mirror of
https://github.com/torvalds/linux.git
synced 2024-11-26 14:12:06 +00:00
41d8e7673a
Provide a flag whereby a filesystem may request that cifs_perform_write() perform write-through caching. This involves putting pages directly into writeback rather than dirty and attaching them to a write operation as we go. Further, the writes being made are limited to the byte range being written rather than whole folios being written. This can be used by cifs, for example, to deal with strict byte-range locking. This can't be used with content encryption as that may require expansion of the write RPC beyond the write being made. This doesn't affect writes via mmap - those are written back in the normal way; similarly failed writethrough writes are marked dirty and left to writeback to retry. Another option would be to simply invalidate them, but the contents can be simultaneously accessed by read() and through mmap. Signed-off-by: David Howells <dhowells@redhat.com> cc: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org cc: linux-mm@kvack.org
479 lines
14 KiB
C
479 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Network filesystem high-level write support.
|
|
*
|
|
* Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagevec.h>
|
|
#include "internal.h"
|
|
|
|
/**
|
|
* netfs_create_write_request - Create a write operation.
|
|
* @wreq: The write request this is storing from.
|
|
* @dest: The destination type
|
|
* @start: Start of the region this write will modify
|
|
* @len: Length of the modification
|
|
* @worker: The worker function to handle the write(s)
|
|
*
|
|
* Allocate a write operation, set it up and add it to the list on a write
|
|
* request.
|
|
*/
|
|
struct netfs_io_subrequest *netfs_create_write_request(struct netfs_io_request *wreq,
|
|
enum netfs_io_source dest,
|
|
loff_t start, size_t len,
|
|
work_func_t worker)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
|
|
subreq = netfs_alloc_subrequest(wreq);
|
|
if (subreq) {
|
|
INIT_WORK(&subreq->work, worker);
|
|
subreq->source = dest;
|
|
subreq->start = start;
|
|
subreq->len = len;
|
|
subreq->debug_index = wreq->subreq_counter++;
|
|
|
|
switch (subreq->source) {
|
|
case NETFS_UPLOAD_TO_SERVER:
|
|
netfs_stat(&netfs_n_wh_upload);
|
|
break;
|
|
case NETFS_WRITE_TO_CACHE:
|
|
netfs_stat(&netfs_n_wh_write);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
subreq->io_iter = wreq->io_iter;
|
|
iov_iter_advance(&subreq->io_iter, subreq->start - wreq->start);
|
|
iov_iter_truncate(&subreq->io_iter, subreq->len);
|
|
|
|
trace_netfs_sreq_ref(wreq->debug_id, subreq->debug_index,
|
|
refcount_read(&subreq->ref),
|
|
netfs_sreq_trace_new);
|
|
atomic_inc(&wreq->nr_outstanding);
|
|
list_add_tail(&subreq->rreq_link, &wreq->subrequests);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
|
|
}
|
|
|
|
return subreq;
|
|
}
|
|
EXPORT_SYMBOL(netfs_create_write_request);
|
|
|
|
/*
|
|
* Process a completed write request once all the component operations have
|
|
* been completed.
|
|
*/
|
|
static void netfs_write_terminated(struct netfs_io_request *wreq, bool was_async)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
struct netfs_inode *ctx = netfs_inode(wreq->inode);
|
|
size_t transferred = 0;
|
|
|
|
_enter("R=%x[]", wreq->debug_id);
|
|
|
|
trace_netfs_rreq(wreq, netfs_rreq_trace_write_done);
|
|
|
|
list_for_each_entry(subreq, &wreq->subrequests, rreq_link) {
|
|
if (subreq->error || subreq->transferred == 0)
|
|
break;
|
|
transferred += subreq->transferred;
|
|
if (subreq->transferred < subreq->len)
|
|
break;
|
|
}
|
|
wreq->transferred = transferred;
|
|
|
|
list_for_each_entry(subreq, &wreq->subrequests, rreq_link) {
|
|
if (!subreq->error)
|
|
continue;
|
|
switch (subreq->source) {
|
|
case NETFS_UPLOAD_TO_SERVER:
|
|
/* Depending on the type of failure, this may prevent
|
|
* writeback completion unless we're in disconnected
|
|
* mode.
|
|
*/
|
|
if (!wreq->error)
|
|
wreq->error = subreq->error;
|
|
break;
|
|
|
|
case NETFS_WRITE_TO_CACHE:
|
|
/* Failure doesn't prevent writeback completion unless
|
|
* we're in disconnected mode.
|
|
*/
|
|
if (subreq->error != -ENOBUFS)
|
|
ctx->ops->invalidate_cache(wreq);
|
|
break;
|
|
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
if (!wreq->error)
|
|
wreq->error = -EIO;
|
|
return;
|
|
}
|
|
}
|
|
|
|
wreq->cleanup(wreq);
|
|
|
|
if (wreq->origin == NETFS_DIO_WRITE &&
|
|
wreq->mapping->nrpages) {
|
|
pgoff_t first = wreq->start >> PAGE_SHIFT;
|
|
pgoff_t last = (wreq->start + wreq->transferred - 1) >> PAGE_SHIFT;
|
|
invalidate_inode_pages2_range(wreq->mapping, first, last);
|
|
}
|
|
|
|
if (wreq->origin == NETFS_DIO_WRITE)
|
|
inode_dio_end(wreq->inode);
|
|
|
|
_debug("finished");
|
|
trace_netfs_rreq(wreq, netfs_rreq_trace_wake_ip);
|
|
clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &wreq->flags);
|
|
wake_up_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS);
|
|
|
|
if (wreq->iocb) {
|
|
wreq->iocb->ki_pos += transferred;
|
|
if (wreq->iocb->ki_complete)
|
|
wreq->iocb->ki_complete(
|
|
wreq->iocb, wreq->error ? wreq->error : transferred);
|
|
}
|
|
|
|
netfs_clear_subrequests(wreq, was_async);
|
|
netfs_put_request(wreq, was_async, netfs_rreq_trace_put_complete);
|
|
}
|
|
|
|
/*
|
|
* Deal with the completion of writing the data to the cache.
|
|
*/
|
|
void netfs_write_subrequest_terminated(void *_op, ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_io_subrequest *subreq = _op;
|
|
struct netfs_io_request *wreq = subreq->rreq;
|
|
unsigned int u;
|
|
|
|
_enter("%x[%x] %zd", wreq->debug_id, subreq->debug_index, transferred_or_error);
|
|
|
|
switch (subreq->source) {
|
|
case NETFS_UPLOAD_TO_SERVER:
|
|
netfs_stat(&netfs_n_wh_upload_done);
|
|
break;
|
|
case NETFS_WRITE_TO_CACHE:
|
|
netfs_stat(&netfs_n_wh_write_done);
|
|
break;
|
|
case NETFS_INVALID_WRITE:
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (IS_ERR_VALUE(transferred_or_error)) {
|
|
subreq->error = transferred_or_error;
|
|
trace_netfs_failure(wreq, subreq, transferred_or_error,
|
|
netfs_fail_write);
|
|
goto failed;
|
|
}
|
|
|
|
if (WARN(transferred_or_error > subreq->len - subreq->transferred,
|
|
"Subreq excess write: R%x[%x] %zd > %zu - %zu",
|
|
wreq->debug_id, subreq->debug_index,
|
|
transferred_or_error, subreq->len, subreq->transferred))
|
|
transferred_or_error = subreq->len - subreq->transferred;
|
|
|
|
subreq->error = 0;
|
|
subreq->transferred += transferred_or_error;
|
|
|
|
if (iov_iter_count(&subreq->io_iter) != subreq->len - subreq->transferred)
|
|
pr_warn("R=%08x[%u] ITER POST-MISMATCH %zx != %zx-%zx %x\n",
|
|
wreq->debug_id, subreq->debug_index,
|
|
iov_iter_count(&subreq->io_iter), subreq->len,
|
|
subreq->transferred, subreq->io_iter.iter_type);
|
|
|
|
if (subreq->transferred < subreq->len)
|
|
goto incomplete;
|
|
|
|
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
|
out:
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
|
|
|
|
/* If we decrement nr_outstanding to 0, the ref belongs to us. */
|
|
u = atomic_dec_return(&wreq->nr_outstanding);
|
|
if (u == 0)
|
|
netfs_write_terminated(wreq, was_async);
|
|
else if (u == 1)
|
|
wake_up_var(&wreq->nr_outstanding);
|
|
|
|
netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
|
|
return;
|
|
|
|
incomplete:
|
|
if (transferred_or_error == 0) {
|
|
if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
|
|
subreq->error = -ENODATA;
|
|
goto failed;
|
|
}
|
|
} else {
|
|
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
|
}
|
|
|
|
__set_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
|
|
set_bit(NETFS_RREQ_INCOMPLETE_IO, &wreq->flags);
|
|
goto out;
|
|
|
|
failed:
|
|
switch (subreq->source) {
|
|
case NETFS_WRITE_TO_CACHE:
|
|
netfs_stat(&netfs_n_wh_write_failed);
|
|
set_bit(NETFS_RREQ_INCOMPLETE_IO, &wreq->flags);
|
|
break;
|
|
case NETFS_UPLOAD_TO_SERVER:
|
|
netfs_stat(&netfs_n_wh_upload_failed);
|
|
set_bit(NETFS_RREQ_FAILED, &wreq->flags);
|
|
wreq->error = subreq->error;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL(netfs_write_subrequest_terminated);
|
|
|
|
static void netfs_write_to_cache_op(struct netfs_io_subrequest *subreq)
|
|
{
|
|
struct netfs_io_request *wreq = subreq->rreq;
|
|
struct netfs_cache_resources *cres = &wreq->cache_resources;
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
|
|
|
|
cres->ops->write(cres, subreq->start, &subreq->io_iter,
|
|
netfs_write_subrequest_terminated, subreq);
|
|
}
|
|
|
|
static void netfs_write_to_cache_op_worker(struct work_struct *work)
|
|
{
|
|
struct netfs_io_subrequest *subreq =
|
|
container_of(work, struct netfs_io_subrequest, work);
|
|
|
|
netfs_write_to_cache_op(subreq);
|
|
}
|
|
|
|
/**
|
|
* netfs_queue_write_request - Queue a write request for attention
|
|
* @subreq: The write request to be queued
|
|
*
|
|
* Queue the specified write request for processing by a worker thread. We
|
|
* pass the caller's ref on the request to the worker thread.
|
|
*/
|
|
void netfs_queue_write_request(struct netfs_io_subrequest *subreq)
|
|
{
|
|
if (!queue_work(system_unbound_wq, &subreq->work))
|
|
netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_wip);
|
|
}
|
|
EXPORT_SYMBOL(netfs_queue_write_request);
|
|
|
|
/*
|
|
* Set up a op for writing to the cache.
|
|
*/
|
|
static void netfs_set_up_write_to_cache(struct netfs_io_request *wreq)
|
|
{
|
|
struct netfs_cache_resources *cres = &wreq->cache_resources;
|
|
struct netfs_io_subrequest *subreq;
|
|
struct netfs_inode *ctx = netfs_inode(wreq->inode);
|
|
struct fscache_cookie *cookie = netfs_i_cookie(ctx);
|
|
loff_t start = wreq->start;
|
|
size_t len = wreq->len;
|
|
int ret;
|
|
|
|
if (!fscache_cookie_enabled(cookie)) {
|
|
clear_bit(NETFS_RREQ_WRITE_TO_CACHE, &wreq->flags);
|
|
return;
|
|
}
|
|
|
|
_debug("write to cache");
|
|
ret = fscache_begin_write_operation(cres, cookie);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
ret = cres->ops->prepare_write(cres, &start, &len, wreq->upper_len,
|
|
i_size_read(wreq->inode), true);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
subreq = netfs_create_write_request(wreq, NETFS_WRITE_TO_CACHE, start, len,
|
|
netfs_write_to_cache_op_worker);
|
|
if (!subreq)
|
|
return;
|
|
|
|
netfs_write_to_cache_op(subreq);
|
|
}
|
|
|
|
/*
|
|
* Begin the process of writing out a chunk of data.
|
|
*
|
|
* We are given a write request that holds a series of dirty regions and
|
|
* (partially) covers a sequence of folios, all of which are present. The
|
|
* pages must have been marked as writeback as appropriate.
|
|
*
|
|
* We need to perform the following steps:
|
|
*
|
|
* (1) If encrypting, create an output buffer and encrypt each block of the
|
|
* data into it, otherwise the output buffer will point to the original
|
|
* folios.
|
|
*
|
|
* (2) If the data is to be cached, set up a write op for the entire output
|
|
* buffer to the cache, if the cache wants to accept it.
|
|
*
|
|
* (3) If the data is to be uploaded (ie. not merely cached):
|
|
*
|
|
* (a) If the data is to be compressed, create a compression buffer and
|
|
* compress the data into it.
|
|
*
|
|
* (b) For each destination we want to upload to, set up write ops to write
|
|
* to that destination. We may need multiple writes if the data is not
|
|
* contiguous or the span exceeds wsize for a server.
|
|
*/
|
|
int netfs_begin_write(struct netfs_io_request *wreq, bool may_wait,
|
|
enum netfs_write_trace what)
|
|
{
|
|
struct netfs_inode *ctx = netfs_inode(wreq->inode);
|
|
|
|
_enter("R=%x %llx-%llx f=%lx",
|
|
wreq->debug_id, wreq->start, wreq->start + wreq->len - 1,
|
|
wreq->flags);
|
|
|
|
trace_netfs_write(wreq, what);
|
|
if (wreq->len == 0 || wreq->iter.count == 0) {
|
|
pr_err("Zero-sized write [R=%x]\n", wreq->debug_id);
|
|
return -EIO;
|
|
}
|
|
|
|
if (wreq->origin == NETFS_DIO_WRITE)
|
|
inode_dio_begin(wreq->inode);
|
|
|
|
wreq->io_iter = wreq->iter;
|
|
|
|
/* ->outstanding > 0 carries a ref */
|
|
netfs_get_request(wreq, netfs_rreq_trace_get_for_outstanding);
|
|
atomic_set(&wreq->nr_outstanding, 1);
|
|
|
|
/* Start the encryption/compression going. We can do that in the
|
|
* background whilst we generate a list of write ops that we want to
|
|
* perform.
|
|
*/
|
|
// TODO: Encrypt or compress the region as appropriate
|
|
|
|
/* We need to write all of the region to the cache */
|
|
if (test_bit(NETFS_RREQ_WRITE_TO_CACHE, &wreq->flags))
|
|
netfs_set_up_write_to_cache(wreq);
|
|
|
|
/* However, we don't necessarily write all of the region to the server.
|
|
* Caching of reads is being managed this way also.
|
|
*/
|
|
if (test_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags))
|
|
ctx->ops->create_write_requests(wreq, wreq->start, wreq->len);
|
|
|
|
if (atomic_dec_and_test(&wreq->nr_outstanding))
|
|
netfs_write_terminated(wreq, false);
|
|
|
|
if (!may_wait)
|
|
return -EIOCBQUEUED;
|
|
|
|
wait_on_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS,
|
|
TASK_UNINTERRUPTIBLE);
|
|
return wreq->error;
|
|
}
|
|
|
|
/*
|
|
* Begin a write operation for writing through the pagecache.
|
|
*/
|
|
struct netfs_io_request *netfs_begin_writethrough(struct kiocb *iocb, size_t len)
|
|
{
|
|
struct netfs_io_request *wreq;
|
|
struct file *file = iocb->ki_filp;
|
|
|
|
wreq = netfs_alloc_request(file->f_mapping, file, iocb->ki_pos, len,
|
|
NETFS_WRITETHROUGH);
|
|
if (IS_ERR(wreq))
|
|
return wreq;
|
|
|
|
trace_netfs_write(wreq, netfs_write_trace_writethrough);
|
|
|
|
__set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
|
|
iov_iter_xarray(&wreq->iter, ITER_SOURCE, &wreq->mapping->i_pages, wreq->start, 0);
|
|
wreq->io_iter = wreq->iter;
|
|
|
|
/* ->outstanding > 0 carries a ref */
|
|
netfs_get_request(wreq, netfs_rreq_trace_get_for_outstanding);
|
|
atomic_set(&wreq->nr_outstanding, 1);
|
|
return wreq;
|
|
}
|
|
|
|
static void netfs_submit_writethrough(struct netfs_io_request *wreq, bool final)
|
|
{
|
|
struct netfs_inode *ictx = netfs_inode(wreq->inode);
|
|
unsigned long long start;
|
|
size_t len;
|
|
|
|
if (!test_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags))
|
|
return;
|
|
|
|
start = wreq->start + wreq->submitted;
|
|
len = wreq->iter.count - wreq->submitted;
|
|
if (!final) {
|
|
len /= wreq->wsize; /* Round to number of maximum packets */
|
|
len *= wreq->wsize;
|
|
}
|
|
|
|
ictx->ops->create_write_requests(wreq, start, len);
|
|
wreq->submitted += len;
|
|
}
|
|
|
|
/*
|
|
* Advance the state of the write operation used when writing through the
|
|
* pagecache. Data has been copied into the pagecache that we need to append
|
|
* to the request. If we've added more than wsize then we need to create a new
|
|
* subrequest.
|
|
*/
|
|
int netfs_advance_writethrough(struct netfs_io_request *wreq, size_t copied, bool to_page_end)
|
|
{
|
|
_enter("ic=%zu sb=%zu ws=%u cp=%zu tp=%u",
|
|
wreq->iter.count, wreq->submitted, wreq->wsize, copied, to_page_end);
|
|
|
|
wreq->iter.count += copied;
|
|
wreq->io_iter.count += copied;
|
|
if (to_page_end && wreq->io_iter.count - wreq->submitted >= wreq->wsize)
|
|
netfs_submit_writethrough(wreq, false);
|
|
|
|
return wreq->error;
|
|
}
|
|
|
|
/*
|
|
* End a write operation used when writing through the pagecache.
|
|
*/
|
|
int netfs_end_writethrough(struct netfs_io_request *wreq, struct kiocb *iocb)
|
|
{
|
|
int ret = -EIOCBQUEUED;
|
|
|
|
_enter("ic=%zu sb=%zu ws=%u",
|
|
wreq->iter.count, wreq->submitted, wreq->wsize);
|
|
|
|
if (wreq->submitted < wreq->io_iter.count)
|
|
netfs_submit_writethrough(wreq, true);
|
|
|
|
if (atomic_dec_and_test(&wreq->nr_outstanding))
|
|
netfs_write_terminated(wreq, false);
|
|
|
|
if (is_sync_kiocb(iocb)) {
|
|
wait_on_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS,
|
|
TASK_UNINTERRUPTIBLE);
|
|
ret = wreq->error;
|
|
}
|
|
|
|
netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
|
|
return ret;
|
|
}
|