mode.
*
* Incase of Power8:
* MMCRA[SDAR_MODE] will be programmed as "0b01" for continous sampling
* mode and will be un-changed when setting MMCRA[63] (Marked events).
*
* Incase of Power9/power10:
* Marked event: MMCRA[SDAR_MODE] will be set to 0b00 ('No Updates'),
* or if group already have any marked events.
* For rest
* MMCRA[SDAR_MODE] will be set from event code.
* If sdar_mode from event is zero, default to 0b01. Hardware
* requires that we set a non-zero value.
*/
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
if (is_event_marked(event) || (*mmcra & MMCRA_SAMPLE_ENABLE))
*mmcra &= MMCRA_SDAR_MODE_NO_UPDATES;
else if (sdar_mod_val(event))
*mmcra |= sdar_mod_val(event) << MMCRA_SDAR_MODE_SHIFT;
else
*mmcra |= MMCRA_SDAR_MODE_DCACHE;
} else
*mmcra |= MMCRA_SDAR_MODE_TLB;
}
static u64 p10_thresh_cmp_val(u64 value)
{
int exp = 0;
u64 result = value;
if (!value)
return value;
/*
* Incase of P10, thresh_cmp value is not part of raw event code
* and provided via attr.config1 parameter. To program threshold in MMCRA,
* take a 18 bit number N and shift right 2 places and increment
* the exponent E by 1 until the upper 10 bits of N are zero.
* Write E to the threshold exponent and write the lower 8 bits of N
* to the threshold mantissa.
* The max threshold that can be written is 261120.
*/
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
if (value > 261120)
value = 261120;
while ((64 - __builtin_clzl(value)) > 8) {
exp++;
value >>= 2;
}
/*
* Note that it is invalid to write a mantissa with the
* upper 2 bits of mantissa being zero, unless the
* exponent is also zero.
*/
if (!(value & 0xC0) && exp)
result = 0;
else
result = (exp << 8) | value;
}
return result;
}
static u64 thresh_cmp_val(u64 value)
{
if (cpu_has_feature(CPU_FTR_ARCH_31))
value = p10_thresh_cmp_val(value);
/*
* Since location of threshold compare bits in MMCRA
* is different for p8, using different shift value.
*/
if (cpu_has_feature(CPU_FTR_ARCH_300))
return value << p9_MMCRA_THR_CMP_SHIFT;
else
return value << MMCRA_THR_CMP_SHIFT;
}
static unsigned long combine_from_event(u64 event)
{
if (cpu_has_feature(CPU_FTR_ARCH_300))
return p9_EVENT_COMBINE(event);
return EVENT_COMBINE(event);
}
static unsigned long combine_shift(unsigned long pmc)
{
if (cpu_has_feature(CPU_FTR_ARCH_300))
return p9_MMCR1_COMBINE_SHIFT(pmc);
return MMCR1_COMBINE_SHIFT(pmc);
}
static inline bool event_is_threshold(u64 event)
{
return (event >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
}
static bool is_thresh_cmp_valid(u64 event)
{
unsigned int cmp, exp;
if (cpu_has_feature(CPU_FTR_ARCH_31))
return p10_thresh_cmp_val(event) != 0;
/*
* Check the mantissa upper two bits are not zero, unless the
* exponent is also zero. See the THRESH_CMP_MANTISSA doc.
*/
cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
exp = cmp >> 7;
if (exp && (cmp & 0x60) == 0)
return false;
return true;
}
static unsigned int dc_ic_rld_quad_l1_sel(u64 event)
{
unsigned int cache;
cache = (event >> EVENT_CACHE_SEL_SHIFT) & MMCR1_DC_IC_QUAL_MASK;
return cache;
}
static inline u64 isa207_find_source(u64 idx, u32 sub_idx)
{
u64 ret = PERF_MEM_NA;
switch(idx) {
case 0:
/* Nothing to do */
break;
case 1:
ret = PH(LVL, L1);
break;
case 2:
ret = PH(LVL, L2);
break;
case 3:
ret = PH(LVL, L3);
break;
case 4:
if (sub_idx <= 1)
ret = PH(LVL, LOC_RAM);
else if (sub_idx > 1 && sub_idx <= 2)
ret = PH(LVL, REM_RAM1);
else
ret = PH(LVL, REM_RAM2);
ret |= P(SNOOP, HIT);
break;
case 5:
ret = PH(LVL, REM_CCE1);
if ((sub_idx == 0) || (sub_idx == 2) || (sub_idx == 4))
ret |= P(SNOOP, HIT);
else if ((sub_idx == 1) || (sub_idx == 3) || (sub_idx == 5))
ret |= P(SNOOP, HITM);
break;
case 6:
ret = PH(LVL, REM_CCE2);
if ((sub_idx == 0) || (sub_idx == 2))
ret |= P(SNOOP, HIT);
else if ((sub_idx == 1) || (sub_idx == 3))
ret |= P(SNOOP, HITM);
break;
case 7:
ret = PM(LVL, L1);
break;
}
return ret;
}
void isa207_get_mem_data_src(union perf_mem_data_src *dsrc, u32 flags,
struct pt_regs *regs)
{
u64 idx;
u32 sub_idx;
u64 sier;
u64 val;
/* Skip if no SIER support */
if (!(flags & PPMU_HAS_SIER)) {
dsrc->val = 0;
return;
}
sier = mfspr(SPRN_SIER);
val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
if (val == 1 || val == 2) {
idx = (sier & ISA207_SIER_LDST_MASK) >> ISA207_SIER_LDST_SHIFT;
sub_idx = (sier & ISA207_SIER_DATA_SRC_MASK) >> ISA207_SIER_DATA_SRC_SHIFT;
dsrc->val = isa207_find_source(idx, sub_idx);
dsrc->val |= (val == 1) ? P(OP, LOAD) : P(OP, STORE);
}
}
void isa207_get_mem_weight(u64 *weight)
{
u64 mmcra = mfspr(SPRN_MMCRA);
u64 exp = MMCRA_THR_CTR_EXP(mmcra);
u64 mantissa = MMCRA_THR_CTR_MANT(mmcra);
u64 sier = mfspr(SPRN_SIER);
u64 val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
if (cpu_has_feature(CPU_FTR_ARCH_31))
mantissa = P10_MMCRA_THR_CTR_MANT(mmcra);
if (val == 0 || val == 7)
*weight = 0;
else
*weight = mantissa << (2 * exp);
}
int isa207_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp, u64 event_config1)
{
unsigned int unit, pmc, cache, ebb;
unsigned long mask, value;
mask = value = 0;
if (!is_event_valid(event))
return -1;
pmc = (event >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
unit = (event >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
if (cpu_has_feature(CPU_FTR_ARCH_31))
cache = (event >> EVENT_CACHE_SEL_SHIFT) &
p10_EVENT_CACHE_SEL_MASK;
else
cache = (event >> EVENT_CACHE_SEL_SHIFT) &
EVENT_CACHE_SEL_MASK;
ebb = (event >> EVENT_EBB_SHIFT) & EVENT_EBB_MASK;
if (pmc) {
u64 base_event;
if (pmc > 6)
return -1;
/* Ignore Linux defined bits when checking event below */
base_event = event & ~EVENT_LINUX_MASK;
if (pmc >= 5 && base_event != 0x500fa &&
base_event != 0x600f4)
return -1;
mask |= CNST_PMC_MASK(pmc);
value |= CNST_PMC_VAL(pmc);
/*
* PMC5 and PMC6 are used to count cycles and instructions and
* they do not support most of the constraint bits. Add a check
* to exclude PMC5/6 from most of the constraints except for
* EBB/BHRB.
*/
if (pmc >= 5)
goto ebb_bhrb;
}
if (pmc <= 4) {
/*
* Add to number of counters in use. Note this includes events with
* a PMC of 0 - they still need a PMC, it's just assigned later.
* Don't count events on PMC 5 & 6, there is only one valid event
* on each of those counters, and they are handled above.
*/
mask |= CNST_NC_MASK;
value |= CNST_NC_VAL;
}
if (unit >= 6 && unit <= 9) {
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
if (unit == 6) {
mask |= CNST_L2L3_GROUP_MASK;
value |= CNST_L2L3_GROUP_VAL(event >> p10_L2L3_EVENT_SHIFT);
}
} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
mask |= CNST_CACHE_GROUP_MASK;
value |= CNST_CACHE_GROUP_VAL(event & 0xff);
mask |= CNST_CACHE_PMC4_MASK;
if (pmc == 4)
value |= CNST_CACHE_PMC4_VAL;
} else if (cache & 0x7) {
/*
* L2/L3 events contain a cache selector field, which is
* supposed to be programmed into MMCRC. However MMCRC is only
* HV writable, and there is no API for guest kernels to modify
* it. The solution is for the hypervisor to initialise the
* field to zeroes, and for us to only ever allow events that
* have a cache selector of zero. The bank selector (bit 3) is
* irrelevant, as long as the rest of the value is 0.
*/
return -1;
}
} else if (cpu_has_feature(CPU_FTR_ARCH_300) || (event & EVENT_IS_L1)) {
mask |= CNST_L1_QUAL_MASK;
value |= CNST_L1_QUAL_VAL(cache);
}
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
mask |= CNST_RADIX_SCOPE_GROUP_MASK;
value |= CNST_RADIX_SCOPE_GROUP_VAL(event >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT);
}
if (is_event_marked(event)) {
mask |= CNST_SAMPLE_MASK;
value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
}
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
if (event_is_threshold(event) && is_thresh_cmp_valid(event_config1)) {
mask |= CNST_THRESH_CTL_SEL_MASK;
value |= CNST_THRESH_CTL_SEL_VAL(event >> EVENT_THRESH_SHIFT);
mask |= p10_CNST_THRESH_CMP_MASK;
value |= p10_CNST_THRESH_CMP_VAL(p10_thresh_cmp_val(event_config1));
}
} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
if (event_is_threshold(event) && is_thresh_cmp_valid(event)) {
mask |= CNST_THRESH_MASK;
value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
}
} else {
/*
* Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
* the threshold control bits are used for the match value.
*/
if (event_is_fab_match(event)) {
mask |= CNST_FAB_MATCH_MASK;
value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
} else {
if (!is_thresh_cmp_valid(event))
return -1;
mask |= CNST_THRESH_MASK;
value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
}
}
ebb_bhrb:
if (!pmc && ebb)
/* EBB events must specify the PMC */
return -1;
if (event & EVENT_WANTS_BHRB) {
if (!ebb)
/* Only EBB events can request BHRB */
return -1;
mask |= CNST_IFM_MASK;
value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT);
}
/*
* All events must agree on EBB, either all request it or none.
* EBB events are pinned & exclusive, so this should never actually
* hit, but we leave it as a fallback in case.
*/
mask |= CNST_EBB_VAL(ebb);
value |= CNST_EBB_MASK;
*maskp = mask;
*valp = value;
return 0;
}
int isa207_compute_mmcr(u64 event[], int n_ev,
unsigned int hwc[], struct mmcr_regs *mmcr,
struct perf_event *pevents[], u32 flags)
{
unsigned long mmcra, mmcr1, mmcr2, unit, combine, psel, cache, val;
unsigned long mmcr3;
unsigned int pmc, pmc_inuse;
int i;
pmc_inuse = 0;
/* First pass to count resource use */
for (i = 0; i < n_ev; ++i) {
pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
if (pmc)
pmc_inuse |= 1 << pmc;
}
mmcra = mmcr1 = mmcr2 = mmcr3 = 0;
/*
* Disable bhrb unless explicitly requested
* by setting MMCRA (BHRBRD) bit.
*/
if (cpu_has_feature(CPU_FTR_ARCH_31))
mmcra |= MMCRA_BHRB_DISABLE;
/* Second pass: assign PMCs, set all MMCR1 fields */
for (i = 0; i < n_ev; ++i) {
pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
unit = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
combine = combine_from_event(event[i]);
psel = event[i] & EVENT_PSEL_MASK;
if (!pmc) {
for (pmc = 1; pmc <= 4; ++pmc) {
if (!(pmc_inuse & (1 << pmc)))
break;
}
pmc_inuse |= 1 << pmc;
}
if (pmc <= 4) {
mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
mmcr1 |= combine << combine_shift(pmc);
mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
}
/* In continuous sampling mode, update SDAR on TLB miss */
mmcra_sdar_mode(event[i], &mmcra);
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
cache = dc_ic_rld_quad_l1_sel(event[i]);
mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
} else {
if (event[i] & EVENT_IS_L1) {
cache = dc_ic_rld_quad_l1_sel(event[i]);
mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
}
}
/* Set RADIX_SCOPE_QUAL bit */
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
val = (event[i] >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT) &
p10_EVENT_RADIX_SCOPE_QUAL_MASK;
mmcr1 |= val << p10_MMCR1_RADIX_SCOPE_QUAL_SHIFT;
}
if (is_event_marked(event[i])) {
mmcra |= MMCRA_SAMPLE_ENABLE;
val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
if (val) {
mmcra |= (val & 3) << MMCRA_SAMP_MODE_SHIFT;
mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
}
}
/*
* PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
* the threshold bits are used for the match value.
*/
if (!cpu_has_feature(CPU_FTR_ARCH_300) && event_is_fab_match(event[i])) {
mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) &
EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT;
} else {
val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
mmcra |= val << MMCRA_THR_CTL_SHIFT;
val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
mmcra |= val << MMCRA_THR_SEL_SHIFT;
if (!cpu_has_feature(CPU_FTR_ARCH_31)) {
val = (event[i] >> EVENT_THR_CMP_SHIFT) &
EVENT_THR_CMP_MASK;
mmcra |= thresh_cmp_val(val);
} else if (flags & PPMU_HAS_ATTR_CONFIG1) {
val = (pevents[i]->attr.config1 >> p10_EVENT_THR_CMP_SHIFT) &
p10_EVENT_THR_CMP_MASK;
mmcra |= thresh_cmp_val(val);
}
}
if (cpu_has_feature(CPU_FTR_ARCH_31) && (unit == 6)) {
val = (event[i] >> p10_L2L3_EVENT_SHIFT) &
p10_EVENT_L2L3_SEL_MASK;
mmcr2 |= val << p10_L2L3_SEL_SHIFT;
}
if (event[i] & EVENT_WANTS_BHRB) {
val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK;
mmcra |= val << MMCRA_IFM_SHIFT;
}
/* set MMCRA (BHRBRD) to 0 if there is user request for BHRB */
if (cpu_has_feature(CPU_FTR_ARCH_31) &&
(has_branch_stack(pevents[i]) || (event[i] & EVENT_WANTS_BHRB)))
mmcra &= ~MMCRA_BHRB_DISABLE;
if (pevents[i]->attr.exclude_user)
mmcr2 |= MMCR2_FCP(pmc);
if (pevents[i]->attr.exclude_hv)
mmcr2 |= MMCR2_FCH(pmc);
if (pevents[i]->attr.exclude_kernel) {
if (cpu_has_feature(CPU_FTR_HVMODE))
mmcr2 |= MMCR2_FCH(pmc);
else
mmcr2 |= MMCR2_FCS(pmc);
}
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
if (pmc <= 4) {
val = (event[i] >> p10_EVENT_MMCR3_SHIFT) &
p10_EVENT_MMCR3_MASK;
mmcr3 |= val << MMCR3_SHIFT(pmc);
}
}
hwc[i] = pmc - 1;
}
/* Return MMCRx values */
mmcr->mmcr0 = 0;
/* pmc_inuse is 1-based */
if (pmc_inuse & 2)
mmcr->mmcr0 = MMCR0_PMC1CE;
if (pmc_inuse & 0x7c)
mmcr->mmcr0 |= MMCR0_PMCjCE;
/* If we're not using PMC 5 or 6, freeze them */
if (!(pmc_inuse & 0x60))
mmcr->mmcr0 |= MMCR0_FC56;
/*
* Set mmcr0 (PMCCEXT) for p10 which
* will restrict access to group B registers
* when MMCR0 PMCC=0b00.
*/
if (cpu_has_feature(CPU_FTR_ARCH_31))
mmcr->mmcr0 |= MMCR0_PMCCEXT;
mmcr->mmcr1 = mmcr1;
mmcr->mmcra = mmcra;
mmcr->mmcr2 = mmcr2;
mmcr->mmcr3 = mmcr3;
return 0;
}
void isa207_disable_pmc(unsigned int pmc, struct mmcr_regs *mmcr)
{
if (pmc <= 3)
mmcr->mmcr1 &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
}
static int find_alternative(u64 event, const unsigned int ev_alt[][MAX_ALT], int size)
{
int i, j;
for (i = 0; i < size; ++i) {
if (event < ev_alt[i][0])
break;
for (j = 0; j < MAX_ALT && ev_alt[i][j]; ++j)
if (event == ev_alt[i][j])
return i;
}
return -1;
}
int isa207_get_alternatives(u64 event, u64 alt[], int size, unsigned int flags,
const unsigned int ev_alt[][MAX_ALT])
{
int i, j, num_alt = 0;
u64 alt_event;
alt[num_alt++] = event;
i = find_alternative(event, ev_alt, size);
if (i >= 0) {
/* Filter out the original event, it's already in alt[0] */
for (j = 0; j < MAX_ALT; ++j) {
alt_event = ev_alt[i][j];
if (alt_event && alt_event != event)
alt[num_alt++] = alt_event;
}
}
if (flags & PPMU_ONLY_COUNT_RUN) {
/*
* We're only counting in RUN state, so PM_CYC is equivalent to
* PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
*/
j = num_alt;
for (i = 0; i < num_alt; ++i) {
switch (alt[i]) {
case 0x1e: /* PMC_CYC */
alt[j++] = 0x600f4; /* PM_RUN_CYC */
break;
case 0x600f4:
alt[j++] = 0x1e;
break;
case 0x2: /* PM_INST_CMPL */
alt[j++] = 0x500fa; /* PM_RUN_INST_CMPL */
break;
case 0x500fa:
alt[j++] = 0x2;
break;
}
}
num_alt = j;
}
return num_alt;
}