linux/drivers/cpufreq/imx6q-cpufreq.c
Viresh Kumar b43a7ffbf3 cpufreq: Notify all policy->cpus in cpufreq_notify_transition()
policy->cpus contains all online cpus that have single shared clock line. And
their frequencies are always updated together.

Many SMP system's cpufreq drivers take care of this in individual drivers but
the best place for this code is in cpufreq core.

This patch modifies cpufreq_notify_transition() to notify frequency change for
all cpus in policy->cpus and hence updates all users of this API.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-04-02 15:24:00 +02:00

331 lines
8.7 KiB
C

/*
* Copyright (C) 2013 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/opp.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#define PU_SOC_VOLTAGE_NORMAL 1250000
#define PU_SOC_VOLTAGE_HIGH 1275000
#define FREQ_1P2_GHZ 1200000000
static struct regulator *arm_reg;
static struct regulator *pu_reg;
static struct regulator *soc_reg;
static struct clk *arm_clk;
static struct clk *pll1_sys_clk;
static struct clk *pll1_sw_clk;
static struct clk *step_clk;
static struct clk *pll2_pfd2_396m_clk;
static struct device *cpu_dev;
static struct cpufreq_frequency_table *freq_table;
static unsigned int transition_latency;
static int imx6q_verify_speed(struct cpufreq_policy *policy)
{
return cpufreq_frequency_table_verify(policy, freq_table);
}
static unsigned int imx6q_get_speed(unsigned int cpu)
{
return clk_get_rate(arm_clk) / 1000;
}
static int imx6q_set_target(struct cpufreq_policy *policy,
unsigned int target_freq, unsigned int relation)
{
struct cpufreq_freqs freqs;
struct opp *opp;
unsigned long freq_hz, volt, volt_old;
unsigned int index;
int ret;
ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
relation, &index);
if (ret) {
dev_err(cpu_dev, "failed to match target frequency %d: %d\n",
target_freq, ret);
return ret;
}
freqs.new = freq_table[index].frequency;
freq_hz = freqs.new * 1000;
freqs.old = clk_get_rate(arm_clk) / 1000;
if (freqs.old == freqs.new)
return 0;
cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
rcu_read_lock();
opp = opp_find_freq_ceil(cpu_dev, &freq_hz);
if (IS_ERR(opp)) {
rcu_read_unlock();
dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
return PTR_ERR(opp);
}
volt = opp_get_voltage(opp);
rcu_read_unlock();
volt_old = regulator_get_voltage(arm_reg);
dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
freqs.old / 1000, volt_old / 1000,
freqs.new / 1000, volt / 1000);
/* scaling up? scale voltage before frequency */
if (freqs.new > freqs.old) {
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
if (ret) {
dev_err(cpu_dev,
"failed to scale vddarm up: %d\n", ret);
return ret;
}
/*
* Need to increase vddpu and vddsoc for safety
* if we are about to run at 1.2 GHz.
*/
if (freqs.new == FREQ_1P2_GHZ / 1000) {
regulator_set_voltage_tol(pu_reg,
PU_SOC_VOLTAGE_HIGH, 0);
regulator_set_voltage_tol(soc_reg,
PU_SOC_VOLTAGE_HIGH, 0);
}
}
/*
* The setpoints are selected per PLL/PDF frequencies, so we need to
* reprogram PLL for frequency scaling. The procedure of reprogramming
* PLL1 is as below.
*
* - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
* - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
* - Disable pll2_pfd2_396m_clk
*/
clk_prepare_enable(pll2_pfd2_396m_clk);
clk_set_parent(step_clk, pll2_pfd2_396m_clk);
clk_set_parent(pll1_sw_clk, step_clk);
if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
clk_set_rate(pll1_sys_clk, freqs.new * 1000);
/*
* If we are leaving 396 MHz set-point, we need to enable
* pll1_sys_clk and disable pll2_pfd2_396m_clk to keep
* their use count correct.
*/
if (freqs.old * 1000 <= clk_get_rate(pll2_pfd2_396m_clk)) {
clk_prepare_enable(pll1_sys_clk);
clk_disable_unprepare(pll2_pfd2_396m_clk);
}
clk_set_parent(pll1_sw_clk, pll1_sys_clk);
clk_disable_unprepare(pll2_pfd2_396m_clk);
} else {
/*
* Disable pll1_sys_clk if pll2_pfd2_396m_clk is sufficient
* to provide the frequency.
*/
clk_disable_unprepare(pll1_sys_clk);
}
/* Ensure the arm clock divider is what we expect */
ret = clk_set_rate(arm_clk, freqs.new * 1000);
if (ret) {
dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
regulator_set_voltage_tol(arm_reg, volt_old, 0);
return ret;
}
/* scaling down? scale voltage after frequency */
if (freqs.new < freqs.old) {
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
if (ret)
dev_warn(cpu_dev,
"failed to scale vddarm down: %d\n", ret);
if (freqs.old == FREQ_1P2_GHZ / 1000) {
regulator_set_voltage_tol(pu_reg,
PU_SOC_VOLTAGE_NORMAL, 0);
regulator_set_voltage_tol(soc_reg,
PU_SOC_VOLTAGE_NORMAL, 0);
}
}
cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
return 0;
}
static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
{
int ret;
ret = cpufreq_frequency_table_cpuinfo(policy, freq_table);
if (ret) {
dev_err(cpu_dev, "invalid frequency table: %d\n", ret);
return ret;
}
policy->cpuinfo.transition_latency = transition_latency;
policy->cur = clk_get_rate(arm_clk) / 1000;
cpumask_setall(policy->cpus);
cpufreq_frequency_table_get_attr(freq_table, policy->cpu);
return 0;
}
static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
{
cpufreq_frequency_table_put_attr(policy->cpu);
return 0;
}
static struct freq_attr *imx6q_cpufreq_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
NULL,
};
static struct cpufreq_driver imx6q_cpufreq_driver = {
.verify = imx6q_verify_speed,
.target = imx6q_set_target,
.get = imx6q_get_speed,
.init = imx6q_cpufreq_init,
.exit = imx6q_cpufreq_exit,
.name = "imx6q-cpufreq",
.attr = imx6q_cpufreq_attr,
};
static int imx6q_cpufreq_probe(struct platform_device *pdev)
{
struct device_node *np;
struct opp *opp;
unsigned long min_volt, max_volt;
int num, ret;
cpu_dev = &pdev->dev;
np = of_find_node_by_path("/cpus/cpu@0");
if (!np) {
dev_err(cpu_dev, "failed to find cpu0 node\n");
return -ENOENT;
}
cpu_dev->of_node = np;
arm_clk = devm_clk_get(cpu_dev, "arm");
pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
step_clk = devm_clk_get(cpu_dev, "step");
pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
dev_err(cpu_dev, "failed to get clocks\n");
ret = -ENOENT;
goto put_node;
}
arm_reg = devm_regulator_get(cpu_dev, "arm");
pu_reg = devm_regulator_get(cpu_dev, "pu");
soc_reg = devm_regulator_get(cpu_dev, "soc");
if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
dev_err(cpu_dev, "failed to get regulators\n");
ret = -ENOENT;
goto put_node;
}
/* We expect an OPP table supplied by platform */
num = opp_get_opp_count(cpu_dev);
if (num < 0) {
ret = num;
dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
goto put_node;
}
ret = opp_init_cpufreq_table(cpu_dev, &freq_table);
if (ret) {
dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
goto put_node;
}
if (of_property_read_u32(np, "clock-latency", &transition_latency))
transition_latency = CPUFREQ_ETERNAL;
/*
* OPP is maintained in order of increasing frequency, and
* freq_table initialised from OPP is therefore sorted in the
* same order.
*/
rcu_read_lock();
opp = opp_find_freq_exact(cpu_dev,
freq_table[0].frequency * 1000, true);
min_volt = opp_get_voltage(opp);
opp = opp_find_freq_exact(cpu_dev,
freq_table[--num].frequency * 1000, true);
max_volt = opp_get_voltage(opp);
rcu_read_unlock();
ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
if (ret > 0)
transition_latency += ret * 1000;
/* Count vddpu and vddsoc latency in for 1.2 GHz support */
if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
PU_SOC_VOLTAGE_HIGH);
if (ret > 0)
transition_latency += ret * 1000;
ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
PU_SOC_VOLTAGE_HIGH);
if (ret > 0)
transition_latency += ret * 1000;
}
ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
if (ret) {
dev_err(cpu_dev, "failed register driver: %d\n", ret);
goto free_freq_table;
}
of_node_put(np);
return 0;
free_freq_table:
opp_free_cpufreq_table(cpu_dev, &freq_table);
put_node:
of_node_put(np);
return ret;
}
static int imx6q_cpufreq_remove(struct platform_device *pdev)
{
cpufreq_unregister_driver(&imx6q_cpufreq_driver);
opp_free_cpufreq_table(cpu_dev, &freq_table);
return 0;
}
static struct platform_driver imx6q_cpufreq_platdrv = {
.driver = {
.name = "imx6q-cpufreq",
.owner = THIS_MODULE,
},
.probe = imx6q_cpufreq_probe,
.remove = imx6q_cpufreq_remove,
};
module_platform_driver(imx6q_cpufreq_platdrv);
MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
MODULE_LICENSE("GPL");