mirror of
https://github.com/torvalds/linux.git
synced 2024-12-26 04:42:12 +00:00
6f255425ac
This enables Adaptive Noise Immunity (ANI) on ath9k. ANI is as algorithm designed to minimize the detrimental effects of time-varying interferences. This should help with throughput in noisy environments. To use ANI we re-enable the MIB interrupt. Since ANI works on a timer and updates the noise floor we take advantage of this and also report a non-static noise floor now to mac80211. Signed-off-by: Sujith Manoharan <Sujith.Manoharan@atheros.com> Signed-off-by: Jouni Malinen <Jouni.Malinen@Atheros.com> Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
1292 lines
33 KiB
C
1292 lines
33 KiB
C
/*
|
|
* Copyright (c) 2008 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* Implementation of receive path.
|
|
*/
|
|
|
|
#include "core.h"
|
|
|
|
/*
|
|
* Setup and link descriptors.
|
|
*
|
|
* 11N: we can no longer afford to self link the last descriptor.
|
|
* MAC acknowledges BA status as long as it copies frames to host
|
|
* buffer (or rx fifo). This can incorrectly acknowledge packets
|
|
* to a sender if last desc is self-linked.
|
|
*
|
|
* NOTE: Caller should hold the rxbuf lock.
|
|
*/
|
|
|
|
static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_desc *ds;
|
|
struct sk_buff *skb;
|
|
|
|
ATH_RXBUF_RESET(bf);
|
|
|
|
ds = bf->bf_desc;
|
|
ds->ds_link = 0; /* link to null */
|
|
ds->ds_data = bf->bf_buf_addr;
|
|
|
|
/* XXX For RADAR?
|
|
* virtual addr of the beginning of the buffer. */
|
|
skb = bf->bf_mpdu;
|
|
ASSERT(skb != NULL);
|
|
ds->ds_vdata = skb->data;
|
|
|
|
/* setup rx descriptors */
|
|
ath9k_hw_setuprxdesc(ah,
|
|
ds,
|
|
skb_tailroom(skb), /* buffer size */
|
|
0);
|
|
|
|
if (sc->sc_rxlink == NULL)
|
|
ath9k_hw_putrxbuf(ah, bf->bf_daddr);
|
|
else
|
|
*sc->sc_rxlink = bf->bf_daddr;
|
|
|
|
sc->sc_rxlink = &ds->ds_link;
|
|
ath9k_hw_rxena(ah);
|
|
}
|
|
|
|
/* Process received BAR frame */
|
|
|
|
static int ath_bar_rx(struct ath_softc *sc,
|
|
struct ath_node *an,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_bar *bar;
|
|
struct ath_arx_tid *rxtid;
|
|
struct sk_buff *tskb;
|
|
struct ath_recv_status *rx_status;
|
|
int tidno, index, cindex;
|
|
u16 seqno;
|
|
|
|
/* look at BAR contents */
|
|
|
|
bar = (struct ieee80211_bar *)skb->data;
|
|
tidno = (le16_to_cpu(bar->control) & IEEE80211_BAR_CTL_TID_M)
|
|
>> IEEE80211_BAR_CTL_TID_S;
|
|
seqno = le16_to_cpu(bar->start_seq_num) >> IEEE80211_SEQ_SEQ_SHIFT;
|
|
|
|
/* process BAR - indicate all pending RX frames till the BAR seqno */
|
|
|
|
rxtid = &an->an_aggr.rx.tid[tidno];
|
|
|
|
spin_lock_bh(&rxtid->tidlock);
|
|
|
|
/* get relative index */
|
|
|
|
index = ATH_BA_INDEX(rxtid->seq_next, seqno);
|
|
|
|
/* drop BAR if old sequence (index is too large) */
|
|
|
|
if ((index > rxtid->baw_size) &&
|
|
(index > (IEEE80211_SEQ_MAX - (rxtid->baw_size << 2))))
|
|
/* discard frame, ieee layer may not treat frame as a dup */
|
|
goto unlock_and_free;
|
|
|
|
/* complete receive processing for all pending frames upto BAR seqno */
|
|
|
|
cindex = (rxtid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
|
|
while ((rxtid->baw_head != rxtid->baw_tail) &&
|
|
(rxtid->baw_head != cindex)) {
|
|
tskb = rxtid->rxbuf[rxtid->baw_head].rx_wbuf;
|
|
rx_status = &rxtid->rxbuf[rxtid->baw_head].rx_status;
|
|
rxtid->rxbuf[rxtid->baw_head].rx_wbuf = NULL;
|
|
|
|
if (tskb != NULL)
|
|
ath_rx_subframe(an, tskb, rx_status);
|
|
|
|
INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
|
|
INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
|
|
}
|
|
|
|
/* ... and indicate rest of the frames in-order */
|
|
|
|
while (rxtid->baw_head != rxtid->baw_tail &&
|
|
rxtid->rxbuf[rxtid->baw_head].rx_wbuf != NULL) {
|
|
tskb = rxtid->rxbuf[rxtid->baw_head].rx_wbuf;
|
|
rx_status = &rxtid->rxbuf[rxtid->baw_head].rx_status;
|
|
rxtid->rxbuf[rxtid->baw_head].rx_wbuf = NULL;
|
|
|
|
ath_rx_subframe(an, tskb, rx_status);
|
|
|
|
INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
|
|
INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
|
|
}
|
|
|
|
unlock_and_free:
|
|
spin_unlock_bh(&rxtid->tidlock);
|
|
/* free bar itself */
|
|
dev_kfree_skb(skb);
|
|
return IEEE80211_FTYPE_CTL;
|
|
}
|
|
|
|
/* Function to handle a subframe of aggregation when HT is enabled */
|
|
|
|
static int ath_ampdu_input(struct ath_softc *sc,
|
|
struct ath_node *an,
|
|
struct sk_buff *skb,
|
|
struct ath_recv_status *rx_status)
|
|
{
|
|
struct ieee80211_hdr *hdr;
|
|
struct ath_arx_tid *rxtid;
|
|
struct ath_rxbuf *rxbuf;
|
|
u8 type, subtype;
|
|
u16 rxseq;
|
|
int tid = 0, index, cindex, rxdiff;
|
|
__le16 fc;
|
|
u8 *qc;
|
|
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
fc = hdr->frame_control;
|
|
|
|
/* collect stats of frames with non-zero version */
|
|
|
|
if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_VERS) != 0) {
|
|
dev_kfree_skb(skb);
|
|
return -1;
|
|
}
|
|
|
|
type = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_FTYPE;
|
|
subtype = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_STYPE;
|
|
|
|
if (ieee80211_is_back_req(fc))
|
|
return ath_bar_rx(sc, an, skb);
|
|
|
|
/* special aggregate processing only for qos unicast data frames */
|
|
|
|
if (!ieee80211_is_data(fc) ||
|
|
!ieee80211_is_data_qos(fc) ||
|
|
is_multicast_ether_addr(hdr->addr1))
|
|
return ath_rx_subframe(an, skb, rx_status);
|
|
|
|
/* lookup rx tid state */
|
|
|
|
if (ieee80211_is_data_qos(fc)) {
|
|
qc = ieee80211_get_qos_ctl(hdr);
|
|
tid = qc[0] & 0xf;
|
|
}
|
|
|
|
if (sc->sc_ah->ah_opmode == ATH9K_M_STA) {
|
|
/* Drop the frame not belonging to me. */
|
|
if (memcmp(hdr->addr1, sc->sc_myaddr, ETH_ALEN)) {
|
|
dev_kfree_skb(skb);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
rxtid = &an->an_aggr.rx.tid[tid];
|
|
|
|
spin_lock(&rxtid->tidlock);
|
|
|
|
rxdiff = (rxtid->baw_tail - rxtid->baw_head) &
|
|
(ATH_TID_MAX_BUFS - 1);
|
|
|
|
/*
|
|
* If the ADDBA exchange has not been completed by the source,
|
|
* process via legacy path (i.e. no reordering buffer is needed)
|
|
*/
|
|
if (!rxtid->addba_exchangecomplete) {
|
|
spin_unlock(&rxtid->tidlock);
|
|
return ath_rx_subframe(an, skb, rx_status);
|
|
}
|
|
|
|
/* extract sequence number from recvd frame */
|
|
|
|
rxseq = le16_to_cpu(hdr->seq_ctrl) >> IEEE80211_SEQ_SEQ_SHIFT;
|
|
|
|
if (rxtid->seq_reset) {
|
|
rxtid->seq_reset = 0;
|
|
rxtid->seq_next = rxseq;
|
|
}
|
|
|
|
index = ATH_BA_INDEX(rxtid->seq_next, rxseq);
|
|
|
|
/* drop frame if old sequence (index is too large) */
|
|
|
|
if (index > (IEEE80211_SEQ_MAX - (rxtid->baw_size << 2))) {
|
|
/* discard frame, ieee layer may not treat frame as a dup */
|
|
spin_unlock(&rxtid->tidlock);
|
|
dev_kfree_skb(skb);
|
|
return IEEE80211_FTYPE_DATA;
|
|
}
|
|
|
|
/* sequence number is beyond block-ack window */
|
|
|
|
if (index >= rxtid->baw_size) {
|
|
|
|
/* complete receive processing for all pending frames */
|
|
|
|
while (index >= rxtid->baw_size) {
|
|
|
|
rxbuf = rxtid->rxbuf + rxtid->baw_head;
|
|
|
|
if (rxbuf->rx_wbuf != NULL) {
|
|
ath_rx_subframe(an, rxbuf->rx_wbuf,
|
|
&rxbuf->rx_status);
|
|
rxbuf->rx_wbuf = NULL;
|
|
}
|
|
|
|
INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
|
|
INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
|
|
|
|
index--;
|
|
}
|
|
}
|
|
|
|
/* add buffer to the recv ba window */
|
|
|
|
cindex = (rxtid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
|
|
rxbuf = rxtid->rxbuf + cindex;
|
|
|
|
if (rxbuf->rx_wbuf != NULL) {
|
|
spin_unlock(&rxtid->tidlock);
|
|
/* duplicate frame */
|
|
dev_kfree_skb(skb);
|
|
return IEEE80211_FTYPE_DATA;
|
|
}
|
|
|
|
rxbuf->rx_wbuf = skb;
|
|
rxbuf->rx_time = get_timestamp();
|
|
rxbuf->rx_status = *rx_status;
|
|
|
|
/* advance tail if sequence received is newer
|
|
* than any received so far */
|
|
|
|
if (index >= rxdiff) {
|
|
rxtid->baw_tail = cindex;
|
|
INCR(rxtid->baw_tail, ATH_TID_MAX_BUFS);
|
|
}
|
|
|
|
/* indicate all in-order received frames */
|
|
|
|
while (rxtid->baw_head != rxtid->baw_tail) {
|
|
rxbuf = rxtid->rxbuf + rxtid->baw_head;
|
|
if (!rxbuf->rx_wbuf)
|
|
break;
|
|
|
|
ath_rx_subframe(an, rxbuf->rx_wbuf, &rxbuf->rx_status);
|
|
rxbuf->rx_wbuf = NULL;
|
|
|
|
INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
|
|
INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
|
|
}
|
|
|
|
/*
|
|
* start a timer to flush all received frames if there are pending
|
|
* receive frames
|
|
*/
|
|
if (rxtid->baw_head != rxtid->baw_tail)
|
|
mod_timer(&rxtid->timer, ATH_RX_TIMEOUT);
|
|
else
|
|
del_timer_sync(&rxtid->timer);
|
|
|
|
spin_unlock(&rxtid->tidlock);
|
|
return IEEE80211_FTYPE_DATA;
|
|
}
|
|
|
|
/* Timer to flush all received sub-frames */
|
|
|
|
static void ath_rx_timer(unsigned long data)
|
|
{
|
|
struct ath_arx_tid *rxtid = (struct ath_arx_tid *)data;
|
|
struct ath_node *an = rxtid->an;
|
|
struct ath_rxbuf *rxbuf;
|
|
int nosched;
|
|
|
|
spin_lock_bh(&rxtid->tidlock);
|
|
while (rxtid->baw_head != rxtid->baw_tail) {
|
|
rxbuf = rxtid->rxbuf + rxtid->baw_head;
|
|
if (!rxbuf->rx_wbuf) {
|
|
INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
|
|
INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Stop if the next one is a very recent frame.
|
|
*
|
|
* Call get_timestamp in every iteration to protect against the
|
|
* case in which a new frame is received while we are executing
|
|
* this function. Using a timestamp obtained before entering
|
|
* the loop could lead to a very large time interval
|
|
* (a negative value typecast to unsigned), breaking the
|
|
* function's logic.
|
|
*/
|
|
if ((get_timestamp() - rxbuf->rx_time) <
|
|
(ATH_RX_TIMEOUT * HZ / 1000))
|
|
break;
|
|
|
|
ath_rx_subframe(an, rxbuf->rx_wbuf,
|
|
&rxbuf->rx_status);
|
|
rxbuf->rx_wbuf = NULL;
|
|
|
|
INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
|
|
INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
|
|
}
|
|
|
|
/*
|
|
* start a timer to flush all received frames if there are pending
|
|
* receive frames
|
|
*/
|
|
if (rxtid->baw_head != rxtid->baw_tail)
|
|
nosched = 0;
|
|
else
|
|
nosched = 1; /* no need to re-arm the timer again */
|
|
|
|
spin_unlock_bh(&rxtid->tidlock);
|
|
}
|
|
|
|
/* Free all pending sub-frames in the re-ordering buffer */
|
|
|
|
static void ath_rx_flush_tid(struct ath_softc *sc,
|
|
struct ath_arx_tid *rxtid, int drop)
|
|
{
|
|
struct ath_rxbuf *rxbuf;
|
|
unsigned long flag;
|
|
|
|
spin_lock_irqsave(&rxtid->tidlock, flag);
|
|
while (rxtid->baw_head != rxtid->baw_tail) {
|
|
rxbuf = rxtid->rxbuf + rxtid->baw_head;
|
|
if (!rxbuf->rx_wbuf) {
|
|
INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
|
|
INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
|
|
continue;
|
|
}
|
|
|
|
if (drop)
|
|
dev_kfree_skb(rxbuf->rx_wbuf);
|
|
else
|
|
ath_rx_subframe(rxtid->an,
|
|
rxbuf->rx_wbuf,
|
|
&rxbuf->rx_status);
|
|
|
|
rxbuf->rx_wbuf = NULL;
|
|
|
|
INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
|
|
INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
|
|
}
|
|
spin_unlock_irqrestore(&rxtid->tidlock, flag);
|
|
}
|
|
|
|
static struct sk_buff *ath_rxbuf_alloc(struct ath_softc *sc,
|
|
u32 len)
|
|
{
|
|
struct sk_buff *skb;
|
|
u32 off;
|
|
|
|
/*
|
|
* Cache-line-align. This is important (for the
|
|
* 5210 at least) as not doing so causes bogus data
|
|
* in rx'd frames.
|
|
*/
|
|
|
|
skb = dev_alloc_skb(len + sc->sc_cachelsz - 1);
|
|
if (skb != NULL) {
|
|
off = ((unsigned long) skb->data) % sc->sc_cachelsz;
|
|
if (off != 0)
|
|
skb_reserve(skb, sc->sc_cachelsz - off);
|
|
} else {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: skbuff alloc of size %u failed\n",
|
|
__func__, len);
|
|
return NULL;
|
|
}
|
|
|
|
return skb;
|
|
}
|
|
|
|
static void ath_rx_requeue(struct ath_softc *sc, struct sk_buff *skb)
|
|
{
|
|
struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf;
|
|
|
|
ASSERT(bf != NULL);
|
|
|
|
spin_lock_bh(&sc->sc_rxbuflock);
|
|
if (bf->bf_status & ATH_BUFSTATUS_STALE) {
|
|
/*
|
|
* This buffer is still held for hw acess.
|
|
* Mark it as free to be re-queued it later.
|
|
*/
|
|
bf->bf_status |= ATH_BUFSTATUS_FREE;
|
|
} else {
|
|
/* XXX: we probably never enter here, remove after
|
|
* verification */
|
|
list_add_tail(&bf->list, &sc->sc_rxbuf);
|
|
ath_rx_buf_link(sc, bf);
|
|
}
|
|
spin_unlock_bh(&sc->sc_rxbuflock);
|
|
}
|
|
|
|
/*
|
|
* The skb indicated to upper stack won't be returned to us.
|
|
* So we have to allocate a new one and queue it by ourselves.
|
|
*/
|
|
static int ath_rx_indicate(struct ath_softc *sc,
|
|
struct sk_buff *skb,
|
|
struct ath_recv_status *status,
|
|
u16 keyix)
|
|
{
|
|
struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf;
|
|
struct sk_buff *nskb;
|
|
int type;
|
|
|
|
/* indicate frame to the stack, which will free the old skb. */
|
|
type = _ath_rx_indicate(sc, skb, status, keyix);
|
|
|
|
/* allocate a new skb and queue it to for H/W processing */
|
|
nskb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize);
|
|
if (nskb != NULL) {
|
|
bf->bf_mpdu = nskb;
|
|
bf->bf_buf_addr = pci_map_single(sc->pdev, nskb->data,
|
|
skb_end_pointer(nskb) - nskb->head,
|
|
PCI_DMA_FROMDEVICE);
|
|
bf->bf_dmacontext = bf->bf_buf_addr;
|
|
ATH_RX_CONTEXT(nskb)->ctx_rxbuf = bf;
|
|
|
|
/* queue the new wbuf to H/W */
|
|
ath_rx_requeue(sc, nskb);
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
static void ath_opmode_init(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u32 rfilt, mfilt[2];
|
|
|
|
/* configure rx filter */
|
|
rfilt = ath_calcrxfilter(sc);
|
|
ath9k_hw_setrxfilter(ah, rfilt);
|
|
|
|
/* configure bssid mask */
|
|
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
|
|
ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
|
|
|
|
/* configure operational mode */
|
|
ath9k_hw_setopmode(ah);
|
|
|
|
/* Handle any link-level address change. */
|
|
ath9k_hw_setmac(ah, sc->sc_myaddr);
|
|
|
|
/* calculate and install multicast filter */
|
|
mfilt[0] = mfilt[1] = ~0;
|
|
|
|
ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
|
|
DPRINTF(sc, ATH_DBG_CONFIG ,
|
|
"%s: RX filter 0x%x, MC filter %08x:%08x\n",
|
|
__func__, rfilt, mfilt[0], mfilt[1]);
|
|
}
|
|
|
|
int ath_rx_init(struct ath_softc *sc, int nbufs)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct ath_buf *bf;
|
|
int error = 0;
|
|
|
|
do {
|
|
spin_lock_init(&sc->sc_rxflushlock);
|
|
sc->sc_flags &= ~SC_OP_RXFLUSH;
|
|
spin_lock_init(&sc->sc_rxbuflock);
|
|
|
|
/*
|
|
* Cisco's VPN software requires that drivers be able to
|
|
* receive encapsulated frames that are larger than the MTU.
|
|
* Since we can't be sure how large a frame we'll get, setup
|
|
* to handle the larges on possible.
|
|
*/
|
|
sc->sc_rxbufsize = roundup(IEEE80211_MAX_MPDU_LEN,
|
|
min(sc->sc_cachelsz,
|
|
(u16)64));
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "%s: cachelsz %u rxbufsize %u\n",
|
|
__func__, sc->sc_cachelsz, sc->sc_rxbufsize);
|
|
|
|
/* Initialize rx descriptors */
|
|
|
|
error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
|
|
"rx", nbufs, 1);
|
|
if (error != 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: failed to allocate rx descriptors: %d\n",
|
|
__func__, error);
|
|
break;
|
|
}
|
|
|
|
/* Pre-allocate a wbuf for each rx buffer */
|
|
|
|
list_for_each_entry(bf, &sc->sc_rxbuf, list) {
|
|
skb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize);
|
|
if (skb == NULL) {
|
|
error = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
bf->bf_mpdu = skb;
|
|
bf->bf_buf_addr = pci_map_single(sc->pdev, skb->data,
|
|
skb_end_pointer(skb) - skb->head,
|
|
PCI_DMA_FROMDEVICE);
|
|
bf->bf_dmacontext = bf->bf_buf_addr;
|
|
ATH_RX_CONTEXT(skb)->ctx_rxbuf = bf;
|
|
}
|
|
sc->sc_rxlink = NULL;
|
|
|
|
} while (0);
|
|
|
|
if (error)
|
|
ath_rx_cleanup(sc);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Reclaim all rx queue resources */
|
|
|
|
void ath_rx_cleanup(struct ath_softc *sc)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct ath_buf *bf;
|
|
|
|
list_for_each_entry(bf, &sc->sc_rxbuf, list) {
|
|
skb = bf->bf_mpdu;
|
|
if (skb)
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
/* cleanup rx descriptors */
|
|
|
|
if (sc->sc_rxdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
|
|
}
|
|
|
|
/*
|
|
* Calculate the receive filter according to the
|
|
* operating mode and state:
|
|
*
|
|
* o always accept unicast, broadcast, and multicast traffic
|
|
* o maintain current state of phy error reception (the hal
|
|
* may enable phy error frames for noise immunity work)
|
|
* o probe request frames are accepted only when operating in
|
|
* hostap, adhoc, or monitor modes
|
|
* o enable promiscuous mode according to the interface state
|
|
* o accept beacons:
|
|
* - when operating in adhoc mode so the 802.11 layer creates
|
|
* node table entries for peers,
|
|
* - when operating in station mode for collecting rssi data when
|
|
* the station is otherwise quiet, or
|
|
* - when operating as a repeater so we see repeater-sta beacons
|
|
* - when scanning
|
|
*/
|
|
|
|
u32 ath_calcrxfilter(struct ath_softc *sc)
|
|
{
|
|
#define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
|
|
|
|
u32 rfilt;
|
|
|
|
rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
|
|
| ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
|
|
| ATH9K_RX_FILTER_MCAST;
|
|
|
|
/* If not a STA, enable processing of Probe Requests */
|
|
if (sc->sc_ah->ah_opmode != ATH9K_M_STA)
|
|
rfilt |= ATH9K_RX_FILTER_PROBEREQ;
|
|
|
|
/* Can't set HOSTAP into promiscous mode */
|
|
if (((sc->sc_ah->ah_opmode != ATH9K_M_HOSTAP) &&
|
|
(sc->rx_filter & FIF_PROMISC_IN_BSS)) ||
|
|
(sc->sc_ah->ah_opmode == ATH9K_M_MONITOR)) {
|
|
rfilt |= ATH9K_RX_FILTER_PROM;
|
|
/* ??? To prevent from sending ACK */
|
|
rfilt &= ~ATH9K_RX_FILTER_UCAST;
|
|
}
|
|
|
|
if (((sc->sc_ah->ah_opmode == ATH9K_M_STA) &&
|
|
(sc->rx_filter & FIF_BCN_PRBRESP_PROMISC)) ||
|
|
(sc->sc_ah->ah_opmode == ATH9K_M_IBSS))
|
|
rfilt |= ATH9K_RX_FILTER_BEACON;
|
|
|
|
/* If in HOSTAP mode, want to enable reception of PSPOLL frames
|
|
& beacon frames */
|
|
if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP)
|
|
rfilt |= (ATH9K_RX_FILTER_BEACON | ATH9K_RX_FILTER_PSPOLL);
|
|
return rfilt;
|
|
|
|
#undef RX_FILTER_PRESERVE
|
|
}
|
|
|
|
/* Enable the receive h/w following a reset. */
|
|
|
|
int ath_startrecv(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf, *tbf;
|
|
|
|
spin_lock_bh(&sc->sc_rxbuflock);
|
|
if (list_empty(&sc->sc_rxbuf))
|
|
goto start_recv;
|
|
|
|
sc->sc_rxlink = NULL;
|
|
list_for_each_entry_safe(bf, tbf, &sc->sc_rxbuf, list) {
|
|
if (bf->bf_status & ATH_BUFSTATUS_STALE) {
|
|
/* restarting h/w, no need for holding descriptors */
|
|
bf->bf_status &= ~ATH_BUFSTATUS_STALE;
|
|
/*
|
|
* Upper layer may not be done with the frame yet so
|
|
* we can't just re-queue it to hardware. Remove it
|
|
* from h/w queue. It'll be re-queued when upper layer
|
|
* returns the frame and ath_rx_requeue_mpdu is called.
|
|
*/
|
|
if (!(bf->bf_status & ATH_BUFSTATUS_FREE)) {
|
|
list_del(&bf->list);
|
|
continue;
|
|
}
|
|
}
|
|
/* chain descriptors */
|
|
ath_rx_buf_link(sc, bf);
|
|
}
|
|
|
|
/* We could have deleted elements so the list may be empty now */
|
|
if (list_empty(&sc->sc_rxbuf))
|
|
goto start_recv;
|
|
|
|
bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list);
|
|
ath9k_hw_putrxbuf(ah, bf->bf_daddr);
|
|
ath9k_hw_rxena(ah); /* enable recv descriptors */
|
|
|
|
start_recv:
|
|
spin_unlock_bh(&sc->sc_rxbuflock);
|
|
ath_opmode_init(sc); /* set filters, etc. */
|
|
ath9k_hw_startpcureceive(ah); /* re-enable PCU/DMA engine */
|
|
return 0;
|
|
}
|
|
|
|
/* Disable the receive h/w in preparation for a reset. */
|
|
|
|
bool ath_stoprecv(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u64 tsf;
|
|
bool stopped;
|
|
|
|
ath9k_hw_stoppcurecv(ah); /* disable PCU */
|
|
ath9k_hw_setrxfilter(ah, 0); /* clear recv filter */
|
|
stopped = ath9k_hw_stopdmarecv(ah); /* disable DMA engine */
|
|
mdelay(3); /* 3ms is long enough for 1 frame */
|
|
tsf = ath9k_hw_gettsf64(ah);
|
|
sc->sc_rxlink = NULL; /* just in case */
|
|
return stopped;
|
|
}
|
|
|
|
/* Flush receive queue */
|
|
|
|
void ath_flushrecv(struct ath_softc *sc)
|
|
{
|
|
/*
|
|
* ath_rx_tasklet may be used to handle rx interrupt and flush receive
|
|
* queue at the same time. Use a lock to serialize the access of rx
|
|
* queue.
|
|
* ath_rx_tasklet cannot hold the spinlock while indicating packets.
|
|
* Instead, do not claim the spinlock but check for a flush in
|
|
* progress (see references to sc_rxflush)
|
|
*/
|
|
spin_lock_bh(&sc->sc_rxflushlock);
|
|
sc->sc_flags |= SC_OP_RXFLUSH;
|
|
|
|
ath_rx_tasklet(sc, 1);
|
|
|
|
sc->sc_flags &= ~SC_OP_RXFLUSH;
|
|
spin_unlock_bh(&sc->sc_rxflushlock);
|
|
}
|
|
|
|
/* Process an individual frame */
|
|
|
|
int ath_rx_input(struct ath_softc *sc,
|
|
struct ath_node *an,
|
|
int is_ampdu,
|
|
struct sk_buff *skb,
|
|
struct ath_recv_status *rx_status,
|
|
enum ATH_RX_TYPE *status)
|
|
{
|
|
if (is_ampdu && (sc->sc_flags & SC_OP_RXAGGR)) {
|
|
*status = ATH_RX_CONSUMED;
|
|
return ath_ampdu_input(sc, an, skb, rx_status);
|
|
} else {
|
|
*status = ATH_RX_NON_CONSUMED;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Process receive queue, as well as LED, etc. */
|
|
|
|
int ath_rx_tasklet(struct ath_softc *sc, int flush)
|
|
{
|
|
#define PA2DESC(_sc, _pa) \
|
|
((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
|
|
((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
|
|
|
|
struct ath_buf *bf, *bf_held = NULL;
|
|
struct ath_desc *ds;
|
|
struct ieee80211_hdr *hdr;
|
|
struct sk_buff *skb = NULL;
|
|
struct ath_recv_status rx_status;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int type, rx_processed = 0;
|
|
u32 phyerr;
|
|
u8 chainreset = 0;
|
|
int retval;
|
|
__le16 fc;
|
|
|
|
do {
|
|
/* If handling rx interrupt and flush is in progress => exit */
|
|
if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0))
|
|
break;
|
|
|
|
spin_lock_bh(&sc->sc_rxbuflock);
|
|
if (list_empty(&sc->sc_rxbuf)) {
|
|
sc->sc_rxlink = NULL;
|
|
spin_unlock_bh(&sc->sc_rxbuflock);
|
|
break;
|
|
}
|
|
|
|
bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list);
|
|
|
|
/*
|
|
* There is a race condition that BH gets scheduled after sw
|
|
* writes RxE and before hw re-load the last descriptor to get
|
|
* the newly chained one. Software must keep the last DONE
|
|
* descriptor as a holding descriptor - software does so by
|
|
* marking it with the STALE flag.
|
|
*/
|
|
if (bf->bf_status & ATH_BUFSTATUS_STALE) {
|
|
bf_held = bf;
|
|
if (list_is_last(&bf_held->list, &sc->sc_rxbuf)) {
|
|
/*
|
|
* The holding descriptor is the last
|
|
* descriptor in queue. It's safe to
|
|
* remove the last holding descriptor
|
|
* in BH context.
|
|
*/
|
|
list_del(&bf_held->list);
|
|
bf_held->bf_status &= ~ATH_BUFSTATUS_STALE;
|
|
sc->sc_rxlink = NULL;
|
|
|
|
if (bf_held->bf_status & ATH_BUFSTATUS_FREE) {
|
|
list_add_tail(&bf_held->list,
|
|
&sc->sc_rxbuf);
|
|
ath_rx_buf_link(sc, bf_held);
|
|
}
|
|
spin_unlock_bh(&sc->sc_rxbuflock);
|
|
break;
|
|
}
|
|
bf = list_entry(bf->list.next, struct ath_buf, list);
|
|
}
|
|
|
|
ds = bf->bf_desc;
|
|
++rx_processed;
|
|
|
|
/*
|
|
* Must provide the virtual address of the current
|
|
* descriptor, the physical address, and the virtual
|
|
* address of the next descriptor in the h/w chain.
|
|
* This allows the HAL to look ahead to see if the
|
|
* hardware is done with a descriptor by checking the
|
|
* done bit in the following descriptor and the address
|
|
* of the current descriptor the DMA engine is working
|
|
* on. All this is necessary because of our use of
|
|
* a self-linked list to avoid rx overruns.
|
|
*/
|
|
retval = ath9k_hw_rxprocdesc(ah,
|
|
ds,
|
|
bf->bf_daddr,
|
|
PA2DESC(sc, ds->ds_link),
|
|
0);
|
|
if (retval == -EINPROGRESS) {
|
|
struct ath_buf *tbf;
|
|
struct ath_desc *tds;
|
|
|
|
if (list_is_last(&bf->list, &sc->sc_rxbuf)) {
|
|
spin_unlock_bh(&sc->sc_rxbuflock);
|
|
break;
|
|
}
|
|
|
|
tbf = list_entry(bf->list.next, struct ath_buf, list);
|
|
|
|
/*
|
|
* On some hardware the descriptor status words could
|
|
* get corrupted, including the done bit. Because of
|
|
* this, check if the next descriptor's done bit is
|
|
* set or not.
|
|
*
|
|
* If the next descriptor's done bit is set, the current
|
|
* descriptor has been corrupted. Force s/w to discard
|
|
* this descriptor and continue...
|
|
*/
|
|
|
|
tds = tbf->bf_desc;
|
|
retval = ath9k_hw_rxprocdesc(ah,
|
|
tds, tbf->bf_daddr,
|
|
PA2DESC(sc, tds->ds_link), 0);
|
|
if (retval == -EINPROGRESS) {
|
|
spin_unlock_bh(&sc->sc_rxbuflock);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* XXX: we do not support frames spanning
|
|
* multiple descriptors */
|
|
bf->bf_status |= ATH_BUFSTATUS_DONE;
|
|
|
|
skb = bf->bf_mpdu;
|
|
if (skb == NULL) { /* XXX ??? can this happen */
|
|
spin_unlock_bh(&sc->sc_rxbuflock);
|
|
continue;
|
|
}
|
|
/*
|
|
* Now we know it's a completed frame, we can indicate the
|
|
* frame. Remove the previous holding descriptor and leave
|
|
* this one in the queue as the new holding descriptor.
|
|
*/
|
|
if (bf_held) {
|
|
list_del(&bf_held->list);
|
|
bf_held->bf_status &= ~ATH_BUFSTATUS_STALE;
|
|
if (bf_held->bf_status & ATH_BUFSTATUS_FREE) {
|
|
list_add_tail(&bf_held->list, &sc->sc_rxbuf);
|
|
/* try to requeue this descriptor */
|
|
ath_rx_buf_link(sc, bf_held);
|
|
}
|
|
}
|
|
|
|
bf->bf_status |= ATH_BUFSTATUS_STALE;
|
|
bf_held = bf;
|
|
/*
|
|
* Release the lock here in case ieee80211_input() return
|
|
* the frame immediately by calling ath_rx_mpdu_requeue().
|
|
*/
|
|
spin_unlock_bh(&sc->sc_rxbuflock);
|
|
|
|
if (flush) {
|
|
/*
|
|
* If we're asked to flush receive queue, directly
|
|
* chain it back at the queue without processing it.
|
|
*/
|
|
goto rx_next;
|
|
}
|
|
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
fc = hdr->frame_control;
|
|
memset(&rx_status, 0, sizeof(struct ath_recv_status));
|
|
|
|
if (ds->ds_rxstat.rs_more) {
|
|
/*
|
|
* Frame spans multiple descriptors; this
|
|
* cannot happen yet as we don't support
|
|
* jumbograms. If not in monitor mode,
|
|
* discard the frame.
|
|
*/
|
|
#ifndef ERROR_FRAMES
|
|
/*
|
|
* Enable this if you want to see
|
|
* error frames in Monitor mode.
|
|
*/
|
|
if (sc->sc_ah->ah_opmode != ATH9K_M_MONITOR)
|
|
goto rx_next;
|
|
#endif
|
|
/* fall thru for monitor mode handling... */
|
|
} else if (ds->ds_rxstat.rs_status != 0) {
|
|
if (ds->ds_rxstat.rs_status & ATH9K_RXERR_CRC)
|
|
rx_status.flags |= ATH_RX_FCS_ERROR;
|
|
if (ds->ds_rxstat.rs_status & ATH9K_RXERR_PHY) {
|
|
phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
|
|
goto rx_next;
|
|
}
|
|
|
|
if (ds->ds_rxstat.rs_status & ATH9K_RXERR_DECRYPT) {
|
|
/*
|
|
* Decrypt error. We only mark packet status
|
|
* here and always push up the frame up to let
|
|
* mac80211 handle the actual error case, be
|
|
* it no decryption key or real decryption
|
|
* error. This let us keep statistics there.
|
|
*/
|
|
rx_status.flags |= ATH_RX_DECRYPT_ERROR;
|
|
} else if (ds->ds_rxstat.rs_status & ATH9K_RXERR_MIC) {
|
|
/*
|
|
* Demic error. We only mark frame status here
|
|
* and always push up the frame up to let
|
|
* mac80211 handle the actual error case. This
|
|
* let us keep statistics there. Hardware may
|
|
* post a false-positive MIC error.
|
|
*/
|
|
if (ieee80211_is_ctl(fc))
|
|
/*
|
|
* Sometimes, we get invalid
|
|
* MIC failures on valid control frames.
|
|
* Remove these mic errors.
|
|
*/
|
|
ds->ds_rxstat.rs_status &=
|
|
~ATH9K_RXERR_MIC;
|
|
else
|
|
rx_status.flags |= ATH_RX_MIC_ERROR;
|
|
}
|
|
/*
|
|
* Reject error frames with the exception of
|
|
* decryption and MIC failures. For monitor mode,
|
|
* we also ignore the CRC error.
|
|
*/
|
|
if (sc->sc_ah->ah_opmode == ATH9K_M_MONITOR) {
|
|
if (ds->ds_rxstat.rs_status &
|
|
~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
|
|
ATH9K_RXERR_CRC))
|
|
goto rx_next;
|
|
} else {
|
|
if (ds->ds_rxstat.rs_status &
|
|
~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) {
|
|
goto rx_next;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* The status portion of the descriptor could get corrupted.
|
|
*/
|
|
if (sc->sc_rxbufsize < ds->ds_rxstat.rs_datalen)
|
|
goto rx_next;
|
|
/*
|
|
* Sync and unmap the frame. At this point we're
|
|
* committed to passing the sk_buff somewhere so
|
|
* clear buf_skb; this means a new sk_buff must be
|
|
* allocated when the rx descriptor is setup again
|
|
* to receive another frame.
|
|
*/
|
|
skb_put(skb, ds->ds_rxstat.rs_datalen);
|
|
skb->protocol = cpu_to_be16(ETH_P_CONTROL);
|
|
rx_status.tsf = ath_extend_tsf(sc, ds->ds_rxstat.rs_tstamp);
|
|
rx_status.rateieee =
|
|
sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate;
|
|
rx_status.rateKbps =
|
|
sc->sc_hwmap[ds->ds_rxstat.rs_rate].rateKbps;
|
|
rx_status.ratecode = ds->ds_rxstat.rs_rate;
|
|
|
|
/* HT rate */
|
|
if (rx_status.ratecode & 0x80) {
|
|
/* TODO - add table to avoid division */
|
|
if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) {
|
|
rx_status.flags |= ATH_RX_40MHZ;
|
|
rx_status.rateKbps =
|
|
(rx_status.rateKbps * 27) / 13;
|
|
}
|
|
if (ds->ds_rxstat.rs_flags & ATH9K_RX_GI)
|
|
rx_status.rateKbps =
|
|
(rx_status.rateKbps * 10) / 9;
|
|
else
|
|
rx_status.flags |= ATH_RX_SHORT_GI;
|
|
}
|
|
|
|
/* sc_noise_floor is only available when the station
|
|
attaches to an AP, so we use a default value
|
|
if we are not yet attached. */
|
|
rx_status.abs_rssi =
|
|
ds->ds_rxstat.rs_rssi + sc->sc_ani.sc_noise_floor;
|
|
|
|
pci_dma_sync_single_for_cpu(sc->pdev,
|
|
bf->bf_buf_addr,
|
|
skb_tailroom(skb),
|
|
PCI_DMA_FROMDEVICE);
|
|
pci_unmap_single(sc->pdev,
|
|
bf->bf_buf_addr,
|
|
sc->sc_rxbufsize,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
/* XXX: Ah! make me more readable, use a helper */
|
|
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
|
|
if (ds->ds_rxstat.rs_moreaggr == 0) {
|
|
rx_status.rssictl[0] =
|
|
ds->ds_rxstat.rs_rssi_ctl0;
|
|
rx_status.rssictl[1] =
|
|
ds->ds_rxstat.rs_rssi_ctl1;
|
|
rx_status.rssictl[2] =
|
|
ds->ds_rxstat.rs_rssi_ctl2;
|
|
rx_status.rssi = ds->ds_rxstat.rs_rssi;
|
|
if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) {
|
|
rx_status.rssiextn[0] =
|
|
ds->ds_rxstat.rs_rssi_ext0;
|
|
rx_status.rssiextn[1] =
|
|
ds->ds_rxstat.rs_rssi_ext1;
|
|
rx_status.rssiextn[2] =
|
|
ds->ds_rxstat.rs_rssi_ext2;
|
|
rx_status.flags |=
|
|
ATH_RX_RSSI_EXTN_VALID;
|
|
}
|
|
rx_status.flags |= ATH_RX_RSSI_VALID |
|
|
ATH_RX_CHAIN_RSSI_VALID;
|
|
}
|
|
} else {
|
|
/*
|
|
* Need to insert the "combined" rssi into the
|
|
* status structure for upper layer processing
|
|
*/
|
|
rx_status.rssi = ds->ds_rxstat.rs_rssi;
|
|
rx_status.flags |= ATH_RX_RSSI_VALID;
|
|
}
|
|
|
|
/* Pass frames up to the stack. */
|
|
|
|
type = ath_rx_indicate(sc, skb,
|
|
&rx_status, ds->ds_rxstat.rs_keyix);
|
|
|
|
/*
|
|
* change the default rx antenna if rx diversity chooses the
|
|
* other antenna 3 times in a row.
|
|
*/
|
|
if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
|
|
if (++sc->sc_rxotherant >= 3)
|
|
ath_setdefantenna(sc,
|
|
ds->ds_rxstat.rs_antenna);
|
|
} else {
|
|
sc->sc_rxotherant = 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SLOW_ANT_DIV
|
|
if ((rx_status.flags & ATH_RX_RSSI_VALID) &&
|
|
ieee80211_is_beacon(fc)) {
|
|
ath_slow_ant_div(&sc->sc_antdiv, hdr, &ds->ds_rxstat);
|
|
}
|
|
#endif
|
|
/*
|
|
* For frames successfully indicated, the buffer will be
|
|
* returned to us by upper layers by calling
|
|
* ath_rx_mpdu_requeue, either synchronusly or asynchronously.
|
|
* So we don't want to do it here in this loop.
|
|
*/
|
|
continue;
|
|
|
|
rx_next:
|
|
bf->bf_status |= ATH_BUFSTATUS_FREE;
|
|
} while (TRUE);
|
|
|
|
if (chainreset) {
|
|
DPRINTF(sc, ATH_DBG_CONFIG,
|
|
"%s: Reset rx chain mask. "
|
|
"Do internal reset\n", __func__);
|
|
ASSERT(flush == 0);
|
|
ath_reset(sc, false);
|
|
}
|
|
|
|
return 0;
|
|
#undef PA2DESC
|
|
}
|
|
|
|
/* Process ADDBA request in per-TID data structure */
|
|
|
|
int ath_rx_aggr_start(struct ath_softc *sc,
|
|
const u8 *addr,
|
|
u16 tid,
|
|
u16 *ssn)
|
|
{
|
|
struct ath_arx_tid *rxtid;
|
|
struct ath_node *an;
|
|
struct ieee80211_hw *hw = sc->hw;
|
|
struct ieee80211_supported_band *sband;
|
|
u16 buffersize = 0;
|
|
|
|
spin_lock_bh(&sc->node_lock);
|
|
an = ath_node_find(sc, (u8 *) addr);
|
|
spin_unlock_bh(&sc->node_lock);
|
|
|
|
if (!an) {
|
|
DPRINTF(sc, ATH_DBG_AGGR,
|
|
"%s: Node not found to initialize RX aggregation\n",
|
|
__func__);
|
|
return -1;
|
|
}
|
|
|
|
sband = hw->wiphy->bands[hw->conf.channel->band];
|
|
buffersize = IEEE80211_MIN_AMPDU_BUF <<
|
|
sband->ht_info.ampdu_factor; /* FIXME */
|
|
|
|
rxtid = &an->an_aggr.rx.tid[tid];
|
|
|
|
spin_lock_bh(&rxtid->tidlock);
|
|
if (sc->sc_flags & SC_OP_RXAGGR) {
|
|
/* Allow aggregation reception
|
|
* Adjust rx BA window size. Peer might indicate a
|
|
* zero buffer size for a _dont_care_ condition.
|
|
*/
|
|
if (buffersize)
|
|
rxtid->baw_size = min(buffersize, rxtid->baw_size);
|
|
|
|
/* set rx sequence number */
|
|
rxtid->seq_next = *ssn;
|
|
|
|
/* Allocate the receive buffers for this TID */
|
|
DPRINTF(sc, ATH_DBG_AGGR,
|
|
"%s: Allcating rxbuffer for TID %d\n", __func__, tid);
|
|
|
|
if (rxtid->rxbuf == NULL) {
|
|
/*
|
|
* If the rxbuff is not NULL at this point, we *probably*
|
|
* already allocated the buffer on a previous ADDBA,
|
|
* and this is a subsequent ADDBA that got through.
|
|
* Don't allocate, but use the value in the pointer,
|
|
* we zero it out when we de-allocate.
|
|
*/
|
|
rxtid->rxbuf = kmalloc(ATH_TID_MAX_BUFS *
|
|
sizeof(struct ath_rxbuf), GFP_ATOMIC);
|
|
}
|
|
if (rxtid->rxbuf == NULL) {
|
|
DPRINTF(sc, ATH_DBG_AGGR,
|
|
"%s: Unable to allocate RX buffer, "
|
|
"refusing ADDBA\n", __func__);
|
|
} else {
|
|
/* Ensure the memory is zeroed out (all internal
|
|
* pointers are null) */
|
|
memset(rxtid->rxbuf, 0, ATH_TID_MAX_BUFS *
|
|
sizeof(struct ath_rxbuf));
|
|
DPRINTF(sc, ATH_DBG_AGGR,
|
|
"%s: Allocated @%p\n", __func__, rxtid->rxbuf);
|
|
|
|
/* Allow aggregation reception */
|
|
rxtid->addba_exchangecomplete = 1;
|
|
}
|
|
}
|
|
spin_unlock_bh(&rxtid->tidlock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Process DELBA */
|
|
|
|
int ath_rx_aggr_stop(struct ath_softc *sc,
|
|
const u8 *addr,
|
|
u16 tid)
|
|
{
|
|
struct ath_node *an;
|
|
|
|
spin_lock_bh(&sc->node_lock);
|
|
an = ath_node_find(sc, (u8 *) addr);
|
|
spin_unlock_bh(&sc->node_lock);
|
|
|
|
if (!an) {
|
|
DPRINTF(sc, ATH_DBG_AGGR,
|
|
"%s: RX aggr stop for non-existent node\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
ath_rx_aggr_teardown(sc, an, tid);
|
|
return 0;
|
|
}
|
|
|
|
/* Rx aggregation tear down */
|
|
|
|
void ath_rx_aggr_teardown(struct ath_softc *sc,
|
|
struct ath_node *an, u8 tid)
|
|
{
|
|
struct ath_arx_tid *rxtid = &an->an_aggr.rx.tid[tid];
|
|
|
|
if (!rxtid->addba_exchangecomplete)
|
|
return;
|
|
|
|
del_timer_sync(&rxtid->timer);
|
|
ath_rx_flush_tid(sc, rxtid, 0);
|
|
rxtid->addba_exchangecomplete = 0;
|
|
|
|
/* De-allocate the receive buffer array allocated when addba started */
|
|
|
|
if (rxtid->rxbuf) {
|
|
DPRINTF(sc, ATH_DBG_AGGR,
|
|
"%s: Deallocating TID %d rxbuff @%p\n",
|
|
__func__, tid, rxtid->rxbuf);
|
|
kfree(rxtid->rxbuf);
|
|
|
|
/* Set pointer to null to avoid reuse*/
|
|
rxtid->rxbuf = NULL;
|
|
}
|
|
}
|
|
|
|
/* Initialize per-node receive state */
|
|
|
|
void ath_rx_node_init(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
if (sc->sc_flags & SC_OP_RXAGGR) {
|
|
struct ath_arx_tid *rxtid;
|
|
int tidno;
|
|
|
|
/* Init per tid rx state */
|
|
for (tidno = 0, rxtid = &an->an_aggr.rx.tid[tidno];
|
|
tidno < WME_NUM_TID;
|
|
tidno++, rxtid++) {
|
|
rxtid->an = an;
|
|
rxtid->seq_reset = 1;
|
|
rxtid->seq_next = 0;
|
|
rxtid->baw_size = WME_MAX_BA;
|
|
rxtid->baw_head = rxtid->baw_tail = 0;
|
|
|
|
/*
|
|
* Ensure the buffer pointer is null at this point
|
|
* (needs to be allocated when addba is received)
|
|
*/
|
|
|
|
rxtid->rxbuf = NULL;
|
|
setup_timer(&rxtid->timer, ath_rx_timer,
|
|
(unsigned long)rxtid);
|
|
spin_lock_init(&rxtid->tidlock);
|
|
|
|
/* ADDBA state */
|
|
rxtid->addba_exchangecomplete = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ath_rx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
if (sc->sc_flags & SC_OP_RXAGGR) {
|
|
struct ath_arx_tid *rxtid;
|
|
int tidno, i;
|
|
|
|
/* Init per tid rx state */
|
|
for (tidno = 0, rxtid = &an->an_aggr.rx.tid[tidno];
|
|
tidno < WME_NUM_TID;
|
|
tidno++, rxtid++) {
|
|
|
|
if (!rxtid->addba_exchangecomplete)
|
|
continue;
|
|
|
|
/* must cancel timer first */
|
|
del_timer_sync(&rxtid->timer);
|
|
|
|
/* drop any pending sub-frames */
|
|
ath_rx_flush_tid(sc, rxtid, 1);
|
|
|
|
for (i = 0; i < ATH_TID_MAX_BUFS; i++)
|
|
ASSERT(rxtid->rxbuf[i].rx_wbuf == NULL);
|
|
|
|
rxtid->addba_exchangecomplete = 0;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* Cleanup per-node receive state */
|
|
|
|
void ath_rx_node_free(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
ath_rx_node_cleanup(sc, an);
|
|
}
|