linux/drivers/net/arm/ixp4xx_eth.c
Krzysztof Halasa dac2f83fce Driver for IXP4xx built-in Ethernet ports
Adds a driver for built-in IXP4xx Ethernet ports.

Signed-off-by: Krzysztof Hałasa <khc@pm.waw.pl>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-04-29 01:56:50 -04:00

1266 lines
32 KiB
C

/*
* Intel IXP4xx Ethernet driver for Linux
*
* Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*
* Ethernet port config (0x00 is not present on IXP42X):
*
* logical port 0x00 0x10 0x20
* NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
* physical PortId 2 0 1
* TX queue 23 24 25
* RX-free queue 26 27 28
* TX-done queue is always 31, per-port RX and TX-ready queues are configurable
*
*
* Queue entries:
* bits 0 -> 1 - NPE ID (RX and TX-done)
* bits 0 -> 2 - priority (TX, per 802.1D)
* bits 3 -> 4 - port ID (user-set?)
* bits 5 -> 31 - physical descriptor address
*/
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/etherdevice.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/mii.h>
#include <linux/platform_device.h>
#include <asm/arch/npe.h>
#include <asm/arch/qmgr.h>
#define DEBUG_QUEUES 0
#define DEBUG_DESC 0
#define DEBUG_RX 0
#define DEBUG_TX 0
#define DEBUG_PKT_BYTES 0
#define DEBUG_MDIO 0
#define DEBUG_CLOSE 0
#define DRV_NAME "ixp4xx_eth"
#define MAX_NPES 3
#define RX_DESCS 64 /* also length of all RX queues */
#define TX_DESCS 16 /* also length of all TX queues */
#define TXDONE_QUEUE_LEN 64 /* dwords */
#define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
#define REGS_SIZE 0x1000
#define MAX_MRU 1536 /* 0x600 */
#define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
#define NAPI_WEIGHT 16
#define MDIO_INTERVAL (3 * HZ)
#define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
#define MAX_MII_RESET_RETRIES 100 /* mdio_read() cycles, typically 4 */
#define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
#define NPE_ID(port_id) ((port_id) >> 4)
#define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
#define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
#define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
#define TXDONE_QUEUE 31
/* TX Control Registers */
#define TX_CNTRL0_TX_EN 0x01
#define TX_CNTRL0_HALFDUPLEX 0x02
#define TX_CNTRL0_RETRY 0x04
#define TX_CNTRL0_PAD_EN 0x08
#define TX_CNTRL0_APPEND_FCS 0x10
#define TX_CNTRL0_2DEFER 0x20
#define TX_CNTRL0_RMII 0x40 /* reduced MII */
#define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
/* RX Control Registers */
#define RX_CNTRL0_RX_EN 0x01
#define RX_CNTRL0_PADSTRIP_EN 0x02
#define RX_CNTRL0_SEND_FCS 0x04
#define RX_CNTRL0_PAUSE_EN 0x08
#define RX_CNTRL0_LOOP_EN 0x10
#define RX_CNTRL0_ADDR_FLTR_EN 0x20
#define RX_CNTRL0_RX_RUNT_EN 0x40
#define RX_CNTRL0_BCAST_DIS 0x80
#define RX_CNTRL1_DEFER_EN 0x01
/* Core Control Register */
#define CORE_RESET 0x01
#define CORE_RX_FIFO_FLUSH 0x02
#define CORE_TX_FIFO_FLUSH 0x04
#define CORE_SEND_JAM 0x08
#define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
#define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
TX_CNTRL0_2DEFER)
#define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
#define DEFAULT_CORE_CNTRL CORE_MDC_EN
/* NPE message codes */
#define NPE_GETSTATUS 0x00
#define NPE_EDB_SETPORTADDRESS 0x01
#define NPE_EDB_GETMACADDRESSDATABASE 0x02
#define NPE_EDB_SETMACADDRESSSDATABASE 0x03
#define NPE_GETSTATS 0x04
#define NPE_RESETSTATS 0x05
#define NPE_SETMAXFRAMELENGTHS 0x06
#define NPE_VLAN_SETRXTAGMODE 0x07
#define NPE_VLAN_SETDEFAULTRXVID 0x08
#define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
#define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
#define NPE_VLAN_SETRXQOSENTRY 0x0B
#define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
#define NPE_STP_SETBLOCKINGSTATE 0x0D
#define NPE_FW_SETFIREWALLMODE 0x0E
#define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
#define NPE_PC_SETAPMACTABLE 0x11
#define NPE_SETLOOPBACK_MODE 0x12
#define NPE_PC_SETBSSIDTABLE 0x13
#define NPE_ADDRESS_FILTER_CONFIG 0x14
#define NPE_APPENDFCSCONFIG 0x15
#define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
#define NPE_MAC_RECOVERY_START 0x17
#ifdef __ARMEB__
typedef struct sk_buff buffer_t;
#define free_buffer dev_kfree_skb
#define free_buffer_irq dev_kfree_skb_irq
#else
typedef void buffer_t;
#define free_buffer kfree
#define free_buffer_irq kfree
#endif
struct eth_regs {
u32 tx_control[2], __res1[2]; /* 000 */
u32 rx_control[2], __res2[2]; /* 010 */
u32 random_seed, __res3[3]; /* 020 */
u32 partial_empty_threshold, __res4; /* 030 */
u32 partial_full_threshold, __res5; /* 038 */
u32 tx_start_bytes, __res6[3]; /* 040 */
u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
u32 tx_2part_deferral[2], __res8[2]; /* 060 */
u32 slot_time, __res9[3]; /* 070 */
u32 mdio_command[4]; /* 080 */
u32 mdio_status[4]; /* 090 */
u32 mcast_mask[6], __res10[2]; /* 0A0 */
u32 mcast_addr[6], __res11[2]; /* 0C0 */
u32 int_clock_threshold, __res12[3]; /* 0E0 */
u32 hw_addr[6], __res13[61]; /* 0F0 */
u32 core_control; /* 1FC */
};
struct port {
struct resource *mem_res;
struct eth_regs __iomem *regs;
struct npe *npe;
struct net_device *netdev;
struct napi_struct napi;
struct net_device_stats stat;
struct mii_if_info mii;
struct delayed_work mdio_thread;
struct eth_plat_info *plat;
buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
struct desc *desc_tab; /* coherent */
u32 desc_tab_phys;
int id; /* logical port ID */
u16 mii_bmcr;
};
/* NPE message structure */
struct msg {
#ifdef __ARMEB__
u8 cmd, eth_id, byte2, byte3;
u8 byte4, byte5, byte6, byte7;
#else
u8 byte3, byte2, eth_id, cmd;
u8 byte7, byte6, byte5, byte4;
#endif
};
/* Ethernet packet descriptor */
struct desc {
u32 next; /* pointer to next buffer, unused */
#ifdef __ARMEB__
u16 buf_len; /* buffer length */
u16 pkt_len; /* packet length */
u32 data; /* pointer to data buffer in RAM */
u8 dest_id;
u8 src_id;
u16 flags;
u8 qos;
u8 padlen;
u16 vlan_tci;
#else
u16 pkt_len; /* packet length */
u16 buf_len; /* buffer length */
u32 data; /* pointer to data buffer in RAM */
u16 flags;
u8 src_id;
u8 dest_id;
u16 vlan_tci;
u8 padlen;
u8 qos;
#endif
#ifdef __ARMEB__
u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
#else
u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
#endif
};
#define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
(n) * sizeof(struct desc))
#define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
#define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
((n) + RX_DESCS) * sizeof(struct desc))
#define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
#ifndef __ARMEB__
static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
{
int i;
for (i = 0; i < cnt; i++)
dest[i] = swab32(src[i]);
}
#endif
static spinlock_t mdio_lock;
static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
static int ports_open;
static struct port *npe_port_tab[MAX_NPES];
static struct dma_pool *dma_pool;
static u16 mdio_cmd(struct net_device *dev, int phy_id, int location,
int write, u16 cmd)
{
int cycles = 0;
if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
printk(KERN_ERR "%s: MII not ready to transmit\n", dev->name);
return 0;
}
if (write) {
__raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
__raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
}
__raw_writel(((phy_id << 5) | location) & 0xFF,
&mdio_regs->mdio_command[2]);
__raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
&mdio_regs->mdio_command[3]);
while ((cycles < MAX_MDIO_RETRIES) &&
(__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
udelay(1);
cycles++;
}
if (cycles == MAX_MDIO_RETRIES) {
printk(KERN_ERR "%s: MII write failed\n", dev->name);
return 0;
}
#if DEBUG_MDIO
printk(KERN_DEBUG "%s: mdio_cmd() took %i cycles\n", dev->name,
cycles);
#endif
if (write)
return 0;
if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
printk(KERN_ERR "%s: MII read failed\n", dev->name);
return 0;
}
return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
(__raw_readl(&mdio_regs->mdio_status[1]) << 8);
}
static int mdio_read(struct net_device *dev, int phy_id, int location)
{
unsigned long flags;
u16 val;
spin_lock_irqsave(&mdio_lock, flags);
val = mdio_cmd(dev, phy_id, location, 0, 0);
spin_unlock_irqrestore(&mdio_lock, flags);
return val;
}
static void mdio_write(struct net_device *dev, int phy_id, int location,
int val)
{
unsigned long flags;
spin_lock_irqsave(&mdio_lock, flags);
mdio_cmd(dev, phy_id, location, 1, val);
spin_unlock_irqrestore(&mdio_lock, flags);
}
static void phy_reset(struct net_device *dev, int phy_id)
{
struct port *port = netdev_priv(dev);
int cycles = 0;
mdio_write(dev, phy_id, MII_BMCR, port->mii_bmcr | BMCR_RESET);
while (cycles < MAX_MII_RESET_RETRIES) {
if (!(mdio_read(dev, phy_id, MII_BMCR) & BMCR_RESET)) {
#if DEBUG_MDIO
printk(KERN_DEBUG "%s: phy_reset() took %i cycles\n",
dev->name, cycles);
#endif
return;
}
udelay(1);
cycles++;
}
printk(KERN_ERR "%s: MII reset failed\n", dev->name);
}
static void eth_set_duplex(struct port *port)
{
if (port->mii.full_duplex)
__raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
&port->regs->tx_control[0]);
else
__raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
&port->regs->tx_control[0]);
}
static void phy_check_media(struct port *port, int init)
{
if (mii_check_media(&port->mii, 1, init))
eth_set_duplex(port);
if (port->mii.force_media) { /* mii_check_media() doesn't work */
struct net_device *dev = port->netdev;
int cur_link = mii_link_ok(&port->mii);
int prev_link = netif_carrier_ok(dev);
if (!prev_link && cur_link) {
printk(KERN_INFO "%s: link up\n", dev->name);
netif_carrier_on(dev);
} else if (prev_link && !cur_link) {
printk(KERN_INFO "%s: link down\n", dev->name);
netif_carrier_off(dev);
}
}
}
static void mdio_thread(struct work_struct *work)
{
struct port *port = container_of(work, struct port, mdio_thread.work);
phy_check_media(port, 0);
schedule_delayed_work(&port->mdio_thread, MDIO_INTERVAL);
}
static inline void debug_pkt(struct net_device *dev, const char *func,
u8 *data, int len)
{
#if DEBUG_PKT_BYTES
int i;
printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
for (i = 0; i < len; i++) {
if (i >= DEBUG_PKT_BYTES)
break;
printk("%s%02X",
((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
data[i]);
}
printk("\n");
#endif
}
static inline void debug_desc(u32 phys, struct desc *desc)
{
#if DEBUG_DESC
printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
" %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
phys, desc->next, desc->buf_len, desc->pkt_len,
desc->data, desc->dest_id, desc->src_id, desc->flags,
desc->qos, desc->padlen, desc->vlan_tci,
desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
#endif
}
static inline void debug_queue(unsigned int queue, int is_get, u32 phys)
{
#if DEBUG_QUEUES
static struct {
int queue;
char *name;
} names[] = {
{ TX_QUEUE(0x10), "TX#0 " },
{ TX_QUEUE(0x20), "TX#1 " },
{ TX_QUEUE(0x00), "TX#2 " },
{ RXFREE_QUEUE(0x10), "RX-free#0 " },
{ RXFREE_QUEUE(0x20), "RX-free#1 " },
{ RXFREE_QUEUE(0x00), "RX-free#2 " },
{ TXDONE_QUEUE, "TX-done " },
};
int i;
for (i = 0; i < ARRAY_SIZE(names); i++)
if (names[i].queue == queue)
break;
printk(KERN_DEBUG "Queue %i %s%s %X\n", queue,
i < ARRAY_SIZE(names) ? names[i].name : "",
is_get ? "->" : "<-", phys);
#endif
}
static inline u32 queue_get_entry(unsigned int queue)
{
u32 phys = qmgr_get_entry(queue);
debug_queue(queue, 1, phys);
return phys;
}
static inline int queue_get_desc(unsigned int queue, struct port *port,
int is_tx)
{
u32 phys, tab_phys, n_desc;
struct desc *tab;
if (!(phys = queue_get_entry(queue)))
return -1;
phys &= ~0x1F; /* mask out non-address bits */
tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
n_desc = (phys - tab_phys) / sizeof(struct desc);
BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
debug_desc(phys, &tab[n_desc]);
BUG_ON(tab[n_desc].next);
return n_desc;
}
static inline void queue_put_desc(unsigned int queue, u32 phys,
struct desc *desc)
{
debug_queue(queue, 0, phys);
debug_desc(phys, desc);
BUG_ON(phys & 0x1F);
qmgr_put_entry(queue, phys);
BUG_ON(qmgr_stat_overflow(queue));
}
static inline void dma_unmap_tx(struct port *port, struct desc *desc)
{
#ifdef __ARMEB__
dma_unmap_single(&port->netdev->dev, desc->data,
desc->buf_len, DMA_TO_DEVICE);
#else
dma_unmap_single(&port->netdev->dev, desc->data & ~3,
ALIGN((desc->data & 3) + desc->buf_len, 4),
DMA_TO_DEVICE);
#endif
}
static void eth_rx_irq(void *pdev)
{
struct net_device *dev = pdev;
struct port *port = netdev_priv(dev);
#if DEBUG_RX
printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
#endif
qmgr_disable_irq(port->plat->rxq);
netif_rx_schedule(dev, &port->napi);
}
static int eth_poll(struct napi_struct *napi, int budget)
{
struct port *port = container_of(napi, struct port, napi);
struct net_device *dev = port->netdev;
unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
int received = 0;
#if DEBUG_RX
printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
#endif
while (received < budget) {
struct sk_buff *skb;
struct desc *desc;
int n;
#ifdef __ARMEB__
struct sk_buff *temp;
u32 phys;
#endif
if ((n = queue_get_desc(rxq, port, 0)) < 0) {
received = 0; /* No packet received */
#if DEBUG_RX
printk(KERN_DEBUG "%s: eth_poll netif_rx_complete\n",
dev->name);
#endif
netif_rx_complete(dev, napi);
qmgr_enable_irq(rxq);
if (!qmgr_stat_empty(rxq) &&
netif_rx_reschedule(dev, napi)) {
#if DEBUG_RX
printk(KERN_DEBUG "%s: eth_poll"
" netif_rx_reschedule successed\n",
dev->name);
#endif
qmgr_disable_irq(rxq);
continue;
}
#if DEBUG_RX
printk(KERN_DEBUG "%s: eth_poll all done\n",
dev->name);
#endif
return 0; /* all work done */
}
desc = rx_desc_ptr(port, n);
#ifdef __ARMEB__
if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
phys = dma_map_single(&dev->dev, skb->data,
RX_BUFF_SIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(phys)) {
dev_kfree_skb(skb);
skb = NULL;
}
}
#else
skb = netdev_alloc_skb(dev,
ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
#endif
if (!skb) {
port->stat.rx_dropped++;
/* put the desc back on RX-ready queue */
desc->buf_len = MAX_MRU;
desc->pkt_len = 0;
queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
continue;
}
/* process received frame */
#ifdef __ARMEB__
temp = skb;
skb = port->rx_buff_tab[n];
dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
RX_BUFF_SIZE, DMA_FROM_DEVICE);
#else
dma_sync_single(&dev->dev, desc->data - NET_IP_ALIGN,
RX_BUFF_SIZE, DMA_FROM_DEVICE);
memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
#endif
skb_reserve(skb, NET_IP_ALIGN);
skb_put(skb, desc->pkt_len);
debug_pkt(dev, "eth_poll", skb->data, skb->len);
skb->protocol = eth_type_trans(skb, dev);
dev->last_rx = jiffies;
port->stat.rx_packets++;
port->stat.rx_bytes += skb->len;
netif_receive_skb(skb);
/* put the new buffer on RX-free queue */
#ifdef __ARMEB__
port->rx_buff_tab[n] = temp;
desc->data = phys + NET_IP_ALIGN;
#endif
desc->buf_len = MAX_MRU;
desc->pkt_len = 0;
queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
received++;
}
#if DEBUG_RX
printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
#endif
return received; /* not all work done */
}
static void eth_txdone_irq(void *unused)
{
u32 phys;
#if DEBUG_TX
printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
#endif
while ((phys = queue_get_entry(TXDONE_QUEUE)) != 0) {
u32 npe_id, n_desc;
struct port *port;
struct desc *desc;
int start;
npe_id = phys & 3;
BUG_ON(npe_id >= MAX_NPES);
port = npe_port_tab[npe_id];
BUG_ON(!port);
phys &= ~0x1F; /* mask out non-address bits */
n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
BUG_ON(n_desc >= TX_DESCS);
desc = tx_desc_ptr(port, n_desc);
debug_desc(phys, desc);
if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
port->stat.tx_packets++;
port->stat.tx_bytes += desc->pkt_len;
dma_unmap_tx(port, desc);
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
port->netdev->name, port->tx_buff_tab[n_desc]);
#endif
free_buffer_irq(port->tx_buff_tab[n_desc]);
port->tx_buff_tab[n_desc] = NULL;
}
start = qmgr_stat_empty(port->plat->txreadyq);
queue_put_desc(port->plat->txreadyq, phys, desc);
if (start) {
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
port->netdev->name);
#endif
netif_wake_queue(port->netdev);
}
}
}
static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct port *port = netdev_priv(dev);
unsigned int txreadyq = port->plat->txreadyq;
int len, offset, bytes, n;
void *mem;
u32 phys;
struct desc *desc;
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
#endif
if (unlikely(skb->len > MAX_MRU)) {
dev_kfree_skb(skb);
port->stat.tx_errors++;
return NETDEV_TX_OK;
}
debug_pkt(dev, "eth_xmit", skb->data, skb->len);
len = skb->len;
#ifdef __ARMEB__
offset = 0; /* no need to keep alignment */
bytes = len;
mem = skb->data;
#else
offset = (int)skb->data & 3; /* keep 32-bit alignment */
bytes = ALIGN(offset + len, 4);
if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
dev_kfree_skb(skb);
port->stat.tx_dropped++;
return NETDEV_TX_OK;
}
memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
dev_kfree_skb(skb);
#endif
phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
if (dma_mapping_error(phys)) {
#ifdef __ARMEB__
dev_kfree_skb(skb);
#else
kfree(mem);
#endif
port->stat.tx_dropped++;
return NETDEV_TX_OK;
}
n = queue_get_desc(txreadyq, port, 1);
BUG_ON(n < 0);
desc = tx_desc_ptr(port, n);
#ifdef __ARMEB__
port->tx_buff_tab[n] = skb;
#else
port->tx_buff_tab[n] = mem;
#endif
desc->data = phys + offset;
desc->buf_len = desc->pkt_len = len;
/* NPE firmware pads short frames with zeros internally */
wmb();
queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
dev->trans_start = jiffies;
if (qmgr_stat_empty(txreadyq)) {
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
#endif
netif_stop_queue(dev);
/* we could miss TX ready interrupt */
if (!qmgr_stat_empty(txreadyq)) {
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_xmit ready again\n",
dev->name);
#endif
netif_wake_queue(dev);
}
}
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
#endif
return NETDEV_TX_OK;
}
static struct net_device_stats *eth_stats(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
return &port->stat;
}
static void eth_set_mcast_list(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
struct dev_mc_list *mclist = dev->mc_list;
u8 diffs[ETH_ALEN], *addr;
int cnt = dev->mc_count, i;
if ((dev->flags & IFF_PROMISC) || !mclist || !cnt) {
__raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
&port->regs->rx_control[0]);
return;
}
memset(diffs, 0, ETH_ALEN);
addr = mclist->dmi_addr; /* first MAC address */
while (--cnt && (mclist = mclist->next))
for (i = 0; i < ETH_ALEN; i++)
diffs[i] |= addr[i] ^ mclist->dmi_addr[i];
for (i = 0; i < ETH_ALEN; i++) {
__raw_writel(addr[i], &port->regs->mcast_addr[i]);
__raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
}
__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
&port->regs->rx_control[0]);
}
static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
struct port *port = netdev_priv(dev);
unsigned int duplex_chg;
int err;
if (!netif_running(dev))
return -EINVAL;
err = generic_mii_ioctl(&port->mii, if_mii(req), cmd, &duplex_chg);
if (duplex_chg)
eth_set_duplex(port);
return err;
}
static int request_queues(struct port *port)
{
int err;
err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0);
if (err)
return err;
err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0);
if (err)
goto rel_rxfree;
err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0);
if (err)
goto rel_rx;
err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0);
if (err)
goto rel_tx;
/* TX-done queue handles skbs sent out by the NPEs */
if (!ports_open) {
err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0);
if (err)
goto rel_txready;
}
return 0;
rel_txready:
qmgr_release_queue(port->plat->txreadyq);
rel_tx:
qmgr_release_queue(TX_QUEUE(port->id));
rel_rx:
qmgr_release_queue(port->plat->rxq);
rel_rxfree:
qmgr_release_queue(RXFREE_QUEUE(port->id));
printk(KERN_DEBUG "%s: unable to request hardware queues\n",
port->netdev->name);
return err;
}
static void release_queues(struct port *port)
{
qmgr_release_queue(RXFREE_QUEUE(port->id));
qmgr_release_queue(port->plat->rxq);
qmgr_release_queue(TX_QUEUE(port->id));
qmgr_release_queue(port->plat->txreadyq);
if (!ports_open)
qmgr_release_queue(TXDONE_QUEUE);
}
static int init_queues(struct port *port)
{
int i;
if (!ports_open)
if (!(dma_pool = dma_pool_create(DRV_NAME, NULL,
POOL_ALLOC_SIZE, 32, 0)))
return -ENOMEM;
if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
&port->desc_tab_phys)))
return -ENOMEM;
memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
/* Setup RX buffers */
for (i = 0; i < RX_DESCS; i++) {
struct desc *desc = rx_desc_ptr(port, i);
buffer_t *buff; /* skb or kmalloc()ated memory */
void *data;
#ifdef __ARMEB__
if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
return -ENOMEM;
data = buff->data;
#else
if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
return -ENOMEM;
data = buff;
#endif
desc->buf_len = MAX_MRU;
desc->data = dma_map_single(&port->netdev->dev, data,
RX_BUFF_SIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(desc->data)) {
free_buffer(buff);
return -EIO;
}
desc->data += NET_IP_ALIGN;
port->rx_buff_tab[i] = buff;
}
return 0;
}
static void destroy_queues(struct port *port)
{
int i;
if (port->desc_tab) {
for (i = 0; i < RX_DESCS; i++) {
struct desc *desc = rx_desc_ptr(port, i);
buffer_t *buff = port->rx_buff_tab[i];
if (buff) {
dma_unmap_single(&port->netdev->dev,
desc->data - NET_IP_ALIGN,
RX_BUFF_SIZE, DMA_FROM_DEVICE);
free_buffer(buff);
}
}
for (i = 0; i < TX_DESCS; i++) {
struct desc *desc = tx_desc_ptr(port, i);
buffer_t *buff = port->tx_buff_tab[i];
if (buff) {
dma_unmap_tx(port, desc);
free_buffer(buff);
}
}
dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
port->desc_tab = NULL;
}
if (!ports_open && dma_pool) {
dma_pool_destroy(dma_pool);
dma_pool = NULL;
}
}
static int eth_open(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
struct npe *npe = port->npe;
struct msg msg;
int i, err;
if (!npe_running(npe)) {
err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
if (err)
return err;
if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
printk(KERN_ERR "%s: %s not responding\n", dev->name,
npe_name(npe));
return -EIO;
}
}
mdio_write(dev, port->plat->phy, MII_BMCR, port->mii_bmcr);
memset(&msg, 0, sizeof(msg));
msg.cmd = NPE_VLAN_SETRXQOSENTRY;
msg.eth_id = port->id;
msg.byte5 = port->plat->rxq | 0x80;
msg.byte7 = port->plat->rxq << 4;
for (i = 0; i < 8; i++) {
msg.byte3 = i;
if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
return -EIO;
}
msg.cmd = NPE_EDB_SETPORTADDRESS;
msg.eth_id = PHYSICAL_ID(port->id);
msg.byte2 = dev->dev_addr[0];
msg.byte3 = dev->dev_addr[1];
msg.byte4 = dev->dev_addr[2];
msg.byte5 = dev->dev_addr[3];
msg.byte6 = dev->dev_addr[4];
msg.byte7 = dev->dev_addr[5];
if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
return -EIO;
memset(&msg, 0, sizeof(msg));
msg.cmd = NPE_FW_SETFIREWALLMODE;
msg.eth_id = port->id;
if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
return -EIO;
if ((err = request_queues(port)) != 0)
return err;
if ((err = init_queues(port)) != 0) {
destroy_queues(port);
release_queues(port);
return err;
}
for (i = 0; i < ETH_ALEN; i++)
__raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
__raw_writel(0x08, &port->regs->random_seed);
__raw_writel(0x12, &port->regs->partial_empty_threshold);
__raw_writel(0x30, &port->regs->partial_full_threshold);
__raw_writel(0x08, &port->regs->tx_start_bytes);
__raw_writel(0x15, &port->regs->tx_deferral);
__raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
__raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
__raw_writel(0x80, &port->regs->slot_time);
__raw_writel(0x01, &port->regs->int_clock_threshold);
/* Populate queues with buffers, no failure after this point */
for (i = 0; i < TX_DESCS; i++)
queue_put_desc(port->plat->txreadyq,
tx_desc_phys(port, i), tx_desc_ptr(port, i));
for (i = 0; i < RX_DESCS; i++)
queue_put_desc(RXFREE_QUEUE(port->id),
rx_desc_phys(port, i), rx_desc_ptr(port, i));
__raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
__raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
__raw_writel(0, &port->regs->rx_control[1]);
__raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
napi_enable(&port->napi);
phy_check_media(port, 1);
eth_set_mcast_list(dev);
netif_start_queue(dev);
schedule_delayed_work(&port->mdio_thread, MDIO_INTERVAL);
qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
eth_rx_irq, dev);
if (!ports_open) {
qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
eth_txdone_irq, NULL);
qmgr_enable_irq(TXDONE_QUEUE);
}
ports_open++;
/* we may already have RX data, enables IRQ */
netif_rx_schedule(dev, &port->napi);
return 0;
}
static int eth_close(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
struct msg msg;
int buffs = RX_DESCS; /* allocated RX buffers */
int i;
ports_open--;
qmgr_disable_irq(port->plat->rxq);
napi_disable(&port->napi);
netif_stop_queue(dev);
while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
buffs--;
memset(&msg, 0, sizeof(msg));
msg.cmd = NPE_SETLOOPBACK_MODE;
msg.eth_id = port->id;
msg.byte3 = 1;
if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
i = 0;
do { /* drain RX buffers */
while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
buffs--;
if (!buffs)
break;
if (qmgr_stat_empty(TX_QUEUE(port->id))) {
/* we have to inject some packet */
struct desc *desc;
u32 phys;
int n = queue_get_desc(port->plat->txreadyq, port, 1);
BUG_ON(n < 0);
desc = tx_desc_ptr(port, n);
phys = tx_desc_phys(port, n);
desc->buf_len = desc->pkt_len = 1;
wmb();
queue_put_desc(TX_QUEUE(port->id), phys, desc);
}
udelay(1);
} while (++i < MAX_CLOSE_WAIT);
if (buffs)
printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
" left in NPE\n", dev->name, buffs);
#if DEBUG_CLOSE
if (!buffs)
printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
#endif
buffs = TX_DESCS;
while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
buffs--; /* cancel TX */
i = 0;
do {
while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
buffs--;
if (!buffs)
break;
} while (++i < MAX_CLOSE_WAIT);
if (buffs)
printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
"left in NPE\n", dev->name, buffs);
#if DEBUG_CLOSE
if (!buffs)
printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
#endif
msg.byte3 = 0;
if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
printk(KERN_CRIT "%s: unable to disable loopback\n",
dev->name);
port->mii_bmcr = mdio_read(dev, port->plat->phy, MII_BMCR) &
~(BMCR_RESET | BMCR_PDOWN); /* may have been altered */
mdio_write(dev, port->plat->phy, MII_BMCR,
port->mii_bmcr | BMCR_PDOWN);
if (!ports_open)
qmgr_disable_irq(TXDONE_QUEUE);
cancel_rearming_delayed_work(&port->mdio_thread);
destroy_queues(port);
release_queues(port);
return 0;
}
static int __devinit eth_init_one(struct platform_device *pdev)
{
struct port *port;
struct net_device *dev;
struct eth_plat_info *plat = pdev->dev.platform_data;
u32 regs_phys;
int err;
if (!(dev = alloc_etherdev(sizeof(struct port))))
return -ENOMEM;
SET_NETDEV_DEV(dev, &pdev->dev);
port = netdev_priv(dev);
port->netdev = dev;
port->id = pdev->id;
switch (port->id) {
case IXP4XX_ETH_NPEA:
port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
regs_phys = IXP4XX_EthA_BASE_PHYS;
break;
case IXP4XX_ETH_NPEB:
port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
regs_phys = IXP4XX_EthB_BASE_PHYS;
break;
case IXP4XX_ETH_NPEC:
port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
regs_phys = IXP4XX_EthC_BASE_PHYS;
break;
default:
err = -ENOSYS;
goto err_free;
}
dev->open = eth_open;
dev->hard_start_xmit = eth_xmit;
dev->stop = eth_close;
dev->get_stats = eth_stats;
dev->do_ioctl = eth_ioctl;
dev->set_multicast_list = eth_set_mcast_list;
dev->tx_queue_len = 100;
netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
if (!(port->npe = npe_request(NPE_ID(port->id)))) {
err = -EIO;
goto err_free;
}
if (register_netdev(dev)) {
err = -EIO;
goto err_npe_rel;
}
port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
if (!port->mem_res) {
err = -EBUSY;
goto err_unreg;
}
port->plat = plat;
npe_port_tab[NPE_ID(port->id)] = port;
memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
platform_set_drvdata(pdev, dev);
__raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
&port->regs->core_control);
udelay(50);
__raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
udelay(50);
port->mii.dev = dev;
port->mii.mdio_read = mdio_read;
port->mii.mdio_write = mdio_write;
port->mii.phy_id = plat->phy;
port->mii.phy_id_mask = 0x1F;
port->mii.reg_num_mask = 0x1F;
printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
npe_name(port->npe));
phy_reset(dev, plat->phy);
port->mii_bmcr = mdio_read(dev, plat->phy, MII_BMCR) &
~(BMCR_RESET | BMCR_PDOWN);
mdio_write(dev, plat->phy, MII_BMCR, port->mii_bmcr | BMCR_PDOWN);
INIT_DELAYED_WORK(&port->mdio_thread, mdio_thread);
return 0;
err_unreg:
unregister_netdev(dev);
err_npe_rel:
npe_release(port->npe);
err_free:
free_netdev(dev);
return err;
}
static int __devexit eth_remove_one(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct port *port = netdev_priv(dev);
unregister_netdev(dev);
npe_port_tab[NPE_ID(port->id)] = NULL;
platform_set_drvdata(pdev, NULL);
npe_release(port->npe);
release_resource(port->mem_res);
free_netdev(dev);
return 0;
}
static struct platform_driver drv = {
.driver.name = DRV_NAME,
.probe = eth_init_one,
.remove = eth_remove_one,
};
static int __init eth_init_module(void)
{
if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
return -ENOSYS;
/* All MII PHY accesses use NPE-B Ethernet registers */
spin_lock_init(&mdio_lock);
mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
__raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
return platform_driver_register(&drv);
}
static void __exit eth_cleanup_module(void)
{
platform_driver_unregister(&drv);
}
MODULE_AUTHOR("Krzysztof Halasa");
MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:ixp4xx_eth");
module_init(eth_init_module);
module_exit(eth_cleanup_module);