linux/drivers/media/dvb/frontends/zl10353.c
lawrence rust 2e4e98e788 V4L/DVB: drivers/media: Make static data tables and strings const
Making static data const avoids allocation of additional r/w memory and
reduces initialisation time.  It also provides some additional opportunities
for compiler optimisations.

Signed-off-by: Lawrence Rust <lvr@softsystem.co.uk>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2010-10-21 01:04:52 -02:00

700 lines
16 KiB
C

/*
* Driver for Zarlink DVB-T ZL10353 demodulator
*
* Copyright (C) 2006, 2007 Christopher Pascoe <c.pascoe@itee.uq.edu.au>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <asm/div64.h>
#include "dvb_frontend.h"
#include "zl10353_priv.h"
#include "zl10353.h"
struct zl10353_state {
struct i2c_adapter *i2c;
struct dvb_frontend frontend;
struct zl10353_config config;
enum fe_bandwidth bandwidth;
u32 ucblocks;
u32 frequency;
};
static int debug;
#define dprintk(args...) \
do { \
if (debug) printk(KERN_DEBUG "zl10353: " args); \
} while (0)
static int debug_regs;
static int zl10353_single_write(struct dvb_frontend *fe, u8 reg, u8 val)
{
struct zl10353_state *state = fe->demodulator_priv;
u8 buf[2] = { reg, val };
struct i2c_msg msg = { .addr = state->config.demod_address, .flags = 0,
.buf = buf, .len = 2 };
int err = i2c_transfer(state->i2c, &msg, 1);
if (err != 1) {
printk("zl10353: write to reg %x failed (err = %d)!\n", reg, err);
return err;
}
return 0;
}
static int zl10353_write(struct dvb_frontend *fe, const u8 ibuf[], int ilen)
{
int err, i;
for (i = 0; i < ilen - 1; i++)
if ((err = zl10353_single_write(fe, ibuf[0] + i, ibuf[i + 1])))
return err;
return 0;
}
static int zl10353_read_register(struct zl10353_state *state, u8 reg)
{
int ret;
u8 b0[1] = { reg };
u8 b1[1] = { 0 };
struct i2c_msg msg[2] = { { .addr = state->config.demod_address,
.flags = 0,
.buf = b0, .len = 1 },
{ .addr = state->config.demod_address,
.flags = I2C_M_RD,
.buf = b1, .len = 1 } };
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2) {
printk("%s: readreg error (reg=%d, ret==%i)\n",
__func__, reg, ret);
return ret;
}
return b1[0];
}
static void zl10353_dump_regs(struct dvb_frontend *fe)
{
struct zl10353_state *state = fe->demodulator_priv;
int ret;
u8 reg;
/* Dump all registers. */
for (reg = 0; ; reg++) {
if (reg % 16 == 0) {
if (reg)
printk(KERN_CONT "\n");
printk(KERN_DEBUG "%02x:", reg);
}
ret = zl10353_read_register(state, reg);
if (ret >= 0)
printk(KERN_CONT " %02x", (u8)ret);
else
printk(KERN_CONT " --");
if (reg == 0xff)
break;
}
printk(KERN_CONT "\n");
}
static void zl10353_calc_nominal_rate(struct dvb_frontend *fe,
enum fe_bandwidth bandwidth,
u16 *nominal_rate)
{
struct zl10353_state *state = fe->demodulator_priv;
u32 adc_clock = 450560; /* 45.056 MHz */
u64 value;
u8 bw;
if (state->config.adc_clock)
adc_clock = state->config.adc_clock;
switch (bandwidth) {
case BANDWIDTH_6_MHZ:
bw = 6;
break;
case BANDWIDTH_7_MHZ:
bw = 7;
break;
case BANDWIDTH_8_MHZ:
default:
bw = 8;
break;
}
value = (u64)10 * (1 << 23) / 7 * 125;
value = (bw * value) + adc_clock / 2;
do_div(value, adc_clock);
*nominal_rate = value;
dprintk("%s: bw %d, adc_clock %d => 0x%x\n",
__func__, bw, adc_clock, *nominal_rate);
}
static void zl10353_calc_input_freq(struct dvb_frontend *fe,
u16 *input_freq)
{
struct zl10353_state *state = fe->demodulator_priv;
u32 adc_clock = 450560; /* 45.056 MHz */
int if2 = 361667; /* 36.1667 MHz */
int ife;
u64 value;
if (state->config.adc_clock)
adc_clock = state->config.adc_clock;
if (state->config.if2)
if2 = state->config.if2;
if (adc_clock >= if2 * 2)
ife = if2;
else {
ife = adc_clock - (if2 % adc_clock);
if (ife > adc_clock / 2)
ife = adc_clock - ife;
}
value = (u64)65536 * ife + adc_clock / 2;
do_div(value, adc_clock);
*input_freq = -value;
dprintk("%s: if2 %d, ife %d, adc_clock %d => %d / 0x%x\n",
__func__, if2, ife, adc_clock, -(int)value, *input_freq);
}
static int zl10353_sleep(struct dvb_frontend *fe)
{
static u8 zl10353_softdown[] = { 0x50, 0x0C, 0x44 };
zl10353_write(fe, zl10353_softdown, sizeof(zl10353_softdown));
return 0;
}
static int zl10353_set_parameters(struct dvb_frontend *fe,
struct dvb_frontend_parameters *param)
{
struct zl10353_state *state = fe->demodulator_priv;
u16 nominal_rate, input_freq;
u8 pllbuf[6] = { 0x67 }, acq_ctl = 0;
u16 tps = 0;
struct dvb_ofdm_parameters *op = &param->u.ofdm;
state->frequency = param->frequency;
zl10353_single_write(fe, RESET, 0x80);
udelay(200);
zl10353_single_write(fe, 0xEA, 0x01);
udelay(200);
zl10353_single_write(fe, 0xEA, 0x00);
zl10353_single_write(fe, AGC_TARGET, 0x28);
if (op->transmission_mode != TRANSMISSION_MODE_AUTO)
acq_ctl |= (1 << 0);
if (op->guard_interval != GUARD_INTERVAL_AUTO)
acq_ctl |= (1 << 1);
zl10353_single_write(fe, ACQ_CTL, acq_ctl);
switch (op->bandwidth) {
case BANDWIDTH_6_MHZ:
/* These are extrapolated from the 7 and 8MHz values */
zl10353_single_write(fe, MCLK_RATIO, 0x97);
zl10353_single_write(fe, 0x64, 0x34);
zl10353_single_write(fe, 0xcc, 0xdd);
break;
case BANDWIDTH_7_MHZ:
zl10353_single_write(fe, MCLK_RATIO, 0x86);
zl10353_single_write(fe, 0x64, 0x35);
zl10353_single_write(fe, 0xcc, 0x73);
break;
case BANDWIDTH_8_MHZ:
default:
zl10353_single_write(fe, MCLK_RATIO, 0x75);
zl10353_single_write(fe, 0x64, 0x36);
zl10353_single_write(fe, 0xcc, 0x73);
}
zl10353_calc_nominal_rate(fe, op->bandwidth, &nominal_rate);
zl10353_single_write(fe, TRL_NOMINAL_RATE_1, msb(nominal_rate));
zl10353_single_write(fe, TRL_NOMINAL_RATE_0, lsb(nominal_rate));
state->bandwidth = op->bandwidth;
zl10353_calc_input_freq(fe, &input_freq);
zl10353_single_write(fe, INPUT_FREQ_1, msb(input_freq));
zl10353_single_write(fe, INPUT_FREQ_0, lsb(input_freq));
/* Hint at TPS settings */
switch (op->code_rate_HP) {
case FEC_2_3:
tps |= (1 << 7);
break;
case FEC_3_4:
tps |= (2 << 7);
break;
case FEC_5_6:
tps |= (3 << 7);
break;
case FEC_7_8:
tps |= (4 << 7);
break;
case FEC_1_2:
case FEC_AUTO:
break;
default:
return -EINVAL;
}
switch (op->code_rate_LP) {
case FEC_2_3:
tps |= (1 << 4);
break;
case FEC_3_4:
tps |= (2 << 4);
break;
case FEC_5_6:
tps |= (3 << 4);
break;
case FEC_7_8:
tps |= (4 << 4);
break;
case FEC_1_2:
case FEC_AUTO:
break;
case FEC_NONE:
if (op->hierarchy_information == HIERARCHY_AUTO ||
op->hierarchy_information == HIERARCHY_NONE)
break;
default:
return -EINVAL;
}
switch (op->constellation) {
case QPSK:
break;
case QAM_AUTO:
case QAM_16:
tps |= (1 << 13);
break;
case QAM_64:
tps |= (2 << 13);
break;
default:
return -EINVAL;
}
switch (op->transmission_mode) {
case TRANSMISSION_MODE_2K:
case TRANSMISSION_MODE_AUTO:
break;
case TRANSMISSION_MODE_8K:
tps |= (1 << 0);
break;
default:
return -EINVAL;
}
switch (op->guard_interval) {
case GUARD_INTERVAL_1_32:
case GUARD_INTERVAL_AUTO:
break;
case GUARD_INTERVAL_1_16:
tps |= (1 << 2);
break;
case GUARD_INTERVAL_1_8:
tps |= (2 << 2);
break;
case GUARD_INTERVAL_1_4:
tps |= (3 << 2);
break;
default:
return -EINVAL;
}
switch (op->hierarchy_information) {
case HIERARCHY_AUTO:
case HIERARCHY_NONE:
break;
case HIERARCHY_1:
tps |= (1 << 10);
break;
case HIERARCHY_2:
tps |= (2 << 10);
break;
case HIERARCHY_4:
tps |= (3 << 10);
break;
default:
return -EINVAL;
}
zl10353_single_write(fe, TPS_GIVEN_1, msb(tps));
zl10353_single_write(fe, TPS_GIVEN_0, lsb(tps));
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
/*
* If there is no tuner attached to the secondary I2C bus, we call
* set_params to program a potential tuner attached somewhere else.
* Otherwise, we update the PLL registers via calc_regs.
*/
if (state->config.no_tuner) {
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe, param);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
} else if (fe->ops.tuner_ops.calc_regs) {
fe->ops.tuner_ops.calc_regs(fe, param, pllbuf + 1, 5);
pllbuf[1] <<= 1;
zl10353_write(fe, pllbuf, sizeof(pllbuf));
}
zl10353_single_write(fe, 0x5F, 0x13);
/* If no attached tuner or invalid PLL registers, just start the FSM. */
if (state->config.no_tuner || fe->ops.tuner_ops.calc_regs == NULL)
zl10353_single_write(fe, FSM_GO, 0x01);
else
zl10353_single_write(fe, TUNER_GO, 0x01);
return 0;
}
static int zl10353_get_parameters(struct dvb_frontend *fe,
struct dvb_frontend_parameters *param)
{
struct zl10353_state *state = fe->demodulator_priv;
struct dvb_ofdm_parameters *op = &param->u.ofdm;
int s6, s9;
u16 tps;
static const u8 tps_fec_to_api[8] = {
FEC_1_2,
FEC_2_3,
FEC_3_4,
FEC_5_6,
FEC_7_8,
FEC_AUTO,
FEC_AUTO,
FEC_AUTO
};
s6 = zl10353_read_register(state, STATUS_6);
s9 = zl10353_read_register(state, STATUS_9);
if (s6 < 0 || s9 < 0)
return -EREMOTEIO;
if ((s6 & (1 << 5)) == 0 || (s9 & (1 << 4)) == 0)
return -EINVAL; /* no FE or TPS lock */
tps = zl10353_read_register(state, TPS_RECEIVED_1) << 8 |
zl10353_read_register(state, TPS_RECEIVED_0);
op->code_rate_HP = tps_fec_to_api[(tps >> 7) & 7];
op->code_rate_LP = tps_fec_to_api[(tps >> 4) & 7];
switch ((tps >> 13) & 3) {
case 0:
op->constellation = QPSK;
break;
case 1:
op->constellation = QAM_16;
break;
case 2:
op->constellation = QAM_64;
break;
default:
op->constellation = QAM_AUTO;
break;
}
op->transmission_mode = (tps & 0x01) ? TRANSMISSION_MODE_8K :
TRANSMISSION_MODE_2K;
switch ((tps >> 2) & 3) {
case 0:
op->guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
op->guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
op->guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
op->guard_interval = GUARD_INTERVAL_1_4;
break;
default:
op->guard_interval = GUARD_INTERVAL_AUTO;
break;
}
switch ((tps >> 10) & 7) {
case 0:
op->hierarchy_information = HIERARCHY_NONE;
break;
case 1:
op->hierarchy_information = HIERARCHY_1;
break;
case 2:
op->hierarchy_information = HIERARCHY_2;
break;
case 3:
op->hierarchy_information = HIERARCHY_4;
break;
default:
op->hierarchy_information = HIERARCHY_AUTO;
break;
}
param->frequency = state->frequency;
op->bandwidth = state->bandwidth;
param->inversion = INVERSION_AUTO;
return 0;
}
static int zl10353_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
struct zl10353_state *state = fe->demodulator_priv;
int s6, s7, s8;
if ((s6 = zl10353_read_register(state, STATUS_6)) < 0)
return -EREMOTEIO;
if ((s7 = zl10353_read_register(state, STATUS_7)) < 0)
return -EREMOTEIO;
if ((s8 = zl10353_read_register(state, STATUS_8)) < 0)
return -EREMOTEIO;
*status = 0;
if (s6 & (1 << 2))
*status |= FE_HAS_CARRIER;
if (s6 & (1 << 1))
*status |= FE_HAS_VITERBI;
if (s6 & (1 << 5))
*status |= FE_HAS_LOCK;
if (s7 & (1 << 4))
*status |= FE_HAS_SYNC;
if (s8 & (1 << 6))
*status |= FE_HAS_SIGNAL;
if ((*status & (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) !=
(FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC))
*status &= ~FE_HAS_LOCK;
return 0;
}
static int zl10353_read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct zl10353_state *state = fe->demodulator_priv;
*ber = zl10353_read_register(state, RS_ERR_CNT_2) << 16 |
zl10353_read_register(state, RS_ERR_CNT_1) << 8 |
zl10353_read_register(state, RS_ERR_CNT_0);
return 0;
}
static int zl10353_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
struct zl10353_state *state = fe->demodulator_priv;
u16 signal = zl10353_read_register(state, AGC_GAIN_1) << 10 |
zl10353_read_register(state, AGC_GAIN_0) << 2 | 3;
*strength = ~signal;
return 0;
}
static int zl10353_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct zl10353_state *state = fe->demodulator_priv;
u8 _snr;
if (debug_regs)
zl10353_dump_regs(fe);
_snr = zl10353_read_register(state, SNR);
*snr = (_snr << 8) | _snr;
return 0;
}
static int zl10353_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
struct zl10353_state *state = fe->demodulator_priv;
u32 ubl = 0;
ubl = zl10353_read_register(state, RS_UBC_1) << 8 |
zl10353_read_register(state, RS_UBC_0);
state->ucblocks += ubl;
*ucblocks = state->ucblocks;
return 0;
}
static int zl10353_get_tune_settings(struct dvb_frontend *fe,
struct dvb_frontend_tune_settings
*fe_tune_settings)
{
fe_tune_settings->min_delay_ms = 1000;
fe_tune_settings->step_size = 0;
fe_tune_settings->max_drift = 0;
return 0;
}
static int zl10353_init(struct dvb_frontend *fe)
{
struct zl10353_state *state = fe->demodulator_priv;
u8 zl10353_reset_attach[6] = { 0x50, 0x03, 0x64, 0x46, 0x15, 0x0F };
int rc = 0;
if (debug_regs)
zl10353_dump_regs(fe);
if (state->config.parallel_ts)
zl10353_reset_attach[2] &= ~0x20;
if (state->config.clock_ctl_1)
zl10353_reset_attach[3] = state->config.clock_ctl_1;
if (state->config.pll_0)
zl10353_reset_attach[4] = state->config.pll_0;
/* Do a "hard" reset if not already done */
if (zl10353_read_register(state, 0x50) != zl10353_reset_attach[1] ||
zl10353_read_register(state, 0x51) != zl10353_reset_attach[2]) {
rc = zl10353_write(fe, zl10353_reset_attach,
sizeof(zl10353_reset_attach));
if (debug_regs)
zl10353_dump_regs(fe);
}
return 0;
}
static int zl10353_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
{
struct zl10353_state *state = fe->demodulator_priv;
u8 val = 0x0a;
if (state->config.disable_i2c_gate_ctrl) {
/* No tuner attached to the internal I2C bus */
/* If set enable I2C bridge, the main I2C bus stopped hardly */
return 0;
}
if (enable)
val |= 0x10;
return zl10353_single_write(fe, 0x62, val);
}
static void zl10353_release(struct dvb_frontend *fe)
{
struct zl10353_state *state = fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops zl10353_ops;
struct dvb_frontend *zl10353_attach(const struct zl10353_config *config,
struct i2c_adapter *i2c)
{
struct zl10353_state *state = NULL;
int id;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct zl10353_state), GFP_KERNEL);
if (state == NULL)
goto error;
/* setup the state */
state->i2c = i2c;
memcpy(&state->config, config, sizeof(struct zl10353_config));
/* check if the demod is there */
id = zl10353_read_register(state, CHIP_ID);
if ((id != ID_ZL10353) && (id != ID_CE6230) && (id != ID_CE6231))
goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &zl10353_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
return NULL;
}
static struct dvb_frontend_ops zl10353_ops = {
.info = {
.name = "Zarlink ZL10353 DVB-T",
.type = FE_OFDM,
.frequency_min = 174000000,
.frequency_max = 862000000,
.frequency_stepsize = 166667,
.frequency_tolerance = 0,
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER |
FE_CAN_MUTE_TS
},
.release = zl10353_release,
.init = zl10353_init,
.sleep = zl10353_sleep,
.i2c_gate_ctrl = zl10353_i2c_gate_ctrl,
.write = zl10353_write,
.set_frontend = zl10353_set_parameters,
.get_frontend = zl10353_get_parameters,
.get_tune_settings = zl10353_get_tune_settings,
.read_status = zl10353_read_status,
.read_ber = zl10353_read_ber,
.read_signal_strength = zl10353_read_signal_strength,
.read_snr = zl10353_read_snr,
.read_ucblocks = zl10353_read_ucblocks,
};
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
module_param(debug_regs, int, 0644);
MODULE_PARM_DESC(debug_regs, "Turn on/off frontend register dumps (default:off).");
MODULE_DESCRIPTION("Zarlink ZL10353 DVB-T demodulator driver");
MODULE_AUTHOR("Chris Pascoe");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(zl10353_attach);