linux/arch/s390/kvm/interrupt.c
Paolo Bonzini 5e4e84f112 KVM: s390: Fix and cleanup
- fix sigp sense/start/stop/inconsistency
 - cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE+SKTgaM0CPnbq/vKEXu8gLWmHHwFAmHAaOoACgkQEXu8gLWm
 HHzRrQ/6A+Q2KDk5GJ5ISE3fhNn6Cur33muo+YqeGvTIiJXqJcM8Blk/iFZKBslm
 D61C8XMZnR3Svbfct7k80bx2WYMjji+gTBksgb9EbEtzFaQLfF9F/aYYcvIKpFoA
 0D9KpE6oeKLpoMgWsRBJb7uq8AKO4sBZR0juLuHAIzIzAZPC0cALuUP8R1MH3qmG
 7kR8rke8+KRH4NQYSX16IB+9pZNZzyt+HqNUY23plv06bMkX0lp+zaJCQO8wn6Bb
 n4iWp7uJTQWEOPoKVk6FLIMC5xQFNWR0LDxMR4ucNTRxc4do6R/AS9MtyC9UDtDx
 weAu4z37vfPaElHO1+51QJ1hoYa0u8kcIeiug+GkkYK3TdrkMyJMF4JERnoV/WqR
 6XxtEdkPl/HDVU+azjK64jGORj8WQkYhpuW/dvxeu7GLw0m9OvnCcbk9pSUAgiyz
 b3U1uEKRBlwlejmFv6+d470l2BPjdi3OKQFCsOMD7XXwnm4NrDYqTAXVeHP/KN4B
 0+oAoDc1EQN8lUhRu+G9YrpUklnwx9bsmhfNAWbX6wy8rShwXn6hOK9CreqpkEc1
 YaRJ1b/UbKV64faMGzZU2AyJ7T4z21g0tK1ZOUNlKqd5WTjrGitN2ogVebuk1I4V
 2L61tZeLs7Tn7iHM7UG5c+xYNP9Go3ikK2IAgGtFdsKwiFf3EuQ=
 =+F7q
 -----END PGP SIGNATURE-----

Merge tag 'kvm-s390-next-5.17-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD

KVM: s390: Fix and cleanup

- fix sigp sense/start/stop/inconsistency
- cleanups
2021-12-21 12:59:53 -05:00

3335 lines
89 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* handling kvm guest interrupts
*
* Copyright IBM Corp. 2008, 2020
*
* Author(s): Carsten Otte <cotte@de.ibm.com>
*/
#define KMSG_COMPONENT "kvm-s390"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/interrupt.h>
#include <linux/kvm_host.h>
#include <linux/hrtimer.h>
#include <linux/mmu_context.h>
#include <linux/nospec.h>
#include <linux/signal.h>
#include <linux/slab.h>
#include <linux/bitmap.h>
#include <linux/vmalloc.h>
#include <asm/asm-offsets.h>
#include <asm/dis.h>
#include <linux/uaccess.h>
#include <asm/sclp.h>
#include <asm/isc.h>
#include <asm/gmap.h>
#include <asm/switch_to.h>
#include <asm/nmi.h>
#include <asm/airq.h>
#include "kvm-s390.h"
#include "gaccess.h"
#include "trace-s390.h"
#define PFAULT_INIT 0x0600
#define PFAULT_DONE 0x0680
#define VIRTIO_PARAM 0x0d00
static struct kvm_s390_gib *gib;
/* handle external calls via sigp interpretation facility */
static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
{
int c, scn;
if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
return 0;
BUG_ON(!kvm_s390_use_sca_entries());
read_lock(&vcpu->kvm->arch.sca_lock);
if (vcpu->kvm->arch.use_esca) {
struct esca_block *sca = vcpu->kvm->arch.sca;
union esca_sigp_ctrl sigp_ctrl =
sca->cpu[vcpu->vcpu_id].sigp_ctrl;
c = sigp_ctrl.c;
scn = sigp_ctrl.scn;
} else {
struct bsca_block *sca = vcpu->kvm->arch.sca;
union bsca_sigp_ctrl sigp_ctrl =
sca->cpu[vcpu->vcpu_id].sigp_ctrl;
c = sigp_ctrl.c;
scn = sigp_ctrl.scn;
}
read_unlock(&vcpu->kvm->arch.sca_lock);
if (src_id)
*src_id = scn;
return c;
}
static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
{
int expect, rc;
BUG_ON(!kvm_s390_use_sca_entries());
read_lock(&vcpu->kvm->arch.sca_lock);
if (vcpu->kvm->arch.use_esca) {
struct esca_block *sca = vcpu->kvm->arch.sca;
union esca_sigp_ctrl *sigp_ctrl =
&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
new_val.scn = src_id;
new_val.c = 1;
old_val.c = 0;
expect = old_val.value;
rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
} else {
struct bsca_block *sca = vcpu->kvm->arch.sca;
union bsca_sigp_ctrl *sigp_ctrl =
&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
new_val.scn = src_id;
new_val.c = 1;
old_val.c = 0;
expect = old_val.value;
rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
}
read_unlock(&vcpu->kvm->arch.sca_lock);
if (rc != expect) {
/* another external call is pending */
return -EBUSY;
}
kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
return 0;
}
static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
{
int rc, expect;
if (!kvm_s390_use_sca_entries())
return;
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
read_lock(&vcpu->kvm->arch.sca_lock);
if (vcpu->kvm->arch.use_esca) {
struct esca_block *sca = vcpu->kvm->arch.sca;
union esca_sigp_ctrl *sigp_ctrl =
&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
union esca_sigp_ctrl old = *sigp_ctrl;
expect = old.value;
rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
} else {
struct bsca_block *sca = vcpu->kvm->arch.sca;
union bsca_sigp_ctrl *sigp_ctrl =
&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
union bsca_sigp_ctrl old = *sigp_ctrl;
expect = old.value;
rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
}
read_unlock(&vcpu->kvm->arch.sca_lock);
WARN_ON(rc != expect); /* cannot clear? */
}
int psw_extint_disabled(struct kvm_vcpu *vcpu)
{
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
}
static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
{
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
}
static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
{
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
}
static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
{
return psw_extint_disabled(vcpu) &&
psw_ioint_disabled(vcpu) &&
psw_mchk_disabled(vcpu);
}
static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
{
if (psw_extint_disabled(vcpu) ||
!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
return 0;
if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
/* No timer interrupts when single stepping */
return 0;
return 1;
}
static int ckc_irq_pending(struct kvm_vcpu *vcpu)
{
const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
const u64 ckc = vcpu->arch.sie_block->ckc;
if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
if ((s64)ckc >= (s64)now)
return 0;
} else if (ckc >= now) {
return 0;
}
return ckc_interrupts_enabled(vcpu);
}
static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
{
return !psw_extint_disabled(vcpu) &&
(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
}
static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
{
if (!cpu_timer_interrupts_enabled(vcpu))
return 0;
return kvm_s390_get_cpu_timer(vcpu) >> 63;
}
static uint64_t isc_to_isc_bits(int isc)
{
return (0x80 >> isc) << 24;
}
static inline u32 isc_to_int_word(u8 isc)
{
return ((u32)isc << 27) | 0x80000000;
}
static inline u8 int_word_to_isc(u32 int_word)
{
return (int_word & 0x38000000) >> 27;
}
/*
* To use atomic bitmap functions, we have to provide a bitmap address
* that is u64 aligned. However, the ipm might be u32 aligned.
* Therefore, we logically start the bitmap at the very beginning of the
* struct and fixup the bit number.
*/
#define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)
/**
* gisa_set_iam - change the GISA interruption alert mask
*
* @gisa: gisa to operate on
* @iam: new IAM value to use
*
* Change the IAM atomically with the next alert address and the IPM
* of the GISA if the GISA is not part of the GIB alert list. All three
* fields are located in the first long word of the GISA.
*
* Returns: 0 on success
* -EBUSY in case the gisa is part of the alert list
*/
static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam)
{
u64 word, _word;
do {
word = READ_ONCE(gisa->u64.word[0]);
if ((u64)gisa != word >> 32)
return -EBUSY;
_word = (word & ~0xffUL) | iam;
} while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
return 0;
}
/**
* gisa_clear_ipm - clear the GISA interruption pending mask
*
* @gisa: gisa to operate on
*
* Clear the IPM atomically with the next alert address and the IAM
* of the GISA unconditionally. All three fields are located in the
* first long word of the GISA.
*/
static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa)
{
u64 word, _word;
do {
word = READ_ONCE(gisa->u64.word[0]);
_word = word & ~(0xffUL << 24);
} while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
}
/**
* gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM
*
* @gi: gisa interrupt struct to work on
*
* Atomically restores the interruption alert mask if none of the
* relevant ISCs are pending and return the IPM.
*
* Returns: the relevant pending ISCs
*/
static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi)
{
u8 pending_mask, alert_mask;
u64 word, _word;
do {
word = READ_ONCE(gi->origin->u64.word[0]);
alert_mask = READ_ONCE(gi->alert.mask);
pending_mask = (u8)(word >> 24) & alert_mask;
if (pending_mask)
return pending_mask;
_word = (word & ~0xffUL) | alert_mask;
} while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word);
return 0;
}
static inline int gisa_in_alert_list(struct kvm_s390_gisa *gisa)
{
return READ_ONCE(gisa->next_alert) != (u32)(u64)gisa;
}
static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
{
set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
}
static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
{
return READ_ONCE(gisa->ipm);
}
static inline void gisa_clear_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
{
clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
}
static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
{
return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
}
static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
{
unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs |
vcpu->arch.local_int.pending_irqs;
pending &= ~vcpu->kvm->arch.float_int.masked_irqs;
return pending;
}
static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
{
struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
unsigned long pending_mask;
pending_mask = pending_irqs_no_gisa(vcpu);
if (gi->origin)
pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7;
return pending_mask;
}
static inline int isc_to_irq_type(unsigned long isc)
{
return IRQ_PEND_IO_ISC_0 - isc;
}
static inline int irq_type_to_isc(unsigned long irq_type)
{
return IRQ_PEND_IO_ISC_0 - irq_type;
}
static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
unsigned long active_mask)
{
int i;
for (i = 0; i <= MAX_ISC; i++)
if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
active_mask &= ~(1UL << (isc_to_irq_type(i)));
return active_mask;
}
static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
{
unsigned long active_mask;
active_mask = pending_irqs(vcpu);
if (!active_mask)
return 0;
if (psw_extint_disabled(vcpu))
active_mask &= ~IRQ_PEND_EXT_MASK;
if (psw_ioint_disabled(vcpu))
active_mask &= ~IRQ_PEND_IO_MASK;
else
active_mask = disable_iscs(vcpu, active_mask);
if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) {
__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
__clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask);
}
if (psw_mchk_disabled(vcpu))
active_mask &= ~IRQ_PEND_MCHK_MASK;
/* PV guest cpus can have a single interruption injected at a time. */
if (kvm_s390_pv_cpu_get_handle(vcpu) &&
vcpu->arch.sie_block->iictl != IICTL_CODE_NONE)
active_mask &= ~(IRQ_PEND_EXT_II_MASK |
IRQ_PEND_IO_MASK |
IRQ_PEND_MCHK_MASK);
/*
* Check both floating and local interrupt's cr14 because
* bit IRQ_PEND_MCHK_REP could be set in both cases.
*/
if (!(vcpu->arch.sie_block->gcr[14] &
(vcpu->kvm->arch.float_int.mchk.cr14 |
vcpu->arch.local_int.irq.mchk.cr14)))
__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
/*
* STOP irqs will never be actively delivered. They are triggered via
* intercept requests and cleared when the stop intercept is performed.
*/
__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
return active_mask;
}
static void __set_cpu_idle(struct kvm_vcpu *vcpu)
{
kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
}
static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
{
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
}
static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
{
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
CPUSTAT_STOP_INT);
vcpu->arch.sie_block->lctl = 0x0000;
vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
if (guestdbg_enabled(vcpu)) {
vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
LCTL_CR10 | LCTL_CR11);
vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
}
}
static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
{
if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
return;
if (psw_ioint_disabled(vcpu))
kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
else
vcpu->arch.sie_block->lctl |= LCTL_CR6;
}
static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
{
if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK))
return;
if (psw_extint_disabled(vcpu))
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
else
vcpu->arch.sie_block->lctl |= LCTL_CR0;
}
static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
{
if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK))
return;
if (psw_mchk_disabled(vcpu))
vcpu->arch.sie_block->ictl |= ICTL_LPSW;
else
vcpu->arch.sie_block->lctl |= LCTL_CR14;
}
static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
{
if (kvm_s390_is_stop_irq_pending(vcpu))
kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
}
/* Set interception request for non-deliverable interrupts */
static void set_intercept_indicators(struct kvm_vcpu *vcpu)
{
set_intercept_indicators_io(vcpu);
set_intercept_indicators_ext(vcpu);
set_intercept_indicators_mchk(vcpu);
set_intercept_indicators_stop(vcpu);
}
static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
int rc = 0;
vcpu->stat.deliver_cputm++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
0, 0);
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER;
} else {
rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
(u16 *)__LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
}
clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
int rc = 0;
vcpu->stat.deliver_ckc++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
0, 0);
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP;
} else {
rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
(u16 __user *)__LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
}
clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_ext_info ext;
int rc;
spin_lock(&li->lock);
ext = li->irq.ext;
clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
li->irq.ext.ext_params2 = 0;
spin_unlock(&li->lock);
VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
ext.ext_params2);
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
KVM_S390_INT_PFAULT_INIT,
0, ext.ext_params2);
rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
return rc ? -EFAULT : 0;
}
static int __write_machine_check(struct kvm_vcpu *vcpu,
struct kvm_s390_mchk_info *mchk)
{
unsigned long ext_sa_addr;
unsigned long lc;
freg_t fprs[NUM_FPRS];
union mci mci;
int rc;
/*
* All other possible payload for a machine check (e.g. the register
* contents in the save area) will be handled by the ultravisor, as
* the hypervisor does not not have the needed information for
* protected guests.
*/
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK;
vcpu->arch.sie_block->mcic = mchk->mcic;
vcpu->arch.sie_block->faddr = mchk->failing_storage_address;
vcpu->arch.sie_block->edc = mchk->ext_damage_code;
return 0;
}
mci.val = mchk->mcic;
/* take care of lazy register loading */
save_fpu_regs();
save_access_regs(vcpu->run->s.regs.acrs);
if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
save_gs_cb(current->thread.gs_cb);
/* Extended save area */
rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
sizeof(unsigned long));
/* Only bits 0 through 63-LC are used for address formation */
lc = ext_sa_addr & MCESA_LC_MASK;
if (test_kvm_facility(vcpu->kvm, 133)) {
switch (lc) {
case 0:
case 10:
ext_sa_addr &= ~0x3ffUL;
break;
case 11:
ext_sa_addr &= ~0x7ffUL;
break;
case 12:
ext_sa_addr &= ~0xfffUL;
break;
default:
ext_sa_addr = 0;
break;
}
} else {
ext_sa_addr &= ~0x3ffUL;
}
if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
512))
mci.vr = 0;
} else {
mci.vr = 0;
}
if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
&& (lc == 11 || lc == 12)) {
if (write_guest_abs(vcpu, ext_sa_addr + 1024,
&vcpu->run->s.regs.gscb, 32))
mci.gs = 0;
} else {
mci.gs = 0;
}
/* General interruption information */
rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
/* Register-save areas */
if (MACHINE_HAS_VX) {
convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
} else {
rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
vcpu->run->s.regs.fprs, 128);
}
rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
vcpu->run->s.regs.gprs, 128);
rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
(u32 __user *) __LC_FP_CREG_SAVE_AREA);
rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
(u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
(u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
(u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
&vcpu->run->s.regs.acrs, 64);
rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
&vcpu->arch.sie_block->gcr, 128);
/* Extended interruption information */
rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
(u32 __user *) __LC_EXT_DAMAGE_CODE);
rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
(u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
sizeof(mchk->fixed_logout));
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
{
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_mchk_info mchk = {};
int deliver = 0;
int rc = 0;
spin_lock(&fi->lock);
spin_lock(&li->lock);
if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
/*
* If there was an exigent machine check pending, then any
* repressible machine checks that might have been pending
* are indicated along with it, so always clear bits for
* repressible and exigent interrupts
*/
mchk = li->irq.mchk;
clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
memset(&li->irq.mchk, 0, sizeof(mchk));
deliver = 1;
}
/*
* We indicate floating repressible conditions along with
* other pending conditions. Channel Report Pending and Channel
* Subsystem damage are the only two and and are indicated by
* bits in mcic and masked in cr14.
*/
if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
mchk.mcic |= fi->mchk.mcic;
mchk.cr14 |= fi->mchk.cr14;
memset(&fi->mchk, 0, sizeof(mchk));
deliver = 1;
}
spin_unlock(&li->lock);
spin_unlock(&fi->lock);
if (deliver) {
VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
mchk.mcic);
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
KVM_S390_MCHK,
mchk.cr14, mchk.mcic);
vcpu->stat.deliver_machine_check++;
rc = __write_machine_check(vcpu, &mchk);
}
return rc;
}
static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
int rc = 0;
VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
vcpu->stat.deliver_restart_signal++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART;
} else {
rc = write_guest_lc(vcpu,
offsetof(struct lowcore, restart_old_psw),
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
}
clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_prefix_info prefix;
spin_lock(&li->lock);
prefix = li->irq.prefix;
li->irq.prefix.address = 0;
clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
spin_unlock(&li->lock);
vcpu->stat.deliver_prefix_signal++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
KVM_S390_SIGP_SET_PREFIX,
prefix.address, 0);
kvm_s390_set_prefix(vcpu, prefix.address);
return 0;
}
static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
int rc;
int cpu_addr;
spin_lock(&li->lock);
cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
clear_bit(cpu_addr, li->sigp_emerg_pending);
if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
spin_unlock(&li->lock);
VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
vcpu->stat.deliver_emergency_signal++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
cpu_addr, 0);
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG;
vcpu->arch.sie_block->extcpuaddr = cpu_addr;
return 0;
}
rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
(u16 *)__LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_extcall_info extcall;
int rc;
spin_lock(&li->lock);
extcall = li->irq.extcall;
li->irq.extcall.code = 0;
clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
spin_unlock(&li->lock);
VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
vcpu->stat.deliver_external_call++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
KVM_S390_INT_EXTERNAL_CALL,
extcall.code, 0);
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL;
vcpu->arch.sie_block->extcpuaddr = extcall.code;
return 0;
}
rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
(u16 *)__LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
return rc ? -EFAULT : 0;
}
static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code)
{
switch (code) {
case PGM_SPECIFICATION:
vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION;
break;
case PGM_OPERAND:
vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND;
break;
default:
return -EINVAL;
}
return 0;
}
static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_pgm_info pgm_info;
int rc = 0, nullifying = false;
u16 ilen;
spin_lock(&li->lock);
pgm_info = li->irq.pgm;
clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
memset(&li->irq.pgm, 0, sizeof(pgm_info));
spin_unlock(&li->lock);
ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
pgm_info.code, ilen);
vcpu->stat.deliver_program++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
pgm_info.code, 0);
/* PER is handled by the ultravisor */
if (kvm_s390_pv_cpu_is_protected(vcpu))
return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER);
switch (pgm_info.code & ~PGM_PER) {
case PGM_AFX_TRANSLATION:
case PGM_ASX_TRANSLATION:
case PGM_EX_TRANSLATION:
case PGM_LFX_TRANSLATION:
case PGM_LSTE_SEQUENCE:
case PGM_LSX_TRANSLATION:
case PGM_LX_TRANSLATION:
case PGM_PRIMARY_AUTHORITY:
case PGM_SECONDARY_AUTHORITY:
nullifying = true;
fallthrough;
case PGM_SPACE_SWITCH:
rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
(u64 *)__LC_TRANS_EXC_CODE);
break;
case PGM_ALEN_TRANSLATION:
case PGM_ALE_SEQUENCE:
case PGM_ASTE_INSTANCE:
case PGM_ASTE_SEQUENCE:
case PGM_ASTE_VALIDITY:
case PGM_EXTENDED_AUTHORITY:
rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
(u8 *)__LC_EXC_ACCESS_ID);
nullifying = true;
break;
case PGM_ASCE_TYPE:
case PGM_PAGE_TRANSLATION:
case PGM_REGION_FIRST_TRANS:
case PGM_REGION_SECOND_TRANS:
case PGM_REGION_THIRD_TRANS:
case PGM_SEGMENT_TRANSLATION:
rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
(u64 *)__LC_TRANS_EXC_CODE);
rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
(u8 *)__LC_EXC_ACCESS_ID);
rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
(u8 *)__LC_OP_ACCESS_ID);
nullifying = true;
break;
case PGM_MONITOR:
rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
(u16 *)__LC_MON_CLASS_NR);
rc |= put_guest_lc(vcpu, pgm_info.mon_code,
(u64 *)__LC_MON_CODE);
break;
case PGM_VECTOR_PROCESSING:
case PGM_DATA:
rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
(u32 *)__LC_DATA_EXC_CODE);
break;
case PGM_PROTECTION:
rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
(u64 *)__LC_TRANS_EXC_CODE);
rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
(u8 *)__LC_EXC_ACCESS_ID);
break;
case PGM_STACK_FULL:
case PGM_STACK_EMPTY:
case PGM_STACK_SPECIFICATION:
case PGM_STACK_TYPE:
case PGM_STACK_OPERATION:
case PGM_TRACE_TABEL:
case PGM_CRYPTO_OPERATION:
nullifying = true;
break;
}
if (pgm_info.code & PGM_PER) {
rc |= put_guest_lc(vcpu, pgm_info.per_code,
(u8 *) __LC_PER_CODE);
rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
(u8 *)__LC_PER_ATMID);
rc |= put_guest_lc(vcpu, pgm_info.per_address,
(u64 *) __LC_PER_ADDRESS);
rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
(u8 *) __LC_PER_ACCESS_ID);
}
if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
kvm_s390_rewind_psw(vcpu, ilen);
/* bit 1+2 of the target are the ilc, so we can directly use ilen */
rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
(u64 *) __LC_PGM_LAST_BREAK);
rc |= put_guest_lc(vcpu, pgm_info.code,
(u16 *)__LC_PGM_INT_CODE);
rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
return rc ? -EFAULT : 0;
}
#define SCCB_MASK 0xFFFFFFF8
#define SCCB_EVENT_PENDING 0x3
static int write_sclp(struct kvm_vcpu *vcpu, u32 parm)
{
int rc;
if (kvm_s390_pv_cpu_get_handle(vcpu)) {
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG;
vcpu->arch.sie_block->eiparams = parm;
return 0;
}
rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= put_guest_lc(vcpu, parm,
(u32 *)__LC_EXT_PARAMS);
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
{
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
struct kvm_s390_ext_info ext;
spin_lock(&fi->lock);
if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) ||
!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
spin_unlock(&fi->lock);
return 0;
}
ext = fi->srv_signal;
memset(&fi->srv_signal, 0, sizeof(ext));
clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
if (kvm_s390_pv_cpu_is_protected(vcpu))
set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs);
spin_unlock(&fi->lock);
VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
ext.ext_params);
vcpu->stat.deliver_service_signal++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
ext.ext_params, 0);
return write_sclp(vcpu, ext.ext_params);
}
static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu)
{
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
struct kvm_s390_ext_info ext;
spin_lock(&fi->lock);
if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) {
spin_unlock(&fi->lock);
return 0;
}
ext = fi->srv_signal;
/* only clear the event bit */
fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING;
clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
spin_unlock(&fi->lock);
VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event");
vcpu->stat.deliver_service_signal++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
ext.ext_params, 0);
return write_sclp(vcpu, SCCB_EVENT_PENDING);
}
static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
{
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
struct kvm_s390_interrupt_info *inti;
int rc = 0;
spin_lock(&fi->lock);
inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
struct kvm_s390_interrupt_info,
list);
if (inti) {
list_del(&inti->list);
fi->counters[FIRQ_CNTR_PFAULT] -= 1;
}
if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
spin_unlock(&fi->lock);
if (inti) {
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
KVM_S390_INT_PFAULT_DONE, 0,
inti->ext.ext_params2);
VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
inti->ext.ext_params2);
rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
(u16 *)__LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, PFAULT_DONE,
(u16 *)__LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
&vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
(u64 *)__LC_EXT_PARAMS2);
kfree(inti);
}
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
{
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
struct kvm_s390_interrupt_info *inti;
int rc = 0;
spin_lock(&fi->lock);
inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
struct kvm_s390_interrupt_info,
list);
if (inti) {
VCPU_EVENT(vcpu, 4,
"deliver: virtio parm: 0x%x,parm64: 0x%llx",
inti->ext.ext_params, inti->ext.ext_params2);
vcpu->stat.deliver_virtio++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
inti->type,
inti->ext.ext_params,
inti->ext.ext_params2);
list_del(&inti->list);
fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
}
if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
spin_unlock(&fi->lock);
if (inti) {
rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
(u16 *)__LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
(u16 *)__LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
&vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
rc |= put_guest_lc(vcpu, inti->ext.ext_params,
(u32 *)__LC_EXT_PARAMS);
rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
(u64 *)__LC_EXT_PARAMS2);
kfree(inti);
}
return rc ? -EFAULT : 0;
}
static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
{
int rc;
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
vcpu->arch.sie_block->iictl = IICTL_CODE_IO;
vcpu->arch.sie_block->subchannel_id = io->subchannel_id;
vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr;
vcpu->arch.sie_block->io_int_parm = io->io_int_parm;
vcpu->arch.sie_block->io_int_word = io->io_int_word;
return 0;
}
rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
&vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
&vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
unsigned long irq_type)
{
struct list_head *isc_list;
struct kvm_s390_float_interrupt *fi;
struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
struct kvm_s390_interrupt_info *inti = NULL;
struct kvm_s390_io_info io;
u32 isc;
int rc = 0;
fi = &vcpu->kvm->arch.float_int;
spin_lock(&fi->lock);
isc = irq_type_to_isc(irq_type);
isc_list = &fi->lists[isc];
inti = list_first_entry_or_null(isc_list,
struct kvm_s390_interrupt_info,
list);
if (inti) {
if (inti->type & KVM_S390_INT_IO_AI_MASK)
VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
else
VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
inti->io.subchannel_id >> 8,
inti->io.subchannel_id >> 1 & 0x3,
inti->io.subchannel_nr);
vcpu->stat.deliver_io++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
inti->type,
((__u32)inti->io.subchannel_id << 16) |
inti->io.subchannel_nr,
((__u64)inti->io.io_int_parm << 32) |
inti->io.io_int_word);
list_del(&inti->list);
fi->counters[FIRQ_CNTR_IO] -= 1;
}
if (list_empty(isc_list))
clear_bit(irq_type, &fi->pending_irqs);
spin_unlock(&fi->lock);
if (inti) {
rc = __do_deliver_io(vcpu, &(inti->io));
kfree(inti);
goto out;
}
if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) {
/*
* in case an adapter interrupt was not delivered
* in SIE context KVM will handle the delivery
*/
VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
memset(&io, 0, sizeof(io));
io.io_int_word = isc_to_int_word(isc);
vcpu->stat.deliver_io++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
KVM_S390_INT_IO(1, 0, 0, 0),
((__u32)io.subchannel_id << 16) |
io.subchannel_nr,
((__u64)io.io_int_parm << 32) |
io.io_int_word);
rc = __do_deliver_io(vcpu, &io);
}
out:
return rc;
}
/* Check whether an external call is pending (deliverable or not) */
int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
if (!sclp.has_sigpif)
return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
return sca_ext_call_pending(vcpu, NULL);
}
int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
{
if (deliverable_irqs(vcpu))
return 1;
if (kvm_cpu_has_pending_timer(vcpu))
return 1;
/* external call pending and deliverable */
if (kvm_s390_ext_call_pending(vcpu) &&
!psw_extint_disabled(vcpu) &&
(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
return 1;
if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
return 1;
return 0;
}
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
}
static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
{
const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
const u64 ckc = vcpu->arch.sie_block->ckc;
u64 cputm, sltime = 0;
if (ckc_interrupts_enabled(vcpu)) {
if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
if ((s64)now < (s64)ckc)
sltime = tod_to_ns((s64)ckc - (s64)now);
} else if (now < ckc) {
sltime = tod_to_ns(ckc - now);
}
/* already expired */
if (!sltime)
return 0;
if (cpu_timer_interrupts_enabled(vcpu)) {
cputm = kvm_s390_get_cpu_timer(vcpu);
/* already expired? */
if (cputm >> 63)
return 0;
return min_t(u64, sltime, tod_to_ns(cputm));
}
} else if (cpu_timer_interrupts_enabled(vcpu)) {
sltime = kvm_s390_get_cpu_timer(vcpu);
/* already expired? */
if (sltime >> 63)
return 0;
}
return sltime;
}
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
{
struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
u64 sltime;
vcpu->stat.exit_wait_state++;
/* fast path */
if (kvm_arch_vcpu_runnable(vcpu))
return 0;
if (psw_interrupts_disabled(vcpu)) {
VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
return -EOPNOTSUPP; /* disabled wait */
}
if (gi->origin &&
(gisa_get_ipm_or_restore_iam(gi) &
vcpu->arch.sie_block->gcr[6] >> 24))
return 0;
if (!ckc_interrupts_enabled(vcpu) &&
!cpu_timer_interrupts_enabled(vcpu)) {
VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
__set_cpu_idle(vcpu);
goto no_timer;
}
sltime = __calculate_sltime(vcpu);
if (!sltime)
return 0;
__set_cpu_idle(vcpu);
hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
no_timer:
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
kvm_vcpu_halt(vcpu);
vcpu->valid_wakeup = false;
__unset_cpu_idle(vcpu);
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
hrtimer_cancel(&vcpu->arch.ckc_timer);
return 0;
}
void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
{
vcpu->valid_wakeup = true;
kvm_vcpu_wake_up(vcpu);
/*
* The VCPU might not be sleeping but rather executing VSIE. Let's
* kick it, so it leaves the SIE to process the request.
*/
kvm_s390_vsie_kick(vcpu);
}
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
{
struct kvm_vcpu *vcpu;
u64 sltime;
vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
sltime = __calculate_sltime(vcpu);
/*
* If the monotonic clock runs faster than the tod clock we might be
* woken up too early and have to go back to sleep to avoid deadlocks.
*/
if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
return HRTIMER_RESTART;
kvm_s390_vcpu_wakeup(vcpu);
return HRTIMER_NORESTART;
}
void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
spin_lock(&li->lock);
li->pending_irqs = 0;
bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
memset(&li->irq, 0, sizeof(li->irq));
spin_unlock(&li->lock);
sca_clear_ext_call(vcpu);
}
int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
int rc = 0;
unsigned long irq_type;
unsigned long irqs;
__reset_intercept_indicators(vcpu);
/* pending ckc conditions might have been invalidated */
clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
if (ckc_irq_pending(vcpu))
set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
/* pending cpu timer conditions might have been invalidated */
clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
if (cpu_timer_irq_pending(vcpu))
set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
while ((irqs = deliverable_irqs(vcpu)) && !rc) {
/* bits are in the reverse order of interrupt priority */
irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
switch (irq_type) {
case IRQ_PEND_IO_ISC_0:
case IRQ_PEND_IO_ISC_1:
case IRQ_PEND_IO_ISC_2:
case IRQ_PEND_IO_ISC_3:
case IRQ_PEND_IO_ISC_4:
case IRQ_PEND_IO_ISC_5:
case IRQ_PEND_IO_ISC_6:
case IRQ_PEND_IO_ISC_7:
rc = __deliver_io(vcpu, irq_type);
break;
case IRQ_PEND_MCHK_EX:
case IRQ_PEND_MCHK_REP:
rc = __deliver_machine_check(vcpu);
break;
case IRQ_PEND_PROG:
rc = __deliver_prog(vcpu);
break;
case IRQ_PEND_EXT_EMERGENCY:
rc = __deliver_emergency_signal(vcpu);
break;
case IRQ_PEND_EXT_EXTERNAL:
rc = __deliver_external_call(vcpu);
break;
case IRQ_PEND_EXT_CLOCK_COMP:
rc = __deliver_ckc(vcpu);
break;
case IRQ_PEND_EXT_CPU_TIMER:
rc = __deliver_cpu_timer(vcpu);
break;
case IRQ_PEND_RESTART:
rc = __deliver_restart(vcpu);
break;
case IRQ_PEND_SET_PREFIX:
rc = __deliver_set_prefix(vcpu);
break;
case IRQ_PEND_PFAULT_INIT:
rc = __deliver_pfault_init(vcpu);
break;
case IRQ_PEND_EXT_SERVICE:
rc = __deliver_service(vcpu);
break;
case IRQ_PEND_EXT_SERVICE_EV:
rc = __deliver_service_ev(vcpu);
break;
case IRQ_PEND_PFAULT_DONE:
rc = __deliver_pfault_done(vcpu);
break;
case IRQ_PEND_VIRTIO:
rc = __deliver_virtio(vcpu);
break;
default:
WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
clear_bit(irq_type, &li->pending_irqs);
}
}
set_intercept_indicators(vcpu);
return rc;
}
static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
vcpu->stat.inject_program++;
VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
irq->u.pgm.code, 0);
if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
/* auto detection if no valid ILC was given */
irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
}
if (irq->u.pgm.code == PGM_PER) {
li->irq.pgm.code |= PGM_PER;
li->irq.pgm.flags = irq->u.pgm.flags;
/* only modify PER related information */
li->irq.pgm.per_address = irq->u.pgm.per_address;
li->irq.pgm.per_code = irq->u.pgm.per_code;
li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
} else if (!(irq->u.pgm.code & PGM_PER)) {
li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
irq->u.pgm.code;
li->irq.pgm.flags = irq->u.pgm.flags;
/* only modify non-PER information */
li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
li->irq.pgm.mon_code = irq->u.pgm.mon_code;
li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
} else {
li->irq.pgm = irq->u.pgm;
}
set_bit(IRQ_PEND_PROG, &li->pending_irqs);
return 0;
}
static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
vcpu->stat.inject_pfault_init++;
VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
irq->u.ext.ext_params2);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
irq->u.ext.ext_params,
irq->u.ext.ext_params2);
li->irq.ext = irq->u.ext;
set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
return 0;
}
static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
uint16_t src_id = irq->u.extcall.code;
vcpu->stat.inject_external_call++;
VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
src_id);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
src_id, 0);
/* sending vcpu invalid */
if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
return -EINVAL;
if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu))
return sca_inject_ext_call(vcpu, src_id);
if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
return -EBUSY;
*extcall = irq->u.extcall;
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
return 0;
}
static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
vcpu->stat.inject_set_prefix++;
VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
irq->u.prefix.address);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
irq->u.prefix.address, 0);
if (!is_vcpu_stopped(vcpu))
return -EBUSY;
*prefix = irq->u.prefix;
set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
return 0;
}
#define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_stop_info *stop = &li->irq.stop;
int rc = 0;
vcpu->stat.inject_stop_signal++;
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
return -EINVAL;
if (is_vcpu_stopped(vcpu)) {
if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
rc = kvm_s390_store_status_unloaded(vcpu,
KVM_S390_STORE_STATUS_NOADDR);
return rc;
}
if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
return -EBUSY;
stop->flags = irq->u.stop.flags;
kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
return 0;
}
static int __inject_sigp_restart(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
vcpu->stat.inject_restart++;
VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
return 0;
}
static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
vcpu->stat.inject_emergency_signal++;
VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
irq->u.emerg.code);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
irq->u.emerg.code, 0);
/* sending vcpu invalid */
if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
return -EINVAL;
set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
return 0;
}
static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
vcpu->stat.inject_mchk++;
VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
irq->u.mchk.mcic);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
irq->u.mchk.mcic);
/*
* Because repressible machine checks can be indicated along with
* exigent machine checks (PoP, Chapter 11, Interruption action)
* we need to combine cr14, mcic and external damage code.
* Failing storage address and the logout area should not be or'ed
* together, we just indicate the last occurrence of the corresponding
* machine check
*/
mchk->cr14 |= irq->u.mchk.cr14;
mchk->mcic |= irq->u.mchk.mcic;
mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
sizeof(mchk->fixed_logout));
if (mchk->mcic & MCHK_EX_MASK)
set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
else if (mchk->mcic & MCHK_REP_MASK)
set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
return 0;
}
static int __inject_ckc(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
vcpu->stat.inject_ckc++;
VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
0, 0);
set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
return 0;
}
static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
vcpu->stat.inject_cputm++;
VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
0, 0);
set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
return 0;
}
static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
int isc, u32 schid)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
struct kvm_s390_interrupt_info *iter;
u16 id = (schid & 0xffff0000U) >> 16;
u16 nr = schid & 0x0000ffffU;
spin_lock(&fi->lock);
list_for_each_entry(iter, isc_list, list) {
if (schid && (id != iter->io.subchannel_id ||
nr != iter->io.subchannel_nr))
continue;
/* found an appropriate entry */
list_del_init(&iter->list);
fi->counters[FIRQ_CNTR_IO] -= 1;
if (list_empty(isc_list))
clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
spin_unlock(&fi->lock);
return iter;
}
spin_unlock(&fi->lock);
return NULL;
}
static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
u64 isc_mask, u32 schid)
{
struct kvm_s390_interrupt_info *inti = NULL;
int isc;
for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
if (isc_mask & isc_to_isc_bits(isc))
inti = get_io_int(kvm, isc, schid);
}
return inti;
}
static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
{
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
unsigned long active_mask;
int isc;
if (schid)
goto out;
if (!gi->origin)
goto out;
active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32;
while (active_mask) {
isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
if (gisa_tac_ipm_gisc(gi->origin, isc))
return isc;
clear_bit_inv(isc, &active_mask);
}
out:
return -EINVAL;
}
/*
* Dequeue and return an I/O interrupt matching any of the interruption
* subclasses as designated by the isc mask in cr6 and the schid (if != 0).
* Take into account the interrupts pending in the interrupt list and in GISA.
*
* Note that for a guest that does not enable I/O interrupts
* but relies on TPI, a flood of classic interrupts may starve
* out adapter interrupts on the same isc. Linux does not do
* that, and it is possible to work around the issue by configuring
* different iscs for classic and adapter interrupts in the guest,
* but we may want to revisit this in the future.
*/
struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
u64 isc_mask, u32 schid)
{
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
struct kvm_s390_interrupt_info *inti, *tmp_inti;
int isc;
inti = get_top_io_int(kvm, isc_mask, schid);
isc = get_top_gisa_isc(kvm, isc_mask, schid);
if (isc < 0)
/* no AI in GISA */
goto out;
if (!inti)
/* AI in GISA but no classical IO int */
goto gisa_out;
/* both types of interrupts present */
if (int_word_to_isc(inti->io.io_int_word) <= isc) {
/* classical IO int with higher priority */
gisa_set_ipm_gisc(gi->origin, isc);
goto out;
}
gisa_out:
tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
if (tmp_inti) {
tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
tmp_inti->io.io_int_word = isc_to_int_word(isc);
if (inti)
kvm_s390_reinject_io_int(kvm, inti);
inti = tmp_inti;
} else
gisa_set_ipm_gisc(gi->origin, isc);
out:
return inti;
}
static int __inject_service(struct kvm *kvm,
struct kvm_s390_interrupt_info *inti)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
kvm->stat.inject_service_signal++;
spin_lock(&fi->lock);
fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
/* We always allow events, track them separately from the sccb ints */
if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING)
set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
/*
* Early versions of the QEMU s390 bios will inject several
* service interrupts after another without handling a
* condition code indicating busy.
* We will silently ignore those superfluous sccb values.
* A future version of QEMU will take care of serialization
* of servc requests
*/
if (fi->srv_signal.ext_params & SCCB_MASK)
goto out;
fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
out:
spin_unlock(&fi->lock);
kfree(inti);
return 0;
}
static int __inject_virtio(struct kvm *kvm,
struct kvm_s390_interrupt_info *inti)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
kvm->stat.inject_virtio++;
spin_lock(&fi->lock);
if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
spin_unlock(&fi->lock);
return -EBUSY;
}
fi->counters[FIRQ_CNTR_VIRTIO] += 1;
list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
spin_unlock(&fi->lock);
return 0;
}
static int __inject_pfault_done(struct kvm *kvm,
struct kvm_s390_interrupt_info *inti)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
kvm->stat.inject_pfault_done++;
spin_lock(&fi->lock);
if (fi->counters[FIRQ_CNTR_PFAULT] >=
(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
spin_unlock(&fi->lock);
return -EBUSY;
}
fi->counters[FIRQ_CNTR_PFAULT] += 1;
list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
spin_unlock(&fi->lock);
return 0;
}
#define CR_PENDING_SUBCLASS 28
static int __inject_float_mchk(struct kvm *kvm,
struct kvm_s390_interrupt_info *inti)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
kvm->stat.inject_float_mchk++;
spin_lock(&fi->lock);
fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
fi->mchk.mcic |= inti->mchk.mcic;
set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
spin_unlock(&fi->lock);
kfree(inti);
return 0;
}
static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
{
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
struct kvm_s390_float_interrupt *fi;
struct list_head *list;
int isc;
kvm->stat.inject_io++;
isc = int_word_to_isc(inti->io.io_int_word);
/*
* Do not make use of gisa in protected mode. We do not use the lock
* checking variant as this is just a performance optimization and we
* do not hold the lock here. This is ok as the code will pick
* interrupts from both "lists" for delivery.
*/
if (!kvm_s390_pv_get_handle(kvm) &&
gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) {
VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
gisa_set_ipm_gisc(gi->origin, isc);
kfree(inti);
return 0;
}
fi = &kvm->arch.float_int;
spin_lock(&fi->lock);
if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
spin_unlock(&fi->lock);
return -EBUSY;
}
fi->counters[FIRQ_CNTR_IO] += 1;
if (inti->type & KVM_S390_INT_IO_AI_MASK)
VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
else
VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
inti->io.subchannel_id >> 8,
inti->io.subchannel_id >> 1 & 0x3,
inti->io.subchannel_nr);
list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
list_add_tail(&inti->list, list);
set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
spin_unlock(&fi->lock);
return 0;
}
/*
* Find a destination VCPU for a floating irq and kick it.
*/
static void __floating_irq_kick(struct kvm *kvm, u64 type)
{
struct kvm_vcpu *dst_vcpu;
int sigcpu, online_vcpus, nr_tries = 0;
online_vcpus = atomic_read(&kvm->online_vcpus);
if (!online_vcpus)
return;
/* find idle VCPUs first, then round robin */
sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus);
if (sigcpu == online_vcpus) {
do {
sigcpu = kvm->arch.float_int.next_rr_cpu++;
kvm->arch.float_int.next_rr_cpu %= online_vcpus;
/* avoid endless loops if all vcpus are stopped */
if (nr_tries++ >= online_vcpus)
return;
} while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
}
dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
/* make the VCPU drop out of the SIE, or wake it up if sleeping */
switch (type) {
case KVM_S390_MCHK:
kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
break;
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
if (!(type & KVM_S390_INT_IO_AI_MASK &&
kvm->arch.gisa_int.origin) ||
kvm_s390_pv_cpu_get_handle(dst_vcpu))
kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
break;
default:
kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
break;
}
kvm_s390_vcpu_wakeup(dst_vcpu);
}
static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
{
u64 type = READ_ONCE(inti->type);
int rc;
switch (type) {
case KVM_S390_MCHK:
rc = __inject_float_mchk(kvm, inti);
break;
case KVM_S390_INT_VIRTIO:
rc = __inject_virtio(kvm, inti);
break;
case KVM_S390_INT_SERVICE:
rc = __inject_service(kvm, inti);
break;
case KVM_S390_INT_PFAULT_DONE:
rc = __inject_pfault_done(kvm, inti);
break;
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
rc = __inject_io(kvm, inti);
break;
default:
rc = -EINVAL;
}
if (rc)
return rc;
__floating_irq_kick(kvm, type);
return 0;
}
int kvm_s390_inject_vm(struct kvm *kvm,
struct kvm_s390_interrupt *s390int)
{
struct kvm_s390_interrupt_info *inti;
int rc;
inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
if (!inti)
return -ENOMEM;
inti->type = s390int->type;
switch (inti->type) {
case KVM_S390_INT_VIRTIO:
VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
s390int->parm, s390int->parm64);
inti->ext.ext_params = s390int->parm;
inti->ext.ext_params2 = s390int->parm64;
break;
case KVM_S390_INT_SERVICE:
VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
inti->ext.ext_params = s390int->parm;
break;
case KVM_S390_INT_PFAULT_DONE:
inti->ext.ext_params2 = s390int->parm64;
break;
case KVM_S390_MCHK:
VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
s390int->parm64);
inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
inti->mchk.mcic = s390int->parm64;
break;
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
inti->io.subchannel_id = s390int->parm >> 16;
inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
inti->io.io_int_parm = s390int->parm64 >> 32;
inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
break;
default:
kfree(inti);
return -EINVAL;
}
trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
2);
rc = __inject_vm(kvm, inti);
if (rc)
kfree(inti);
return rc;
}
int kvm_s390_reinject_io_int(struct kvm *kvm,
struct kvm_s390_interrupt_info *inti)
{
return __inject_vm(kvm, inti);
}
int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
struct kvm_s390_irq *irq)
{
irq->type = s390int->type;
switch (irq->type) {
case KVM_S390_PROGRAM_INT:
if (s390int->parm & 0xffff0000)
return -EINVAL;
irq->u.pgm.code = s390int->parm;
break;
case KVM_S390_SIGP_SET_PREFIX:
irq->u.prefix.address = s390int->parm;
break;
case KVM_S390_SIGP_STOP:
irq->u.stop.flags = s390int->parm;
break;
case KVM_S390_INT_EXTERNAL_CALL:
if (s390int->parm & 0xffff0000)
return -EINVAL;
irq->u.extcall.code = s390int->parm;
break;
case KVM_S390_INT_EMERGENCY:
if (s390int->parm & 0xffff0000)
return -EINVAL;
irq->u.emerg.code = s390int->parm;
break;
case KVM_S390_MCHK:
irq->u.mchk.mcic = s390int->parm64;
break;
case KVM_S390_INT_PFAULT_INIT:
irq->u.ext.ext_params = s390int->parm;
irq->u.ext.ext_params2 = s390int->parm64;
break;
case KVM_S390_RESTART:
case KVM_S390_INT_CLOCK_COMP:
case KVM_S390_INT_CPU_TIMER:
break;
default:
return -EINVAL;
}
return 0;
}
int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
}
int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
return test_bit(IRQ_PEND_RESTART, &li->pending_irqs);
}
void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
spin_lock(&li->lock);
li->irq.stop.flags = 0;
clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
spin_unlock(&li->lock);
}
static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
int rc;
switch (irq->type) {
case KVM_S390_PROGRAM_INT:
rc = __inject_prog(vcpu, irq);
break;
case KVM_S390_SIGP_SET_PREFIX:
rc = __inject_set_prefix(vcpu, irq);
break;
case KVM_S390_SIGP_STOP:
rc = __inject_sigp_stop(vcpu, irq);
break;
case KVM_S390_RESTART:
rc = __inject_sigp_restart(vcpu);
break;
case KVM_S390_INT_CLOCK_COMP:
rc = __inject_ckc(vcpu);
break;
case KVM_S390_INT_CPU_TIMER:
rc = __inject_cpu_timer(vcpu);
break;
case KVM_S390_INT_EXTERNAL_CALL:
rc = __inject_extcall(vcpu, irq);
break;
case KVM_S390_INT_EMERGENCY:
rc = __inject_sigp_emergency(vcpu, irq);
break;
case KVM_S390_MCHK:
rc = __inject_mchk(vcpu, irq);
break;
case KVM_S390_INT_PFAULT_INIT:
rc = __inject_pfault_init(vcpu, irq);
break;
case KVM_S390_INT_VIRTIO:
case KVM_S390_INT_SERVICE:
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
default:
rc = -EINVAL;
}
return rc;
}
int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
int rc;
spin_lock(&li->lock);
rc = do_inject_vcpu(vcpu, irq);
spin_unlock(&li->lock);
if (!rc)
kvm_s390_vcpu_wakeup(vcpu);
return rc;
}
static inline void clear_irq_list(struct list_head *_list)
{
struct kvm_s390_interrupt_info *inti, *n;
list_for_each_entry_safe(inti, n, _list, list) {
list_del(&inti->list);
kfree(inti);
}
}
static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
struct kvm_s390_irq *irq)
{
irq->type = inti->type;
switch (inti->type) {
case KVM_S390_INT_PFAULT_INIT:
case KVM_S390_INT_PFAULT_DONE:
case KVM_S390_INT_VIRTIO:
irq->u.ext = inti->ext;
break;
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
irq->u.io = inti->io;
break;
}
}
void kvm_s390_clear_float_irqs(struct kvm *kvm)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
int i;
mutex_lock(&kvm->lock);
if (!kvm_s390_pv_is_protected(kvm))
fi->masked_irqs = 0;
mutex_unlock(&kvm->lock);
spin_lock(&fi->lock);
fi->pending_irqs = 0;
memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
memset(&fi->mchk, 0, sizeof(fi->mchk));
for (i = 0; i < FIRQ_LIST_COUNT; i++)
clear_irq_list(&fi->lists[i]);
for (i = 0; i < FIRQ_MAX_COUNT; i++)
fi->counters[i] = 0;
spin_unlock(&fi->lock);
kvm_s390_gisa_clear(kvm);
};
static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
{
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
struct kvm_s390_interrupt_info *inti;
struct kvm_s390_float_interrupt *fi;
struct kvm_s390_irq *buf;
struct kvm_s390_irq *irq;
int max_irqs;
int ret = 0;
int n = 0;
int i;
if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
return -EINVAL;
/*
* We are already using -ENOMEM to signal
* userspace it may retry with a bigger buffer,
* so we need to use something else for this case
*/
buf = vzalloc(len);
if (!buf)
return -ENOBUFS;
max_irqs = len / sizeof(struct kvm_s390_irq);
if (gi->origin && gisa_get_ipm(gi->origin)) {
for (i = 0; i <= MAX_ISC; i++) {
if (n == max_irqs) {
/* signal userspace to try again */
ret = -ENOMEM;
goto out_nolock;
}
if (gisa_tac_ipm_gisc(gi->origin, i)) {
irq = (struct kvm_s390_irq *) &buf[n];
irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
irq->u.io.io_int_word = isc_to_int_word(i);
n++;
}
}
}
fi = &kvm->arch.float_int;
spin_lock(&fi->lock);
for (i = 0; i < FIRQ_LIST_COUNT; i++) {
list_for_each_entry(inti, &fi->lists[i], list) {
if (n == max_irqs) {
/* signal userspace to try again */
ret = -ENOMEM;
goto out;
}
inti_to_irq(inti, &buf[n]);
n++;
}
}
if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) ||
test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) {
if (n == max_irqs) {
/* signal userspace to try again */
ret = -ENOMEM;
goto out;
}
irq = (struct kvm_s390_irq *) &buf[n];
irq->type = KVM_S390_INT_SERVICE;
irq->u.ext = fi->srv_signal;
n++;
}
if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
if (n == max_irqs) {
/* signal userspace to try again */
ret = -ENOMEM;
goto out;
}
irq = (struct kvm_s390_irq *) &buf[n];
irq->type = KVM_S390_MCHK;
irq->u.mchk = fi->mchk;
n++;
}
out:
spin_unlock(&fi->lock);
out_nolock:
if (!ret && n > 0) {
if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
ret = -EFAULT;
}
vfree(buf);
return ret < 0 ? ret : n;
}
static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
struct kvm_s390_ais_all ais;
if (attr->attr < sizeof(ais))
return -EINVAL;
if (!test_kvm_facility(kvm, 72))
return -EOPNOTSUPP;
mutex_lock(&fi->ais_lock);
ais.simm = fi->simm;
ais.nimm = fi->nimm;
mutex_unlock(&fi->ais_lock);
if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
return -EFAULT;
return 0;
}
static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
int r;
switch (attr->group) {
case KVM_DEV_FLIC_GET_ALL_IRQS:
r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
attr->attr);
break;
case KVM_DEV_FLIC_AISM_ALL:
r = flic_ais_mode_get_all(dev->kvm, attr);
break;
default:
r = -EINVAL;
}
return r;
}
static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
u64 addr)
{
struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
void *target = NULL;
void __user *source;
u64 size;
if (get_user(inti->type, (u64 __user *)addr))
return -EFAULT;
switch (inti->type) {
case KVM_S390_INT_PFAULT_INIT:
case KVM_S390_INT_PFAULT_DONE:
case KVM_S390_INT_VIRTIO:
case KVM_S390_INT_SERVICE:
target = (void *) &inti->ext;
source = &uptr->u.ext;
size = sizeof(inti->ext);
break;
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
target = (void *) &inti->io;
source = &uptr->u.io;
size = sizeof(inti->io);
break;
case KVM_S390_MCHK:
target = (void *) &inti->mchk;
source = &uptr->u.mchk;
size = sizeof(inti->mchk);
break;
default:
return -EINVAL;
}
if (copy_from_user(target, source, size))
return -EFAULT;
return 0;
}
static int enqueue_floating_irq(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
struct kvm_s390_interrupt_info *inti = NULL;
int r = 0;
int len = attr->attr;
if (len % sizeof(struct kvm_s390_irq) != 0)
return -EINVAL;
else if (len > KVM_S390_FLIC_MAX_BUFFER)
return -EINVAL;
while (len >= sizeof(struct kvm_s390_irq)) {
inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
if (!inti)
return -ENOMEM;
r = copy_irq_from_user(inti, attr->addr);
if (r) {
kfree(inti);
return r;
}
r = __inject_vm(dev->kvm, inti);
if (r) {
kfree(inti);
return r;
}
len -= sizeof(struct kvm_s390_irq);
attr->addr += sizeof(struct kvm_s390_irq);
}
return r;
}
static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
{
if (id >= MAX_S390_IO_ADAPTERS)
return NULL;
id = array_index_nospec(id, MAX_S390_IO_ADAPTERS);
return kvm->arch.adapters[id];
}
static int register_io_adapter(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
struct s390_io_adapter *adapter;
struct kvm_s390_io_adapter adapter_info;
if (copy_from_user(&adapter_info,
(void __user *)attr->addr, sizeof(adapter_info)))
return -EFAULT;
if (adapter_info.id >= MAX_S390_IO_ADAPTERS)
return -EINVAL;
adapter_info.id = array_index_nospec(adapter_info.id,
MAX_S390_IO_ADAPTERS);
if (dev->kvm->arch.adapters[adapter_info.id] != NULL)
return -EINVAL;
adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT);
if (!adapter)
return -ENOMEM;
adapter->id = adapter_info.id;
adapter->isc = adapter_info.isc;
adapter->maskable = adapter_info.maskable;
adapter->masked = false;
adapter->swap = adapter_info.swap;
adapter->suppressible = (adapter_info.flags) &
KVM_S390_ADAPTER_SUPPRESSIBLE;
dev->kvm->arch.adapters[adapter->id] = adapter;
return 0;
}
int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
{
int ret;
struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
if (!adapter || !adapter->maskable)
return -EINVAL;
ret = adapter->masked;
adapter->masked = masked;
return ret;
}
void kvm_s390_destroy_adapters(struct kvm *kvm)
{
int i;
for (i = 0; i < MAX_S390_IO_ADAPTERS; i++)
kfree(kvm->arch.adapters[i]);
}
static int modify_io_adapter(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
struct kvm_s390_io_adapter_req req;
struct s390_io_adapter *adapter;
int ret;
if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
return -EFAULT;
adapter = get_io_adapter(dev->kvm, req.id);
if (!adapter)
return -EINVAL;
switch (req.type) {
case KVM_S390_IO_ADAPTER_MASK:
ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
if (ret > 0)
ret = 0;
break;
/*
* The following operations are no longer needed and therefore no-ops.
* The gpa to hva translation is done when an IRQ route is set up. The
* set_irq code uses get_user_pages_remote() to do the actual write.
*/
case KVM_S390_IO_ADAPTER_MAP:
case KVM_S390_IO_ADAPTER_UNMAP:
ret = 0;
break;
default:
ret = -EINVAL;
}
return ret;
}
static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
{
const u64 isc_mask = 0xffUL << 24; /* all iscs set */
u32 schid;
if (attr->flags)
return -EINVAL;
if (attr->attr != sizeof(schid))
return -EINVAL;
if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
return -EFAULT;
if (!schid)
return -EINVAL;
kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
/*
* If userspace is conforming to the architecture, we can have at most
* one pending I/O interrupt per subchannel, so this is effectively a
* clear all.
*/
return 0;
}
static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
struct kvm_s390_ais_req req;
int ret = 0;
if (!test_kvm_facility(kvm, 72))
return -EOPNOTSUPP;
if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
return -EFAULT;
if (req.isc > MAX_ISC)
return -EINVAL;
trace_kvm_s390_modify_ais_mode(req.isc,
(fi->simm & AIS_MODE_MASK(req.isc)) ?
(fi->nimm & AIS_MODE_MASK(req.isc)) ?
2 : KVM_S390_AIS_MODE_SINGLE :
KVM_S390_AIS_MODE_ALL, req.mode);
mutex_lock(&fi->ais_lock);
switch (req.mode) {
case KVM_S390_AIS_MODE_ALL:
fi->simm &= ~AIS_MODE_MASK(req.isc);
fi->nimm &= ~AIS_MODE_MASK(req.isc);
break;
case KVM_S390_AIS_MODE_SINGLE:
fi->simm |= AIS_MODE_MASK(req.isc);
fi->nimm &= ~AIS_MODE_MASK(req.isc);
break;
default:
ret = -EINVAL;
}
mutex_unlock(&fi->ais_lock);
return ret;
}
static int kvm_s390_inject_airq(struct kvm *kvm,
struct s390_io_adapter *adapter)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
struct kvm_s390_interrupt s390int = {
.type = KVM_S390_INT_IO(1, 0, 0, 0),
.parm = 0,
.parm64 = isc_to_int_word(adapter->isc),
};
int ret = 0;
if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
return kvm_s390_inject_vm(kvm, &s390int);
mutex_lock(&fi->ais_lock);
if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
goto out;
}
ret = kvm_s390_inject_vm(kvm, &s390int);
if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
fi->nimm |= AIS_MODE_MASK(adapter->isc);
trace_kvm_s390_modify_ais_mode(adapter->isc,
KVM_S390_AIS_MODE_SINGLE, 2);
}
out:
mutex_unlock(&fi->ais_lock);
return ret;
}
static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
{
unsigned int id = attr->attr;
struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
if (!adapter)
return -EINVAL;
return kvm_s390_inject_airq(kvm, adapter);
}
static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
struct kvm_s390_ais_all ais;
if (!test_kvm_facility(kvm, 72))
return -EOPNOTSUPP;
if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
return -EFAULT;
mutex_lock(&fi->ais_lock);
fi->simm = ais.simm;
fi->nimm = ais.nimm;
mutex_unlock(&fi->ais_lock);
return 0;
}
static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
int r = 0;
unsigned long i;
struct kvm_vcpu *vcpu;
switch (attr->group) {
case KVM_DEV_FLIC_ENQUEUE:
r = enqueue_floating_irq(dev, attr);
break;
case KVM_DEV_FLIC_CLEAR_IRQS:
kvm_s390_clear_float_irqs(dev->kvm);
break;
case KVM_DEV_FLIC_APF_ENABLE:
dev->kvm->arch.gmap->pfault_enabled = 1;
break;
case KVM_DEV_FLIC_APF_DISABLE_WAIT:
dev->kvm->arch.gmap->pfault_enabled = 0;
/*
* Make sure no async faults are in transition when
* clearing the queues. So we don't need to worry
* about late coming workers.
*/
synchronize_srcu(&dev->kvm->srcu);
kvm_for_each_vcpu(i, vcpu, dev->kvm)
kvm_clear_async_pf_completion_queue(vcpu);
break;
case KVM_DEV_FLIC_ADAPTER_REGISTER:
r = register_io_adapter(dev, attr);
break;
case KVM_DEV_FLIC_ADAPTER_MODIFY:
r = modify_io_adapter(dev, attr);
break;
case KVM_DEV_FLIC_CLEAR_IO_IRQ:
r = clear_io_irq(dev->kvm, attr);
break;
case KVM_DEV_FLIC_AISM:
r = modify_ais_mode(dev->kvm, attr);
break;
case KVM_DEV_FLIC_AIRQ_INJECT:
r = flic_inject_airq(dev->kvm, attr);
break;
case KVM_DEV_FLIC_AISM_ALL:
r = flic_ais_mode_set_all(dev->kvm, attr);
break;
default:
r = -EINVAL;
}
return r;
}
static int flic_has_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
switch (attr->group) {
case KVM_DEV_FLIC_GET_ALL_IRQS:
case KVM_DEV_FLIC_ENQUEUE:
case KVM_DEV_FLIC_CLEAR_IRQS:
case KVM_DEV_FLIC_APF_ENABLE:
case KVM_DEV_FLIC_APF_DISABLE_WAIT:
case KVM_DEV_FLIC_ADAPTER_REGISTER:
case KVM_DEV_FLIC_ADAPTER_MODIFY:
case KVM_DEV_FLIC_CLEAR_IO_IRQ:
case KVM_DEV_FLIC_AISM:
case KVM_DEV_FLIC_AIRQ_INJECT:
case KVM_DEV_FLIC_AISM_ALL:
return 0;
}
return -ENXIO;
}
static int flic_create(struct kvm_device *dev, u32 type)
{
if (!dev)
return -EINVAL;
if (dev->kvm->arch.flic)
return -EINVAL;
dev->kvm->arch.flic = dev;
return 0;
}
static void flic_destroy(struct kvm_device *dev)
{
dev->kvm->arch.flic = NULL;
kfree(dev);
}
/* s390 floating irq controller (flic) */
struct kvm_device_ops kvm_flic_ops = {
.name = "kvm-flic",
.get_attr = flic_get_attr,
.set_attr = flic_set_attr,
.has_attr = flic_has_attr,
.create = flic_create,
.destroy = flic_destroy,
};
static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
{
unsigned long bit;
bit = bit_nr + (addr % PAGE_SIZE) * 8;
return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
}
static struct page *get_map_page(struct kvm *kvm, u64 uaddr)
{
struct page *page = NULL;
mmap_read_lock(kvm->mm);
get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE,
&page, NULL, NULL);
mmap_read_unlock(kvm->mm);
return page;
}
static int adapter_indicators_set(struct kvm *kvm,
struct s390_io_adapter *adapter,
struct kvm_s390_adapter_int *adapter_int)
{
unsigned long bit;
int summary_set, idx;
struct page *ind_page, *summary_page;
void *map;
ind_page = get_map_page(kvm, adapter_int->ind_addr);
if (!ind_page)
return -1;
summary_page = get_map_page(kvm, adapter_int->summary_addr);
if (!summary_page) {
put_page(ind_page);
return -1;
}
idx = srcu_read_lock(&kvm->srcu);
map = page_address(ind_page);
bit = get_ind_bit(adapter_int->ind_addr,
adapter_int->ind_offset, adapter->swap);
set_bit(bit, map);
mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT);
set_page_dirty_lock(ind_page);
map = page_address(summary_page);
bit = get_ind_bit(adapter_int->summary_addr,
adapter_int->summary_offset, adapter->swap);
summary_set = test_and_set_bit(bit, map);
mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT);
set_page_dirty_lock(summary_page);
srcu_read_unlock(&kvm->srcu, idx);
put_page(ind_page);
put_page(summary_page);
return summary_set ? 0 : 1;
}
/*
* < 0 - not injected due to error
* = 0 - coalesced, summary indicator already active
* > 0 - injected interrupt
*/
static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id, int level,
bool line_status)
{
int ret;
struct s390_io_adapter *adapter;
/* We're only interested in the 0->1 transition. */
if (!level)
return 0;
adapter = get_io_adapter(kvm, e->adapter.adapter_id);
if (!adapter)
return -1;
ret = adapter_indicators_set(kvm, adapter, &e->adapter);
if ((ret > 0) && !adapter->masked) {
ret = kvm_s390_inject_airq(kvm, adapter);
if (ret == 0)
ret = 1;
}
return ret;
}
/*
* Inject the machine check to the guest.
*/
void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
struct mcck_volatile_info *mcck_info)
{
struct kvm_s390_interrupt_info inti;
struct kvm_s390_irq irq;
struct kvm_s390_mchk_info *mchk;
union mci mci;
__u64 cr14 = 0; /* upper bits are not used */
int rc;
mci.val = mcck_info->mcic;
if (mci.sr)
cr14 |= CR14_RECOVERY_SUBMASK;
if (mci.dg)
cr14 |= CR14_DEGRADATION_SUBMASK;
if (mci.w)
cr14 |= CR14_WARNING_SUBMASK;
mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
mchk->cr14 = cr14;
mchk->mcic = mcck_info->mcic;
mchk->ext_damage_code = mcck_info->ext_damage_code;
mchk->failing_storage_address = mcck_info->failing_storage_address;
if (mci.ck) {
/* Inject the floating machine check */
inti.type = KVM_S390_MCHK;
rc = __inject_vm(vcpu->kvm, &inti);
} else {
/* Inject the machine check to specified vcpu */
irq.type = KVM_S390_MCHK;
rc = kvm_s390_inject_vcpu(vcpu, &irq);
}
WARN_ON_ONCE(rc);
}
int kvm_set_routing_entry(struct kvm *kvm,
struct kvm_kernel_irq_routing_entry *e,
const struct kvm_irq_routing_entry *ue)
{
u64 uaddr;
switch (ue->type) {
/* we store the userspace addresses instead of the guest addresses */
case KVM_IRQ_ROUTING_S390_ADAPTER:
e->set = set_adapter_int;
uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.summary_addr);
if (uaddr == -EFAULT)
return -EFAULT;
e->adapter.summary_addr = uaddr;
uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.ind_addr);
if (uaddr == -EFAULT)
return -EFAULT;
e->adapter.ind_addr = uaddr;
e->adapter.summary_offset = ue->u.adapter.summary_offset;
e->adapter.ind_offset = ue->u.adapter.ind_offset;
e->adapter.adapter_id = ue->u.adapter.adapter_id;
return 0;
default:
return -EINVAL;
}
}
int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
int irq_source_id, int level, bool line_status)
{
return -EINVAL;
}
int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_irq *buf;
int r = 0;
int n;
buf = vmalloc(len);
if (!buf)
return -ENOMEM;
if (copy_from_user((void *) buf, irqstate, len)) {
r = -EFAULT;
goto out_free;
}
/*
* Don't allow setting the interrupt state
* when there are already interrupts pending
*/
spin_lock(&li->lock);
if (li->pending_irqs) {
r = -EBUSY;
goto out_unlock;
}
for (n = 0; n < len / sizeof(*buf); n++) {
r = do_inject_vcpu(vcpu, &buf[n]);
if (r)
break;
}
out_unlock:
spin_unlock(&li->lock);
out_free:
vfree(buf);
return r;
}
static void store_local_irq(struct kvm_s390_local_interrupt *li,
struct kvm_s390_irq *irq,
unsigned long irq_type)
{
switch (irq_type) {
case IRQ_PEND_MCHK_EX:
case IRQ_PEND_MCHK_REP:
irq->type = KVM_S390_MCHK;
irq->u.mchk = li->irq.mchk;
break;
case IRQ_PEND_PROG:
irq->type = KVM_S390_PROGRAM_INT;
irq->u.pgm = li->irq.pgm;
break;
case IRQ_PEND_PFAULT_INIT:
irq->type = KVM_S390_INT_PFAULT_INIT;
irq->u.ext = li->irq.ext;
break;
case IRQ_PEND_EXT_EXTERNAL:
irq->type = KVM_S390_INT_EXTERNAL_CALL;
irq->u.extcall = li->irq.extcall;
break;
case IRQ_PEND_EXT_CLOCK_COMP:
irq->type = KVM_S390_INT_CLOCK_COMP;
break;
case IRQ_PEND_EXT_CPU_TIMER:
irq->type = KVM_S390_INT_CPU_TIMER;
break;
case IRQ_PEND_SIGP_STOP:
irq->type = KVM_S390_SIGP_STOP;
irq->u.stop = li->irq.stop;
break;
case IRQ_PEND_RESTART:
irq->type = KVM_S390_RESTART;
break;
case IRQ_PEND_SET_PREFIX:
irq->type = KVM_S390_SIGP_SET_PREFIX;
irq->u.prefix = li->irq.prefix;
break;
}
}
int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
{
int scn;
DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS);
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
unsigned long pending_irqs;
struct kvm_s390_irq irq;
unsigned long irq_type;
int cpuaddr;
int n = 0;
spin_lock(&li->lock);
pending_irqs = li->pending_irqs;
memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
sizeof(sigp_emerg_pending));
spin_unlock(&li->lock);
for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
memset(&irq, 0, sizeof(irq));
if (irq_type == IRQ_PEND_EXT_EMERGENCY)
continue;
if (n + sizeof(irq) > len)
return -ENOBUFS;
store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
if (copy_to_user(&buf[n], &irq, sizeof(irq)))
return -EFAULT;
n += sizeof(irq);
}
if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
memset(&irq, 0, sizeof(irq));
if (n + sizeof(irq) > len)
return -ENOBUFS;
irq.type = KVM_S390_INT_EMERGENCY;
irq.u.emerg.code = cpuaddr;
if (copy_to_user(&buf[n], &irq, sizeof(irq)))
return -EFAULT;
n += sizeof(irq);
}
}
if (sca_ext_call_pending(vcpu, &scn)) {
if (n + sizeof(irq) > len)
return -ENOBUFS;
memset(&irq, 0, sizeof(irq));
irq.type = KVM_S390_INT_EXTERNAL_CALL;
irq.u.extcall.code = scn;
if (copy_to_user(&buf[n], &irq, sizeof(irq)))
return -EFAULT;
n += sizeof(irq);
}
return n;
}
static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask)
{
int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus);
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
struct kvm_vcpu *vcpu;
u8 vcpu_isc_mask;
for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) {
vcpu = kvm_get_vcpu(kvm, vcpu_idx);
if (psw_ioint_disabled(vcpu))
continue;
vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
if (deliverable_mask & vcpu_isc_mask) {
/* lately kicked but not yet running */
if (test_and_set_bit(vcpu_idx, gi->kicked_mask))
return;
kvm_s390_vcpu_wakeup(vcpu);
return;
}
}
}
static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer)
{
struct kvm_s390_gisa_interrupt *gi =
container_of(timer, struct kvm_s390_gisa_interrupt, timer);
struct kvm *kvm =
container_of(gi->origin, struct sie_page2, gisa)->kvm;
u8 pending_mask;
pending_mask = gisa_get_ipm_or_restore_iam(gi);
if (pending_mask) {
__airqs_kick_single_vcpu(kvm, pending_mask);
hrtimer_forward_now(timer, ns_to_ktime(gi->expires));
return HRTIMER_RESTART;
}
return HRTIMER_NORESTART;
}
#define NULL_GISA_ADDR 0x00000000UL
#define NONE_GISA_ADDR 0x00000001UL
#define GISA_ADDR_MASK 0xfffff000UL
static void process_gib_alert_list(void)
{
struct kvm_s390_gisa_interrupt *gi;
struct kvm_s390_gisa *gisa;
struct kvm *kvm;
u32 final, origin = 0UL;
do {
/*
* If the NONE_GISA_ADDR is still stored in the alert list
* origin, we will leave the outer loop. No further GISA has
* been added to the alert list by millicode while processing
* the current alert list.
*/
final = (origin & NONE_GISA_ADDR);
/*
* Cut off the alert list and store the NONE_GISA_ADDR in the
* alert list origin to avoid further GAL interruptions.
* A new alert list can be build up by millicode in parallel
* for guests not in the yet cut-off alert list. When in the
* final loop, store the NULL_GISA_ADDR instead. This will re-
* enable GAL interruptions on the host again.
*/
origin = xchg(&gib->alert_list_origin,
(!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
/*
* Loop through the just cut-off alert list and start the
* gisa timers to kick idle vcpus to consume the pending
* interruptions asap.
*/
while (origin & GISA_ADDR_MASK) {
gisa = (struct kvm_s390_gisa *)(u64)origin;
origin = gisa->next_alert;
gisa->next_alert = (u32)(u64)gisa;
kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
gi = &kvm->arch.gisa_int;
if (hrtimer_active(&gi->timer))
hrtimer_cancel(&gi->timer);
hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
}
} while (!final);
}
void kvm_s390_gisa_clear(struct kvm *kvm)
{
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
if (!gi->origin)
return;
gisa_clear_ipm(gi->origin);
VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin);
}
void kvm_s390_gisa_init(struct kvm *kvm)
{
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
if (!css_general_characteristics.aiv)
return;
gi->origin = &kvm->arch.sie_page2->gisa;
gi->alert.mask = 0;
spin_lock_init(&gi->alert.ref_lock);
gi->expires = 50 * 1000; /* 50 usec */
hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
gi->timer.function = gisa_vcpu_kicker;
memset(gi->origin, 0, sizeof(struct kvm_s390_gisa));
gi->origin->next_alert = (u32)(u64)gi->origin;
VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin);
}
void kvm_s390_gisa_destroy(struct kvm *kvm)
{
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
if (!gi->origin)
return;
if (gi->alert.mask)
KVM_EVENT(3, "vm 0x%pK has unexpected iam 0x%02x",
kvm, gi->alert.mask);
while (gisa_in_alert_list(gi->origin))
cpu_relax();
hrtimer_cancel(&gi->timer);
gi->origin = NULL;
}
/**
* kvm_s390_gisc_register - register a guest ISC
*
* @kvm: the kernel vm to work with
* @gisc: the guest interruption sub class to register
*
* The function extends the vm specific alert mask to use.
* The effective IAM mask in the GISA is updated as well
* in case the GISA is not part of the GIB alert list.
* It will be updated latest when the IAM gets restored
* by gisa_get_ipm_or_restore_iam().
*
* Returns: the nonspecific ISC (NISC) the gib alert mechanism
* has registered with the channel subsystem.
* -ENODEV in case the vm uses no GISA
* -ERANGE in case the guest ISC is invalid
*/
int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc)
{
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
if (!gi->origin)
return -ENODEV;
if (gisc > MAX_ISC)
return -ERANGE;
spin_lock(&gi->alert.ref_lock);
gi->alert.ref_count[gisc]++;
if (gi->alert.ref_count[gisc] == 1) {
gi->alert.mask |= 0x80 >> gisc;
gisa_set_iam(gi->origin, gi->alert.mask);
}
spin_unlock(&gi->alert.ref_lock);
return gib->nisc;
}
EXPORT_SYMBOL_GPL(kvm_s390_gisc_register);
/**
* kvm_s390_gisc_unregister - unregister a guest ISC
*
* @kvm: the kernel vm to work with
* @gisc: the guest interruption sub class to register
*
* The function reduces the vm specific alert mask to use.
* The effective IAM mask in the GISA is updated as well
* in case the GISA is not part of the GIB alert list.
* It will be updated latest when the IAM gets restored
* by gisa_get_ipm_or_restore_iam().
*
* Returns: the nonspecific ISC (NISC) the gib alert mechanism
* has registered with the channel subsystem.
* -ENODEV in case the vm uses no GISA
* -ERANGE in case the guest ISC is invalid
* -EINVAL in case the guest ISC is not registered
*/
int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc)
{
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
int rc = 0;
if (!gi->origin)
return -ENODEV;
if (gisc > MAX_ISC)
return -ERANGE;
spin_lock(&gi->alert.ref_lock);
if (gi->alert.ref_count[gisc] == 0) {
rc = -EINVAL;
goto out;
}
gi->alert.ref_count[gisc]--;
if (gi->alert.ref_count[gisc] == 0) {
gi->alert.mask &= ~(0x80 >> gisc);
gisa_set_iam(gi->origin, gi->alert.mask);
}
out:
spin_unlock(&gi->alert.ref_lock);
return rc;
}
EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister);
static void gib_alert_irq_handler(struct airq_struct *airq, bool floating)
{
inc_irq_stat(IRQIO_GAL);
process_gib_alert_list();
}
static struct airq_struct gib_alert_irq = {
.handler = gib_alert_irq_handler,
.lsi_ptr = &gib_alert_irq.lsi_mask,
};
void kvm_s390_gib_destroy(void)
{
if (!gib)
return;
chsc_sgib(0);
unregister_adapter_interrupt(&gib_alert_irq);
free_page((unsigned long)gib);
gib = NULL;
}
int kvm_s390_gib_init(u8 nisc)
{
int rc = 0;
if (!css_general_characteristics.aiv) {
KVM_EVENT(3, "%s", "gib not initialized, no AIV facility");
goto out;
}
gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
if (!gib) {
rc = -ENOMEM;
goto out;
}
gib_alert_irq.isc = nisc;
if (register_adapter_interrupt(&gib_alert_irq)) {
pr_err("Registering the GIB alert interruption handler failed\n");
rc = -EIO;
goto out_free_gib;
}
gib->nisc = nisc;
if (chsc_sgib((u32)(u64)gib)) {
pr_err("Associating the GIB with the AIV facility failed\n");
free_page((unsigned long)gib);
gib = NULL;
rc = -EIO;
goto out_unreg_gal;
}
KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc);
goto out;
out_unreg_gal:
unregister_adapter_interrupt(&gib_alert_irq);
out_free_gib:
free_page((unsigned long)gib);
gib = NULL;
out:
return rc;
}