mirror of
https://github.com/torvalds/linux.git
synced 2024-11-05 11:32:04 +00:00
dc0ef0df7b
This is a follow up work for oom_reaper [1]. As the async OOM killing depends on oom_sem for read we would really appreciate if a holder for write didn't stood in the way. This patchset is changing many of down_write calls to be killable to help those cases when the writer is blocked and waiting for readers to release the lock and so help __oom_reap_task to process the oom victim. Most of the patches are really trivial because the lock is help from a shallow syscall paths where we can return EINTR trivially and allow the current task to die (note that EINTR will never get to the userspace as the task has fatal signal pending). Others seem to be easy as well as the callers are already handling fatal errors and bail and return to userspace which should be sufficient to handle the failure gracefully. I am not familiar with all those code paths so a deeper review is really appreciated. As this work is touching more areas which are not directly connected I have tried to keep the CC list as small as possible and people who I believed would be familiar are CCed only to the specific patches (all should have received the cover though). This patchset is based on linux-next and it depends on down_write_killable for rw_semaphores which got merged into tip locking/rwsem branch and it is merged into this next tree. I guess it would be easiest to route these patches via mmotm because of the dependency on the tip tree but if respective maintainers prefer other way I have no objections. I haven't covered all the mmap_write(mm->mmap_sem) instances here $ git grep "down_write(.*\<mmap_sem\>)" next/master | wc -l 98 $ git grep "down_write(.*\<mmap_sem\>)" | wc -l 62 I have tried to cover those which should be relatively easy to review in this series because this alone should be a nice improvement. Other places can be changed on top. [0] http://lkml.kernel.org/r/1456752417-9626-1-git-send-email-mhocko@kernel.org [1] http://lkml.kernel.org/r/1452094975-551-1-git-send-email-mhocko@kernel.org [2] http://lkml.kernel.org/r/1456750705-7141-1-git-send-email-mhocko@kernel.org This patch (of 18): This is the first step in making mmap_sem write waiters killable. It focuses on the trivial ones which are taking the lock early after entering the syscall and they are not changing state before. Therefore it is very easy to change them to use down_write_killable and immediately return with -EINTR. This will allow the waiter to pass away without blocking the mmap_sem which might be required to make a forward progress. E.g. the oom reaper will need the lock for reading to dismantle the OOM victim address space. The only tricky function in this patch is vm_mmap_pgoff which has many call sites via vm_mmap. To reduce the risk keep vm_mmap with the original non-killable semantic for now. vm_munmap callers do not bother checking the return value so open code it into the munmap syscall path for now for simplicity. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
770 lines
19 KiB
C
770 lines
19 KiB
C
/*
|
|
* linux/mm/madvise.c
|
|
*
|
|
* Copyright (C) 1999 Linus Torvalds
|
|
* Copyright (C) 2002 Christoph Hellwig
|
|
*/
|
|
|
|
#include <linux/mman.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/page-isolation.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/falloc.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/ksm.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/file.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/mmu_notifier.h>
|
|
|
|
#include <asm/tlb.h>
|
|
|
|
/*
|
|
* Any behaviour which results in changes to the vma->vm_flags needs to
|
|
* take mmap_sem for writing. Others, which simply traverse vmas, need
|
|
* to only take it for reading.
|
|
*/
|
|
static int madvise_need_mmap_write(int behavior)
|
|
{
|
|
switch (behavior) {
|
|
case MADV_REMOVE:
|
|
case MADV_WILLNEED:
|
|
case MADV_DONTNEED:
|
|
case MADV_FREE:
|
|
return 0;
|
|
default:
|
|
/* be safe, default to 1. list exceptions explicitly */
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We can potentially split a vm area into separate
|
|
* areas, each area with its own behavior.
|
|
*/
|
|
static long madvise_behavior(struct vm_area_struct *vma,
|
|
struct vm_area_struct **prev,
|
|
unsigned long start, unsigned long end, int behavior)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
int error = 0;
|
|
pgoff_t pgoff;
|
|
unsigned long new_flags = vma->vm_flags;
|
|
|
|
switch (behavior) {
|
|
case MADV_NORMAL:
|
|
new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
|
|
break;
|
|
case MADV_SEQUENTIAL:
|
|
new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
|
|
break;
|
|
case MADV_RANDOM:
|
|
new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
|
|
break;
|
|
case MADV_DONTFORK:
|
|
new_flags |= VM_DONTCOPY;
|
|
break;
|
|
case MADV_DOFORK:
|
|
if (vma->vm_flags & VM_IO) {
|
|
error = -EINVAL;
|
|
goto out;
|
|
}
|
|
new_flags &= ~VM_DONTCOPY;
|
|
break;
|
|
case MADV_DONTDUMP:
|
|
new_flags |= VM_DONTDUMP;
|
|
break;
|
|
case MADV_DODUMP:
|
|
if (new_flags & VM_SPECIAL) {
|
|
error = -EINVAL;
|
|
goto out;
|
|
}
|
|
new_flags &= ~VM_DONTDUMP;
|
|
break;
|
|
case MADV_MERGEABLE:
|
|
case MADV_UNMERGEABLE:
|
|
error = ksm_madvise(vma, start, end, behavior, &new_flags);
|
|
if (error)
|
|
goto out;
|
|
break;
|
|
case MADV_HUGEPAGE:
|
|
case MADV_NOHUGEPAGE:
|
|
error = hugepage_madvise(vma, &new_flags, behavior);
|
|
if (error)
|
|
goto out;
|
|
break;
|
|
}
|
|
|
|
if (new_flags == vma->vm_flags) {
|
|
*prev = vma;
|
|
goto out;
|
|
}
|
|
|
|
pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
|
|
*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
|
|
vma->vm_file, pgoff, vma_policy(vma),
|
|
vma->vm_userfaultfd_ctx);
|
|
if (*prev) {
|
|
vma = *prev;
|
|
goto success;
|
|
}
|
|
|
|
*prev = vma;
|
|
|
|
if (start != vma->vm_start) {
|
|
error = split_vma(mm, vma, start, 1);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
if (end != vma->vm_end) {
|
|
error = split_vma(mm, vma, end, 0);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
success:
|
|
/*
|
|
* vm_flags is protected by the mmap_sem held in write mode.
|
|
*/
|
|
vma->vm_flags = new_flags;
|
|
|
|
out:
|
|
if (error == -ENOMEM)
|
|
error = -EAGAIN;
|
|
return error;
|
|
}
|
|
|
|
#ifdef CONFIG_SWAP
|
|
static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
|
|
unsigned long end, struct mm_walk *walk)
|
|
{
|
|
pte_t *orig_pte;
|
|
struct vm_area_struct *vma = walk->private;
|
|
unsigned long index;
|
|
|
|
if (pmd_none_or_trans_huge_or_clear_bad(pmd))
|
|
return 0;
|
|
|
|
for (index = start; index != end; index += PAGE_SIZE) {
|
|
pte_t pte;
|
|
swp_entry_t entry;
|
|
struct page *page;
|
|
spinlock_t *ptl;
|
|
|
|
orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
|
|
pte = *(orig_pte + ((index - start) / PAGE_SIZE));
|
|
pte_unmap_unlock(orig_pte, ptl);
|
|
|
|
if (pte_present(pte) || pte_none(pte))
|
|
continue;
|
|
entry = pte_to_swp_entry(pte);
|
|
if (unlikely(non_swap_entry(entry)))
|
|
continue;
|
|
|
|
page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
|
|
vma, index);
|
|
if (page)
|
|
put_page(page);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void force_swapin_readahead(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
struct mm_walk walk = {
|
|
.mm = vma->vm_mm,
|
|
.pmd_entry = swapin_walk_pmd_entry,
|
|
.private = vma,
|
|
};
|
|
|
|
walk_page_range(start, end, &walk);
|
|
|
|
lru_add_drain(); /* Push any new pages onto the LRU now */
|
|
}
|
|
|
|
static void force_shm_swapin_readahead(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end,
|
|
struct address_space *mapping)
|
|
{
|
|
pgoff_t index;
|
|
struct page *page;
|
|
swp_entry_t swap;
|
|
|
|
for (; start < end; start += PAGE_SIZE) {
|
|
index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
|
|
|
|
page = find_get_entry(mapping, index);
|
|
if (!radix_tree_exceptional_entry(page)) {
|
|
if (page)
|
|
put_page(page);
|
|
continue;
|
|
}
|
|
swap = radix_to_swp_entry(page);
|
|
page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
|
|
NULL, 0);
|
|
if (page)
|
|
put_page(page);
|
|
}
|
|
|
|
lru_add_drain(); /* Push any new pages onto the LRU now */
|
|
}
|
|
#endif /* CONFIG_SWAP */
|
|
|
|
/*
|
|
* Schedule all required I/O operations. Do not wait for completion.
|
|
*/
|
|
static long madvise_willneed(struct vm_area_struct *vma,
|
|
struct vm_area_struct **prev,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
struct file *file = vma->vm_file;
|
|
|
|
#ifdef CONFIG_SWAP
|
|
if (!file) {
|
|
*prev = vma;
|
|
force_swapin_readahead(vma, start, end);
|
|
return 0;
|
|
}
|
|
|
|
if (shmem_mapping(file->f_mapping)) {
|
|
*prev = vma;
|
|
force_shm_swapin_readahead(vma, start, end,
|
|
file->f_mapping);
|
|
return 0;
|
|
}
|
|
#else
|
|
if (!file)
|
|
return -EBADF;
|
|
#endif
|
|
|
|
if (IS_DAX(file_inode(file))) {
|
|
/* no bad return value, but ignore advice */
|
|
return 0;
|
|
}
|
|
|
|
*prev = vma;
|
|
start = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
|
|
if (end > vma->vm_end)
|
|
end = vma->vm_end;
|
|
end = ((end - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
|
|
|
|
force_page_cache_readahead(file->f_mapping, file, start, end - start);
|
|
return 0;
|
|
}
|
|
|
|
static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, struct mm_walk *walk)
|
|
|
|
{
|
|
struct mmu_gather *tlb = walk->private;
|
|
struct mm_struct *mm = tlb->mm;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
spinlock_t *ptl;
|
|
pte_t *orig_pte, *pte, ptent;
|
|
struct page *page;
|
|
int nr_swap = 0;
|
|
unsigned long next;
|
|
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_trans_huge(*pmd))
|
|
if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
|
|
goto next;
|
|
|
|
if (pmd_trans_unstable(pmd))
|
|
return 0;
|
|
|
|
orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
|
|
arch_enter_lazy_mmu_mode();
|
|
for (; addr != end; pte++, addr += PAGE_SIZE) {
|
|
ptent = *pte;
|
|
|
|
if (pte_none(ptent))
|
|
continue;
|
|
/*
|
|
* If the pte has swp_entry, just clear page table to
|
|
* prevent swap-in which is more expensive rather than
|
|
* (page allocation + zeroing).
|
|
*/
|
|
if (!pte_present(ptent)) {
|
|
swp_entry_t entry;
|
|
|
|
entry = pte_to_swp_entry(ptent);
|
|
if (non_swap_entry(entry))
|
|
continue;
|
|
nr_swap--;
|
|
free_swap_and_cache(entry);
|
|
pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
|
|
continue;
|
|
}
|
|
|
|
page = vm_normal_page(vma, addr, ptent);
|
|
if (!page)
|
|
continue;
|
|
|
|
/*
|
|
* If pmd isn't transhuge but the page is THP and
|
|
* is owned by only this process, split it and
|
|
* deactivate all pages.
|
|
*/
|
|
if (PageTransCompound(page)) {
|
|
if (page_mapcount(page) != 1)
|
|
goto out;
|
|
get_page(page);
|
|
if (!trylock_page(page)) {
|
|
put_page(page);
|
|
goto out;
|
|
}
|
|
pte_unmap_unlock(orig_pte, ptl);
|
|
if (split_huge_page(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
pte_offset_map_lock(mm, pmd, addr, &ptl);
|
|
goto out;
|
|
}
|
|
put_page(page);
|
|
unlock_page(page);
|
|
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
|
|
pte--;
|
|
addr -= PAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
VM_BUG_ON_PAGE(PageTransCompound(page), page);
|
|
|
|
if (PageSwapCache(page) || PageDirty(page)) {
|
|
if (!trylock_page(page))
|
|
continue;
|
|
/*
|
|
* If page is shared with others, we couldn't clear
|
|
* PG_dirty of the page.
|
|
*/
|
|
if (page_mapcount(page) != 1) {
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (PageSwapCache(page) && !try_to_free_swap(page)) {
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
|
|
ClearPageDirty(page);
|
|
unlock_page(page);
|
|
}
|
|
|
|
if (pte_young(ptent) || pte_dirty(ptent)) {
|
|
/*
|
|
* Some of architecture(ex, PPC) don't update TLB
|
|
* with set_pte_at and tlb_remove_tlb_entry so for
|
|
* the portability, remap the pte with old|clean
|
|
* after pte clearing.
|
|
*/
|
|
ptent = ptep_get_and_clear_full(mm, addr, pte,
|
|
tlb->fullmm);
|
|
|
|
ptent = pte_mkold(ptent);
|
|
ptent = pte_mkclean(ptent);
|
|
set_pte_at(mm, addr, pte, ptent);
|
|
if (PageActive(page))
|
|
deactivate_page(page);
|
|
tlb_remove_tlb_entry(tlb, pte, addr);
|
|
}
|
|
}
|
|
out:
|
|
if (nr_swap) {
|
|
if (current->mm == mm)
|
|
sync_mm_rss(mm);
|
|
|
|
add_mm_counter(mm, MM_SWAPENTS, nr_swap);
|
|
}
|
|
arch_leave_lazy_mmu_mode();
|
|
pte_unmap_unlock(orig_pte, ptl);
|
|
cond_resched();
|
|
next:
|
|
return 0;
|
|
}
|
|
|
|
static void madvise_free_page_range(struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma,
|
|
unsigned long addr, unsigned long end)
|
|
{
|
|
struct mm_walk free_walk = {
|
|
.pmd_entry = madvise_free_pte_range,
|
|
.mm = vma->vm_mm,
|
|
.private = tlb,
|
|
};
|
|
|
|
tlb_start_vma(tlb, vma);
|
|
walk_page_range(addr, end, &free_walk);
|
|
tlb_end_vma(tlb, vma);
|
|
}
|
|
|
|
static int madvise_free_single_vma(struct vm_area_struct *vma,
|
|
unsigned long start_addr, unsigned long end_addr)
|
|
{
|
|
unsigned long start, end;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct mmu_gather tlb;
|
|
|
|
if (vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP))
|
|
return -EINVAL;
|
|
|
|
/* MADV_FREE works for only anon vma at the moment */
|
|
if (!vma_is_anonymous(vma))
|
|
return -EINVAL;
|
|
|
|
start = max(vma->vm_start, start_addr);
|
|
if (start >= vma->vm_end)
|
|
return -EINVAL;
|
|
end = min(vma->vm_end, end_addr);
|
|
if (end <= vma->vm_start)
|
|
return -EINVAL;
|
|
|
|
lru_add_drain();
|
|
tlb_gather_mmu(&tlb, mm, start, end);
|
|
update_hiwater_rss(mm);
|
|
|
|
mmu_notifier_invalidate_range_start(mm, start, end);
|
|
madvise_free_page_range(&tlb, vma, start, end);
|
|
mmu_notifier_invalidate_range_end(mm, start, end);
|
|
tlb_finish_mmu(&tlb, start, end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long madvise_free(struct vm_area_struct *vma,
|
|
struct vm_area_struct **prev,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
*prev = vma;
|
|
return madvise_free_single_vma(vma, start, end);
|
|
}
|
|
|
|
/*
|
|
* Application no longer needs these pages. If the pages are dirty,
|
|
* it's OK to just throw them away. The app will be more careful about
|
|
* data it wants to keep. Be sure to free swap resources too. The
|
|
* zap_page_range call sets things up for shrink_active_list to actually free
|
|
* these pages later if no one else has touched them in the meantime,
|
|
* although we could add these pages to a global reuse list for
|
|
* shrink_active_list to pick up before reclaiming other pages.
|
|
*
|
|
* NB: This interface discards data rather than pushes it out to swap,
|
|
* as some implementations do. This has performance implications for
|
|
* applications like large transactional databases which want to discard
|
|
* pages in anonymous maps after committing to backing store the data
|
|
* that was kept in them. There is no reason to write this data out to
|
|
* the swap area if the application is discarding it.
|
|
*
|
|
* An interface that causes the system to free clean pages and flush
|
|
* dirty pages is already available as msync(MS_INVALIDATE).
|
|
*/
|
|
static long madvise_dontneed(struct vm_area_struct *vma,
|
|
struct vm_area_struct **prev,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
*prev = vma;
|
|
if (vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP))
|
|
return -EINVAL;
|
|
|
|
zap_page_range(vma, start, end - start, NULL);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Application wants to free up the pages and associated backing store.
|
|
* This is effectively punching a hole into the middle of a file.
|
|
*/
|
|
static long madvise_remove(struct vm_area_struct *vma,
|
|
struct vm_area_struct **prev,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
loff_t offset;
|
|
int error;
|
|
struct file *f;
|
|
|
|
*prev = NULL; /* tell sys_madvise we drop mmap_sem */
|
|
|
|
if (vma->vm_flags & VM_LOCKED)
|
|
return -EINVAL;
|
|
|
|
f = vma->vm_file;
|
|
|
|
if (!f || !f->f_mapping || !f->f_mapping->host) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
|
|
return -EACCES;
|
|
|
|
offset = (loff_t)(start - vma->vm_start)
|
|
+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
|
|
|
|
/*
|
|
* Filesystem's fallocate may need to take i_mutex. We need to
|
|
* explicitly grab a reference because the vma (and hence the
|
|
* vma's reference to the file) can go away as soon as we drop
|
|
* mmap_sem.
|
|
*/
|
|
get_file(f);
|
|
up_read(¤t->mm->mmap_sem);
|
|
error = vfs_fallocate(f,
|
|
FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
|
|
offset, end - start);
|
|
fput(f);
|
|
down_read(¤t->mm->mmap_sem);
|
|
return error;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
/*
|
|
* Error injection support for memory error handling.
|
|
*/
|
|
static int madvise_hwpoison(int bhv, unsigned long start, unsigned long end)
|
|
{
|
|
struct page *p;
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
for (; start < end; start += PAGE_SIZE <<
|
|
compound_order(compound_head(p))) {
|
|
int ret;
|
|
|
|
ret = get_user_pages_fast(start, 1, 0, &p);
|
|
if (ret != 1)
|
|
return ret;
|
|
|
|
if (PageHWPoison(p)) {
|
|
put_page(p);
|
|
continue;
|
|
}
|
|
if (bhv == MADV_SOFT_OFFLINE) {
|
|
pr_info("Soft offlining page %#lx at %#lx\n",
|
|
page_to_pfn(p), start);
|
|
ret = soft_offline_page(p, MF_COUNT_INCREASED);
|
|
if (ret)
|
|
return ret;
|
|
continue;
|
|
}
|
|
pr_info("Injecting memory failure for page %#lx at %#lx\n",
|
|
page_to_pfn(p), start);
|
|
ret = memory_failure(page_to_pfn(p), 0, MF_COUNT_INCREASED);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static long
|
|
madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
|
|
unsigned long start, unsigned long end, int behavior)
|
|
{
|
|
switch (behavior) {
|
|
case MADV_REMOVE:
|
|
return madvise_remove(vma, prev, start, end);
|
|
case MADV_WILLNEED:
|
|
return madvise_willneed(vma, prev, start, end);
|
|
case MADV_FREE:
|
|
/*
|
|
* XXX: In this implementation, MADV_FREE works like
|
|
* MADV_DONTNEED on swapless system or full swap.
|
|
*/
|
|
if (get_nr_swap_pages() > 0)
|
|
return madvise_free(vma, prev, start, end);
|
|
/* passthrough */
|
|
case MADV_DONTNEED:
|
|
return madvise_dontneed(vma, prev, start, end);
|
|
default:
|
|
return madvise_behavior(vma, prev, start, end, behavior);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
madvise_behavior_valid(int behavior)
|
|
{
|
|
switch (behavior) {
|
|
case MADV_DOFORK:
|
|
case MADV_DONTFORK:
|
|
case MADV_NORMAL:
|
|
case MADV_SEQUENTIAL:
|
|
case MADV_RANDOM:
|
|
case MADV_REMOVE:
|
|
case MADV_WILLNEED:
|
|
case MADV_DONTNEED:
|
|
case MADV_FREE:
|
|
#ifdef CONFIG_KSM
|
|
case MADV_MERGEABLE:
|
|
case MADV_UNMERGEABLE:
|
|
#endif
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
case MADV_HUGEPAGE:
|
|
case MADV_NOHUGEPAGE:
|
|
#endif
|
|
case MADV_DONTDUMP:
|
|
case MADV_DODUMP:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The madvise(2) system call.
|
|
*
|
|
* Applications can use madvise() to advise the kernel how it should
|
|
* handle paging I/O in this VM area. The idea is to help the kernel
|
|
* use appropriate read-ahead and caching techniques. The information
|
|
* provided is advisory only, and can be safely disregarded by the
|
|
* kernel without affecting the correct operation of the application.
|
|
*
|
|
* behavior values:
|
|
* MADV_NORMAL - the default behavior is to read clusters. This
|
|
* results in some read-ahead and read-behind.
|
|
* MADV_RANDOM - the system should read the minimum amount of data
|
|
* on any access, since it is unlikely that the appli-
|
|
* cation will need more than what it asks for.
|
|
* MADV_SEQUENTIAL - pages in the given range will probably be accessed
|
|
* once, so they can be aggressively read ahead, and
|
|
* can be freed soon after they are accessed.
|
|
* MADV_WILLNEED - the application is notifying the system to read
|
|
* some pages ahead.
|
|
* MADV_DONTNEED - the application is finished with the given range,
|
|
* so the kernel can free resources associated with it.
|
|
* MADV_FREE - the application marks pages in the given range as lazy free,
|
|
* where actual purges are postponed until memory pressure happens.
|
|
* MADV_REMOVE - the application wants to free up the given range of
|
|
* pages and associated backing store.
|
|
* MADV_DONTFORK - omit this area from child's address space when forking:
|
|
* typically, to avoid COWing pages pinned by get_user_pages().
|
|
* MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
|
|
* MADV_HWPOISON - trigger memory error handler as if the given memory range
|
|
* were corrupted by unrecoverable hardware memory failure.
|
|
* MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
|
|
* MADV_MERGEABLE - the application recommends that KSM try to merge pages in
|
|
* this area with pages of identical content from other such areas.
|
|
* MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
|
|
* MADV_HUGEPAGE - the application wants to back the given range by transparent
|
|
* huge pages in the future. Existing pages might be coalesced and
|
|
* new pages might be allocated as THP.
|
|
* MADV_NOHUGEPAGE - mark the given range as not worth being backed by
|
|
* transparent huge pages so the existing pages will not be
|
|
* coalesced into THP and new pages will not be allocated as THP.
|
|
* MADV_DONTDUMP - the application wants to prevent pages in the given range
|
|
* from being included in its core dump.
|
|
* MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
|
|
*
|
|
* return values:
|
|
* zero - success
|
|
* -EINVAL - start + len < 0, start is not page-aligned,
|
|
* "behavior" is not a valid value, or application
|
|
* is attempting to release locked or shared pages.
|
|
* -ENOMEM - addresses in the specified range are not currently
|
|
* mapped, or are outside the AS of the process.
|
|
* -EIO - an I/O error occurred while paging in data.
|
|
* -EBADF - map exists, but area maps something that isn't a file.
|
|
* -EAGAIN - a kernel resource was temporarily unavailable.
|
|
*/
|
|
SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
|
|
{
|
|
unsigned long end, tmp;
|
|
struct vm_area_struct *vma, *prev;
|
|
int unmapped_error = 0;
|
|
int error = -EINVAL;
|
|
int write;
|
|
size_t len;
|
|
struct blk_plug plug;
|
|
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
|
|
return madvise_hwpoison(behavior, start, start+len_in);
|
|
#endif
|
|
if (!madvise_behavior_valid(behavior))
|
|
return error;
|
|
|
|
if (start & ~PAGE_MASK)
|
|
return error;
|
|
len = (len_in + ~PAGE_MASK) & PAGE_MASK;
|
|
|
|
/* Check to see whether len was rounded up from small -ve to zero */
|
|
if (len_in && !len)
|
|
return error;
|
|
|
|
end = start + len;
|
|
if (end < start)
|
|
return error;
|
|
|
|
error = 0;
|
|
if (end == start)
|
|
return error;
|
|
|
|
write = madvise_need_mmap_write(behavior);
|
|
if (write) {
|
|
if (down_write_killable(¤t->mm->mmap_sem))
|
|
return -EINTR;
|
|
} else {
|
|
down_read(¤t->mm->mmap_sem);
|
|
}
|
|
|
|
/*
|
|
* If the interval [start,end) covers some unmapped address
|
|
* ranges, just ignore them, but return -ENOMEM at the end.
|
|
* - different from the way of handling in mlock etc.
|
|
*/
|
|
vma = find_vma_prev(current->mm, start, &prev);
|
|
if (vma && start > vma->vm_start)
|
|
prev = vma;
|
|
|
|
blk_start_plug(&plug);
|
|
for (;;) {
|
|
/* Still start < end. */
|
|
error = -ENOMEM;
|
|
if (!vma)
|
|
goto out;
|
|
|
|
/* Here start < (end|vma->vm_end). */
|
|
if (start < vma->vm_start) {
|
|
unmapped_error = -ENOMEM;
|
|
start = vma->vm_start;
|
|
if (start >= end)
|
|
goto out;
|
|
}
|
|
|
|
/* Here vma->vm_start <= start < (end|vma->vm_end) */
|
|
tmp = vma->vm_end;
|
|
if (end < tmp)
|
|
tmp = end;
|
|
|
|
/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
|
|
error = madvise_vma(vma, &prev, start, tmp, behavior);
|
|
if (error)
|
|
goto out;
|
|
start = tmp;
|
|
if (prev && start < prev->vm_end)
|
|
start = prev->vm_end;
|
|
error = unmapped_error;
|
|
if (start >= end)
|
|
goto out;
|
|
if (prev)
|
|
vma = prev->vm_next;
|
|
else /* madvise_remove dropped mmap_sem */
|
|
vma = find_vma(current->mm, start);
|
|
}
|
|
out:
|
|
blk_finish_plug(&plug);
|
|
if (write)
|
|
up_write(¤t->mm->mmap_sem);
|
|
else
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
return error;
|
|
}
|