linux/drivers/hwmon/pmbus/zl6100.c
Uwe Kleine-König 1975d16786 hwmon: Switch i2c drivers back to use .probe()
After commit b8a1a4cd5a ("i2c: Provide a temporary .probe_new()
call-back type"), all drivers being converted to .probe_new() and then
03c835f498 ("i2c: Switch .probe() to not take an id parameter") convert
back to (the new) .probe() to be able to eventually drop .probe_new() from
struct i2c_driver.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/20230505131718.1210071-1-u.kleine-koenig@pengutronix.de
[groeck: Added missing change in pmbus/acbel-fsg032.c]
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2023-06-08 06:41:17 -07:00

474 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Hardware monitoring driver for ZL6100 and compatibles
*
* Copyright (c) 2011 Ericsson AB.
* Copyright (c) 2012 Guenter Roeck
*/
#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/ktime.h>
#include <linux/delay.h>
#include "pmbus.h"
enum chips { zl2004, zl2005, zl2006, zl2008, zl2105, zl2106, zl6100, zl6105,
zl8802, zl9101, zl9117, zls1003, zls4009 };
struct zl6100_data {
int id;
ktime_t access; /* chip access time */
int delay; /* Delay between chip accesses in uS */
struct pmbus_driver_info info;
};
#define to_zl6100_data(x) container_of(x, struct zl6100_data, info)
#define ZL6100_MFR_CONFIG 0xd0
#define ZL6100_DEVICE_ID 0xe4
#define ZL6100_MFR_XTEMP_ENABLE BIT(7)
#define ZL8802_MFR_USER_GLOBAL_CONFIG 0xe9
#define ZL8802_MFR_TMON_ENABLE BIT(12)
#define ZL8802_MFR_USER_CONFIG 0xd1
#define ZL8802_MFR_XTEMP_ENABLE_2 BIT(1)
#define ZL8802_MFR_DDC_CONFIG 0xd3
#define ZL8802_MFR_PHASES_MASK 0x0007
#define MFR_VMON_OV_FAULT_LIMIT 0xf5
#define MFR_VMON_UV_FAULT_LIMIT 0xf6
#define MFR_READ_VMON 0xf7
#define VMON_UV_WARNING BIT(5)
#define VMON_OV_WARNING BIT(4)
#define VMON_UV_FAULT BIT(1)
#define VMON_OV_FAULT BIT(0)
#define ZL6100_WAIT_TIME 1000 /* uS */
static ushort delay = ZL6100_WAIT_TIME;
module_param(delay, ushort, 0644);
MODULE_PARM_DESC(delay, "Delay between chip accesses in uS");
/* Convert linear sensor value to milli-units */
static long zl6100_l2d(s16 l)
{
s16 exponent;
s32 mantissa;
long val;
exponent = l >> 11;
mantissa = ((s16)((l & 0x7ff) << 5)) >> 5;
val = mantissa;
/* scale result to milli-units */
val = val * 1000L;
if (exponent >= 0)
val <<= exponent;
else
val >>= -exponent;
return val;
}
#define MAX_MANTISSA (1023 * 1000)
#define MIN_MANTISSA (511 * 1000)
static u16 zl6100_d2l(long val)
{
s16 exponent = 0, mantissa;
bool negative = false;
/* simple case */
if (val == 0)
return 0;
if (val < 0) {
negative = true;
val = -val;
}
/* Reduce large mantissa until it fits into 10 bit */
while (val >= MAX_MANTISSA && exponent < 15) {
exponent++;
val >>= 1;
}
/* Increase small mantissa to improve precision */
while (val < MIN_MANTISSA && exponent > -15) {
exponent--;
val <<= 1;
}
/* Convert mantissa from milli-units to units */
mantissa = DIV_ROUND_CLOSEST(val, 1000);
/* Ensure that resulting number is within range */
if (mantissa > 0x3ff)
mantissa = 0x3ff;
/* restore sign */
if (negative)
mantissa = -mantissa;
/* Convert to 5 bit exponent, 11 bit mantissa */
return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
}
/* Some chips need a delay between accesses */
static inline void zl6100_wait(const struct zl6100_data *data)
{
if (data->delay) {
s64 delta = ktime_us_delta(ktime_get(), data->access);
if (delta < data->delay)
udelay(data->delay - delta);
}
}
static int zl6100_read_word_data(struct i2c_client *client, int page,
int phase, int reg)
{
const struct pmbus_driver_info *info = pmbus_get_driver_info(client);
struct zl6100_data *data = to_zl6100_data(info);
int ret, vreg;
if (page >= info->pages)
return -ENXIO;
if (data->id == zl2005) {
/*
* Limit register detection is not reliable on ZL2005.
* Make sure registers are not erroneously detected.
*/
switch (reg) {
case PMBUS_VOUT_OV_WARN_LIMIT:
case PMBUS_VOUT_UV_WARN_LIMIT:
case PMBUS_IOUT_OC_WARN_LIMIT:
return -ENXIO;
}
}
switch (reg) {
case PMBUS_VIRT_READ_VMON:
vreg = MFR_READ_VMON;
break;
case PMBUS_VIRT_VMON_OV_WARN_LIMIT:
case PMBUS_VIRT_VMON_OV_FAULT_LIMIT:
vreg = MFR_VMON_OV_FAULT_LIMIT;
break;
case PMBUS_VIRT_VMON_UV_WARN_LIMIT:
case PMBUS_VIRT_VMON_UV_FAULT_LIMIT:
vreg = MFR_VMON_UV_FAULT_LIMIT;
break;
default:
if (reg >= PMBUS_VIRT_BASE)
return -ENXIO;
vreg = reg;
break;
}
zl6100_wait(data);
ret = pmbus_read_word_data(client, page, phase, vreg);
data->access = ktime_get();
if (ret < 0)
return ret;
switch (reg) {
case PMBUS_VIRT_VMON_OV_WARN_LIMIT:
ret = zl6100_d2l(DIV_ROUND_CLOSEST(zl6100_l2d(ret) * 9, 10));
break;
case PMBUS_VIRT_VMON_UV_WARN_LIMIT:
ret = zl6100_d2l(DIV_ROUND_CLOSEST(zl6100_l2d(ret) * 11, 10));
break;
}
return ret;
}
static int zl6100_read_byte_data(struct i2c_client *client, int page, int reg)
{
const struct pmbus_driver_info *info = pmbus_get_driver_info(client);
struct zl6100_data *data = to_zl6100_data(info);
int ret, status;
if (page >= info->pages)
return -ENXIO;
zl6100_wait(data);
switch (reg) {
case PMBUS_VIRT_STATUS_VMON:
ret = pmbus_read_byte_data(client, 0,
PMBUS_STATUS_MFR_SPECIFIC);
if (ret < 0)
break;
status = 0;
if (ret & VMON_UV_WARNING)
status |= PB_VOLTAGE_UV_WARNING;
if (ret & VMON_OV_WARNING)
status |= PB_VOLTAGE_OV_WARNING;
if (ret & VMON_UV_FAULT)
status |= PB_VOLTAGE_UV_FAULT;
if (ret & VMON_OV_FAULT)
status |= PB_VOLTAGE_OV_FAULT;
ret = status;
break;
default:
ret = pmbus_read_byte_data(client, page, reg);
break;
}
data->access = ktime_get();
return ret;
}
static int zl6100_write_word_data(struct i2c_client *client, int page, int reg,
u16 word)
{
const struct pmbus_driver_info *info = pmbus_get_driver_info(client);
struct zl6100_data *data = to_zl6100_data(info);
int ret, vreg;
if (page >= info->pages)
return -ENXIO;
switch (reg) {
case PMBUS_VIRT_VMON_OV_WARN_LIMIT:
word = zl6100_d2l(DIV_ROUND_CLOSEST(zl6100_l2d(word) * 10, 9));
vreg = MFR_VMON_OV_FAULT_LIMIT;
pmbus_clear_cache(client);
break;
case PMBUS_VIRT_VMON_OV_FAULT_LIMIT:
vreg = MFR_VMON_OV_FAULT_LIMIT;
pmbus_clear_cache(client);
break;
case PMBUS_VIRT_VMON_UV_WARN_LIMIT:
word = zl6100_d2l(DIV_ROUND_CLOSEST(zl6100_l2d(word) * 10, 11));
vreg = MFR_VMON_UV_FAULT_LIMIT;
pmbus_clear_cache(client);
break;
case PMBUS_VIRT_VMON_UV_FAULT_LIMIT:
vreg = MFR_VMON_UV_FAULT_LIMIT;
pmbus_clear_cache(client);
break;
default:
if (reg >= PMBUS_VIRT_BASE)
return -ENXIO;
vreg = reg;
}
zl6100_wait(data);
ret = pmbus_write_word_data(client, page, vreg, word);
data->access = ktime_get();
return ret;
}
static int zl6100_write_byte(struct i2c_client *client, int page, u8 value)
{
const struct pmbus_driver_info *info = pmbus_get_driver_info(client);
struct zl6100_data *data = to_zl6100_data(info);
int ret;
if (page >= info->pages)
return -ENXIO;
zl6100_wait(data);
ret = pmbus_write_byte(client, page, value);
data->access = ktime_get();
return ret;
}
static const struct i2c_device_id zl6100_id[] = {
{"bmr450", zl2005},
{"bmr451", zl2005},
{"bmr462", zl2008},
{"bmr463", zl2008},
{"bmr464", zl2008},
{"bmr465", zls4009},
{"bmr466", zls1003},
{"bmr467", zls4009},
{"bmr469", zl8802},
{"zl2004", zl2004},
{"zl2005", zl2005},
{"zl2006", zl2006},
{"zl2008", zl2008},
{"zl2105", zl2105},
{"zl2106", zl2106},
{"zl6100", zl6100},
{"zl6105", zl6105},
{"zl8802", zl8802},
{"zl9101", zl9101},
{"zl9117", zl9117},
{"zls1003", zls1003},
{"zls4009", zls4009},
{ }
};
MODULE_DEVICE_TABLE(i2c, zl6100_id);
static int zl6100_probe(struct i2c_client *client)
{
int ret, i;
struct zl6100_data *data;
struct pmbus_driver_info *info;
u8 device_id[I2C_SMBUS_BLOCK_MAX + 1];
const struct i2c_device_id *mid;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_WORD_DATA
| I2C_FUNC_SMBUS_READ_BLOCK_DATA))
return -ENODEV;
ret = i2c_smbus_read_block_data(client, ZL6100_DEVICE_ID,
device_id);
if (ret < 0) {
dev_err(&client->dev, "Failed to read device ID\n");
return ret;
}
device_id[ret] = '\0';
dev_info(&client->dev, "Device ID %s\n", device_id);
mid = NULL;
for (mid = zl6100_id; mid->name[0]; mid++) {
if (!strncasecmp(mid->name, device_id, strlen(mid->name)))
break;
}
if (!mid->name[0]) {
dev_err(&client->dev, "Unsupported device\n");
return -ENODEV;
}
if (strcmp(client->name, mid->name) != 0)
dev_notice(&client->dev,
"Device mismatch: Configured %s, detected %s\n",
client->name, mid->name);
data = devm_kzalloc(&client->dev, sizeof(struct zl6100_data),
GFP_KERNEL);
if (!data)
return -ENOMEM;
data->id = mid->driver_data;
/*
* According to information from the chip vendor, all currently
* supported chips are known to require a wait time between I2C
* accesses.
*/
data->delay = delay;
/*
* Since there was a direct I2C device access above, wait before
* accessing the chip again.
*/
data->access = ktime_get();
zl6100_wait(data);
info = &data->info;
info->pages = 1;
info->func[0] = PMBUS_HAVE_VIN | PMBUS_HAVE_STATUS_INPUT
| PMBUS_HAVE_VOUT | PMBUS_HAVE_STATUS_VOUT
| PMBUS_HAVE_IOUT | PMBUS_HAVE_STATUS_IOUT
| PMBUS_HAVE_TEMP | PMBUS_HAVE_STATUS_TEMP;
/*
* ZL2004, ZL8802, ZL9101M, ZL9117M and ZLS4009 support monitoring
* an extra voltage (VMON for ZL2004, ZL8802 and ZLS4009,
* VDRV for ZL9101M and ZL9117M). Report it as vmon.
*/
if (data->id == zl2004 || data->id == zl8802 || data->id == zl9101 ||
data->id == zl9117 || data->id == zls4009)
info->func[0] |= PMBUS_HAVE_VMON | PMBUS_HAVE_STATUS_VMON;
/*
* ZL8802 has two outputs that can be used either independently or in
* a current sharing configuration. The driver uses the DDC_CONFIG
* register to check if the module is running with independent or
* shared outputs. If the module is in shared output mode, only one
* output voltage will be reported.
*/
if (data->id == zl8802) {
info->pages = 2;
info->func[0] |= PMBUS_HAVE_IIN;
ret = i2c_smbus_read_word_data(client, ZL8802_MFR_DDC_CONFIG);
if (ret < 0)
return ret;
data->access = ktime_get();
zl6100_wait(data);
if (ret & ZL8802_MFR_PHASES_MASK)
info->func[1] |= PMBUS_HAVE_IOUT | PMBUS_HAVE_STATUS_IOUT;
else
info->func[1] = PMBUS_HAVE_VOUT | PMBUS_HAVE_STATUS_VOUT
| PMBUS_HAVE_IOUT | PMBUS_HAVE_STATUS_IOUT;
for (i = 0; i < 2; i++) {
ret = i2c_smbus_write_byte_data(client, PMBUS_PAGE, i);
if (ret < 0)
return ret;
data->access = ktime_get();
zl6100_wait(data);
ret = i2c_smbus_read_word_data(client, ZL8802_MFR_USER_CONFIG);
if (ret < 0)
return ret;
if (ret & ZL8802_MFR_XTEMP_ENABLE_2)
info->func[i] |= PMBUS_HAVE_TEMP2;
data->access = ktime_get();
zl6100_wait(data);
}
ret = i2c_smbus_read_word_data(client, ZL8802_MFR_USER_GLOBAL_CONFIG);
if (ret < 0)
return ret;
if (ret & ZL8802_MFR_TMON_ENABLE)
info->func[0] |= PMBUS_HAVE_TEMP3;
} else {
ret = i2c_smbus_read_word_data(client, ZL6100_MFR_CONFIG);
if (ret < 0)
return ret;
if (ret & ZL6100_MFR_XTEMP_ENABLE)
info->func[0] |= PMBUS_HAVE_TEMP2;
}
data->access = ktime_get();
zl6100_wait(data);
info->read_word_data = zl6100_read_word_data;
info->read_byte_data = zl6100_read_byte_data;
info->write_word_data = zl6100_write_word_data;
info->write_byte = zl6100_write_byte;
return pmbus_do_probe(client, info);
}
static struct i2c_driver zl6100_driver = {
.driver = {
.name = "zl6100",
},
.probe = zl6100_probe,
.id_table = zl6100_id,
};
module_i2c_driver(zl6100_driver);
MODULE_AUTHOR("Guenter Roeck");
MODULE_DESCRIPTION("PMBus driver for ZL6100 and compatibles");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(PMBUS);