linux/arch/ia64/sn/kernel/irq.c
Thomas Gleixner 785aebd0cf ia64: Validate online cpus in irq_set_affinity() callbacks
The [user space] interface does not filter out offline cpus. It merily
guarantees that the mask contains at least one online cpu.

So the selector in the irq chip implementation needs to make sure to
pick only an online cpu because otherwise:

     Offline Core 1
     Set affinity to 0xe (is valid due to online mask 0xd)
     cpumask_first will pick core 1, which is offline

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: ia64 <linux-ia64@vger.kernel.org>
Link: http://lkml.kernel.org/r/20140304203100.650414633@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-03-12 13:07:40 +01:00

489 lines
12 KiB
C

/*
* Platform dependent support for SGI SN
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2000-2008 Silicon Graphics, Inc. All Rights Reserved.
*/
#include <linux/irq.h>
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/rculist.h>
#include <linux/slab.h>
#include <asm/sn/addrs.h>
#include <asm/sn/arch.h>
#include <asm/sn/intr.h>
#include <asm/sn/pcibr_provider.h>
#include <asm/sn/pcibus_provider_defs.h>
#include <asm/sn/pcidev.h>
#include <asm/sn/shub_mmr.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/sn_feature_sets.h>
static void register_intr_pda(struct sn_irq_info *sn_irq_info);
static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
extern int sn_ioif_inited;
struct list_head **sn_irq_lh;
static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */
u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
struct sn_irq_info *sn_irq_info,
int req_irq, nasid_t req_nasid,
int req_slice)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
(u64) SAL_INTR_ALLOC, (u64) local_nasid,
(u64) local_widget, __pa(sn_irq_info), (u64) req_irq,
(u64) req_nasid, (u64) req_slice);
return ret_stuff.status;
}
void sn_intr_free(nasid_t local_nasid, int local_widget,
struct sn_irq_info *sn_irq_info)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
(u64) SAL_INTR_FREE, (u64) local_nasid,
(u64) local_widget, (u64) sn_irq_info->irq_irq,
(u64) sn_irq_info->irq_cookie, 0, 0);
}
u64 sn_intr_redirect(nasid_t local_nasid, int local_widget,
struct sn_irq_info *sn_irq_info,
nasid_t req_nasid, int req_slice)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
(u64) SAL_INTR_REDIRECT, (u64) local_nasid,
(u64) local_widget, __pa(sn_irq_info),
(u64) req_nasid, (u64) req_slice, 0);
return ret_stuff.status;
}
static unsigned int sn_startup_irq(struct irq_data *data)
{
return 0;
}
static void sn_shutdown_irq(struct irq_data *data)
{
}
extern void ia64_mca_register_cpev(int);
static void sn_disable_irq(struct irq_data *data)
{
if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
ia64_mca_register_cpev(0);
}
static void sn_enable_irq(struct irq_data *data)
{
if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
ia64_mca_register_cpev(data->irq);
}
static void sn_ack_irq(struct irq_data *data)
{
u64 event_occurred, mask;
unsigned int irq = data->irq & 0xff;
event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
mask = event_occurred & SH_ALL_INT_MASK;
HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), mask);
__set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
irq_move_irq(data);
}
struct sn_irq_info *sn_retarget_vector(struct sn_irq_info *sn_irq_info,
nasid_t nasid, int slice)
{
int vector;
int cpuid;
#ifdef CONFIG_SMP
int cpuphys;
#endif
int64_t bridge;
int local_widget, status;
nasid_t local_nasid;
struct sn_irq_info *new_irq_info;
struct sn_pcibus_provider *pci_provider;
bridge = (u64) sn_irq_info->irq_bridge;
if (!bridge) {
return NULL; /* irq is not a device interrupt */
}
local_nasid = NASID_GET(bridge);
if (local_nasid & 1)
local_widget = TIO_SWIN_WIDGETNUM(bridge);
else
local_widget = SWIN_WIDGETNUM(bridge);
vector = sn_irq_info->irq_irq;
/* Make use of SAL_INTR_REDIRECT if PROM supports it */
status = sn_intr_redirect(local_nasid, local_widget, sn_irq_info, nasid, slice);
if (!status) {
new_irq_info = sn_irq_info;
goto finish_up;
}
/*
* PROM does not support SAL_INTR_REDIRECT, or it failed.
* Revert to old method.
*/
new_irq_info = kmemdup(sn_irq_info, sizeof(struct sn_irq_info),
GFP_ATOMIC);
if (new_irq_info == NULL)
return NULL;
/* Free the old PROM new_irq_info structure */
sn_intr_free(local_nasid, local_widget, new_irq_info);
unregister_intr_pda(new_irq_info);
/* allocate a new PROM new_irq_info struct */
status = sn_intr_alloc(local_nasid, local_widget,
new_irq_info, vector,
nasid, slice);
/* SAL call failed */
if (status) {
kfree(new_irq_info);
return NULL;
}
register_intr_pda(new_irq_info);
spin_lock(&sn_irq_info_lock);
list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
spin_unlock(&sn_irq_info_lock);
kfree_rcu(sn_irq_info, rcu);
finish_up:
/* Update kernels new_irq_info with new target info */
cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid,
new_irq_info->irq_slice);
new_irq_info->irq_cpuid = cpuid;
pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
/*
* If this represents a line interrupt, target it. If it's
* an msi (irq_int_bit < 0), it's already targeted.
*/
if (new_irq_info->irq_int_bit >= 0 &&
pci_provider && pci_provider->target_interrupt)
(pci_provider->target_interrupt)(new_irq_info);
#ifdef CONFIG_SMP
cpuphys = cpu_physical_id(cpuid);
set_irq_affinity_info((vector & 0xff), cpuphys, 0);
#endif
return new_irq_info;
}
static int sn_set_affinity_irq(struct irq_data *data,
const struct cpumask *mask, bool force)
{
struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
unsigned int irq = data->irq;
nasid_t nasid;
int slice;
nasid = cpuid_to_nasid(cpumask_first_and(mask, cpu_online_mask));
slice = cpuid_to_slice(cpumask_first_and(mask, cpu_online_mask));
list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
sn_irq_lh[irq], list)
(void)sn_retarget_vector(sn_irq_info, nasid, slice);
return 0;
}
#ifdef CONFIG_SMP
void sn_set_err_irq_affinity(unsigned int irq)
{
/*
* On systems which support CPU disabling (SHub2), all error interrupts
* are targeted at the boot CPU.
*/
if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT))
set_irq_affinity_info(irq, cpu_physical_id(0), 0);
}
#else
void sn_set_err_irq_affinity(unsigned int irq) { }
#endif
static void
sn_mask_irq(struct irq_data *data)
{
}
static void
sn_unmask_irq(struct irq_data *data)
{
}
struct irq_chip irq_type_sn = {
.name = "SN hub",
.irq_startup = sn_startup_irq,
.irq_shutdown = sn_shutdown_irq,
.irq_enable = sn_enable_irq,
.irq_disable = sn_disable_irq,
.irq_ack = sn_ack_irq,
.irq_mask = sn_mask_irq,
.irq_unmask = sn_unmask_irq,
.irq_set_affinity = sn_set_affinity_irq
};
ia64_vector sn_irq_to_vector(int irq)
{
if (irq >= IA64_NUM_VECTORS)
return 0;
return (ia64_vector)irq;
}
unsigned int sn_local_vector_to_irq(u8 vector)
{
return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
}
void sn_irq_init(void)
{
int i;
ia64_first_device_vector = IA64_SN2_FIRST_DEVICE_VECTOR;
ia64_last_device_vector = IA64_SN2_LAST_DEVICE_VECTOR;
for (i = 0; i < NR_IRQS; i++) {
if (irq_get_chip(i) == &no_irq_chip)
irq_set_chip(i, &irq_type_sn);
}
}
static void register_intr_pda(struct sn_irq_info *sn_irq_info)
{
int irq = sn_irq_info->irq_irq;
int cpu = sn_irq_info->irq_cpuid;
if (pdacpu(cpu)->sn_last_irq < irq) {
pdacpu(cpu)->sn_last_irq = irq;
}
if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq)
pdacpu(cpu)->sn_first_irq = irq;
}
static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
{
int irq = sn_irq_info->irq_irq;
int cpu = sn_irq_info->irq_cpuid;
struct sn_irq_info *tmp_irq_info;
int i, foundmatch;
rcu_read_lock();
if (pdacpu(cpu)->sn_last_irq == irq) {
foundmatch = 0;
for (i = pdacpu(cpu)->sn_last_irq - 1;
i && !foundmatch; i--) {
list_for_each_entry_rcu(tmp_irq_info,
sn_irq_lh[i],
list) {
if (tmp_irq_info->irq_cpuid == cpu) {
foundmatch = 1;
break;
}
}
}
pdacpu(cpu)->sn_last_irq = i;
}
if (pdacpu(cpu)->sn_first_irq == irq) {
foundmatch = 0;
for (i = pdacpu(cpu)->sn_first_irq + 1;
i < NR_IRQS && !foundmatch; i++) {
list_for_each_entry_rcu(tmp_irq_info,
sn_irq_lh[i],
list) {
if (tmp_irq_info->irq_cpuid == cpu) {
foundmatch = 1;
break;
}
}
}
pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
}
rcu_read_unlock();
}
void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
{
nasid_t nasid = sn_irq_info->irq_nasid;
int slice = sn_irq_info->irq_slice;
int cpu = nasid_slice_to_cpuid(nasid, slice);
#ifdef CONFIG_SMP
int cpuphys;
#endif
pci_dev_get(pci_dev);
sn_irq_info->irq_cpuid = cpu;
sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
/* link it into the sn_irq[irq] list */
spin_lock(&sn_irq_info_lock);
list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
reserve_irq_vector(sn_irq_info->irq_irq);
if (sn_irq_info->irq_int_bit != -1)
irq_set_handler(sn_irq_info->irq_irq, handle_level_irq);
spin_unlock(&sn_irq_info_lock);
register_intr_pda(sn_irq_info);
#ifdef CONFIG_SMP
cpuphys = cpu_physical_id(cpu);
set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0);
/*
* Affinity was set by the PROM, prevent it from
* being reset by the request_irq() path.
*/
irqd_mark_affinity_was_set(irq_get_irq_data(sn_irq_info->irq_irq));
#endif
}
void sn_irq_unfixup(struct pci_dev *pci_dev)
{
struct sn_irq_info *sn_irq_info;
/* Only cleanup IRQ stuff if this device has a host bus context */
if (!SN_PCIDEV_BUSSOFT(pci_dev))
return;
sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
if (!sn_irq_info)
return;
if (!sn_irq_info->irq_irq) {
kfree(sn_irq_info);
return;
}
unregister_intr_pda(sn_irq_info);
spin_lock(&sn_irq_info_lock);
list_del_rcu(&sn_irq_info->list);
spin_unlock(&sn_irq_info_lock);
if (list_empty(sn_irq_lh[sn_irq_info->irq_irq]))
free_irq_vector(sn_irq_info->irq_irq);
kfree_rcu(sn_irq_info, rcu);
pci_dev_put(pci_dev);
}
static inline void
sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
{
struct sn_pcibus_provider *pci_provider;
pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
/* Don't force an interrupt if the irq has been disabled */
if (!irqd_irq_disabled(irq_get_irq_data(sn_irq_info->irq_irq)) &&
pci_provider && pci_provider->force_interrupt)
(*pci_provider->force_interrupt)(sn_irq_info);
}
/*
* Check for lost interrupts. If the PIC int_status reg. says that
* an interrupt has been sent, but not handled, and the interrupt
* is not pending in either the cpu irr regs or in the soft irr regs,
* and the interrupt is not in service, then the interrupt may have
* been lost. Force an interrupt on that pin. It is possible that
* the interrupt is in flight, so we may generate a spurious interrupt,
* but we should never miss a real lost interrupt.
*/
static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
{
u64 regval;
struct pcidev_info *pcidev_info;
struct pcibus_info *pcibus_info;
/*
* Bridge types attached to TIO (anything but PIC) do not need this WAR
* since they do not target Shub II interrupt registers. If that
* ever changes, this check needs to accommodate.
*/
if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
return;
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
if (!pcidev_info)
return;
pcibus_info =
(struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
pdi_pcibus_info;
regval = pcireg_intr_status_get(pcibus_info);
if (!ia64_get_irr(irq_to_vector(irq))) {
if (!test_bit(irq, pda->sn_in_service_ivecs)) {
regval &= 0xff;
if (sn_irq_info->irq_int_bit & regval &
sn_irq_info->irq_last_intr) {
regval &= ~(sn_irq_info->irq_int_bit & regval);
sn_call_force_intr_provider(sn_irq_info);
}
}
}
sn_irq_info->irq_last_intr = regval;
}
void sn_lb_int_war_check(void)
{
struct sn_irq_info *sn_irq_info;
int i;
if (!sn_ioif_inited || pda->sn_first_irq == 0)
return;
rcu_read_lock();
for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
sn_check_intr(i, sn_irq_info);
}
}
rcu_read_unlock();
}
void __init sn_irq_lh_init(void)
{
int i;
sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
if (!sn_irq_lh)
panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
for (i = 0; i < NR_IRQS; i++) {
sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
if (!sn_irq_lh[i])
panic("SN PCI INIT: Failed IRQ memory allocation\n");
INIT_LIST_HEAD(sn_irq_lh[i]);
}
}