mirror of
https://github.com/torvalds/linux.git
synced 2024-12-27 05:11:48 +00:00
159d8133d0
Pull trivial tree updates from Jiri Kosina: "Usual rocket science -- mostly documentation and comment updates" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: sparse: fix comment doc: fix double words isdn: capi: fix "CAPI_VERSION" comment doc: DocBook: Fix typos in xml and template file Bluetooth: add module name for btwilink driver core: unexport static function create_syslog_header mmc: core: typo fix in printk specifier ARM: spear: clean up editing mistake net-sysfs: fix comment typo 'CONFIG_SYFS' doc: Insert MODULE_ in module-signing macros Documentation: update URL to hfsplus Technote 1150 gpio: update path to documentation ixgbe: Fix format string in ixgbe_fcoe. Kconfig: Remove useless "default N" lines user_namespace.c: Remove duplicated word in comment CREDITS: fix formatting treewide: Fix typo in Documentation/DocBook mm: Fix warning on make htmldocs caused by slab.c ata: ata-samsung_cf: cleanup in header file idr: remove unused prototype of idr_free()
3871 lines
99 KiB
C
3871 lines
99 KiB
C
/*
|
|
* core.c -- Voltage/Current Regulator framework.
|
|
*
|
|
* Copyright 2007, 2008 Wolfson Microelectronics PLC.
|
|
* Copyright 2008 SlimLogic Ltd.
|
|
*
|
|
* Author: Liam Girdwood <lrg@slimlogic.co.uk>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/async.h>
|
|
#include <linux/err.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/gpio.h>
|
|
#include <linux/of.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/regulator/of_regulator.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/regulator/driver.h>
|
|
#include <linux/regulator/machine.h>
|
|
#include <linux/module.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/regulator.h>
|
|
|
|
#include "dummy.h"
|
|
#include "internal.h"
|
|
|
|
#define rdev_crit(rdev, fmt, ...) \
|
|
pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
|
|
#define rdev_err(rdev, fmt, ...) \
|
|
pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
|
|
#define rdev_warn(rdev, fmt, ...) \
|
|
pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
|
|
#define rdev_info(rdev, fmt, ...) \
|
|
pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
|
|
#define rdev_dbg(rdev, fmt, ...) \
|
|
pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
|
|
|
|
static DEFINE_MUTEX(regulator_list_mutex);
|
|
static LIST_HEAD(regulator_list);
|
|
static LIST_HEAD(regulator_map_list);
|
|
static LIST_HEAD(regulator_ena_gpio_list);
|
|
static LIST_HEAD(regulator_supply_alias_list);
|
|
static bool has_full_constraints;
|
|
|
|
static struct dentry *debugfs_root;
|
|
|
|
/*
|
|
* struct regulator_map
|
|
*
|
|
* Used to provide symbolic supply names to devices.
|
|
*/
|
|
struct regulator_map {
|
|
struct list_head list;
|
|
const char *dev_name; /* The dev_name() for the consumer */
|
|
const char *supply;
|
|
struct regulator_dev *regulator;
|
|
};
|
|
|
|
/*
|
|
* struct regulator_enable_gpio
|
|
*
|
|
* Management for shared enable GPIO pin
|
|
*/
|
|
struct regulator_enable_gpio {
|
|
struct list_head list;
|
|
int gpio;
|
|
u32 enable_count; /* a number of enabled shared GPIO */
|
|
u32 request_count; /* a number of requested shared GPIO */
|
|
unsigned int ena_gpio_invert:1;
|
|
};
|
|
|
|
/*
|
|
* struct regulator_supply_alias
|
|
*
|
|
* Used to map lookups for a supply onto an alternative device.
|
|
*/
|
|
struct regulator_supply_alias {
|
|
struct list_head list;
|
|
struct device *src_dev;
|
|
const char *src_supply;
|
|
struct device *alias_dev;
|
|
const char *alias_supply;
|
|
};
|
|
|
|
static int _regulator_is_enabled(struct regulator_dev *rdev);
|
|
static int _regulator_disable(struct regulator_dev *rdev);
|
|
static int _regulator_get_voltage(struct regulator_dev *rdev);
|
|
static int _regulator_get_current_limit(struct regulator_dev *rdev);
|
|
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
|
|
static void _notifier_call_chain(struct regulator_dev *rdev,
|
|
unsigned long event, void *data);
|
|
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
static struct regulator *create_regulator(struct regulator_dev *rdev,
|
|
struct device *dev,
|
|
const char *supply_name);
|
|
|
|
static const char *rdev_get_name(struct regulator_dev *rdev)
|
|
{
|
|
if (rdev->constraints && rdev->constraints->name)
|
|
return rdev->constraints->name;
|
|
else if (rdev->desc->name)
|
|
return rdev->desc->name;
|
|
else
|
|
return "";
|
|
}
|
|
|
|
static bool have_full_constraints(void)
|
|
{
|
|
return has_full_constraints || of_have_populated_dt();
|
|
}
|
|
|
|
/**
|
|
* of_get_regulator - get a regulator device node based on supply name
|
|
* @dev: Device pointer for the consumer (of regulator) device
|
|
* @supply: regulator supply name
|
|
*
|
|
* Extract the regulator device node corresponding to the supply name.
|
|
* returns the device node corresponding to the regulator if found, else
|
|
* returns NULL.
|
|
*/
|
|
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
|
|
{
|
|
struct device_node *regnode = NULL;
|
|
char prop_name[32]; /* 32 is max size of property name */
|
|
|
|
dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
|
|
|
|
snprintf(prop_name, 32, "%s-supply", supply);
|
|
regnode = of_parse_phandle(dev->of_node, prop_name, 0);
|
|
|
|
if (!regnode) {
|
|
dev_dbg(dev, "Looking up %s property in node %s failed",
|
|
prop_name, dev->of_node->full_name);
|
|
return NULL;
|
|
}
|
|
return regnode;
|
|
}
|
|
|
|
static int _regulator_can_change_status(struct regulator_dev *rdev)
|
|
{
|
|
if (!rdev->constraints)
|
|
return 0;
|
|
|
|
if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Platform voltage constraint check */
|
|
static int regulator_check_voltage(struct regulator_dev *rdev,
|
|
int *min_uV, int *max_uV)
|
|
{
|
|
BUG_ON(*min_uV > *max_uV);
|
|
|
|
if (!rdev->constraints) {
|
|
rdev_err(rdev, "no constraints\n");
|
|
return -ENODEV;
|
|
}
|
|
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
|
|
rdev_err(rdev, "operation not allowed\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
if (*max_uV > rdev->constraints->max_uV)
|
|
*max_uV = rdev->constraints->max_uV;
|
|
if (*min_uV < rdev->constraints->min_uV)
|
|
*min_uV = rdev->constraints->min_uV;
|
|
|
|
if (*min_uV > *max_uV) {
|
|
rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
|
|
*min_uV, *max_uV);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Make sure we select a voltage that suits the needs of all
|
|
* regulator consumers
|
|
*/
|
|
static int regulator_check_consumers(struct regulator_dev *rdev,
|
|
int *min_uV, int *max_uV)
|
|
{
|
|
struct regulator *regulator;
|
|
|
|
list_for_each_entry(regulator, &rdev->consumer_list, list) {
|
|
/*
|
|
* Assume consumers that didn't say anything are OK
|
|
* with anything in the constraint range.
|
|
*/
|
|
if (!regulator->min_uV && !regulator->max_uV)
|
|
continue;
|
|
|
|
if (*max_uV > regulator->max_uV)
|
|
*max_uV = regulator->max_uV;
|
|
if (*min_uV < regulator->min_uV)
|
|
*min_uV = regulator->min_uV;
|
|
}
|
|
|
|
if (*min_uV > *max_uV) {
|
|
rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
|
|
*min_uV, *max_uV);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* current constraint check */
|
|
static int regulator_check_current_limit(struct regulator_dev *rdev,
|
|
int *min_uA, int *max_uA)
|
|
{
|
|
BUG_ON(*min_uA > *max_uA);
|
|
|
|
if (!rdev->constraints) {
|
|
rdev_err(rdev, "no constraints\n");
|
|
return -ENODEV;
|
|
}
|
|
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
|
|
rdev_err(rdev, "operation not allowed\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
if (*max_uA > rdev->constraints->max_uA)
|
|
*max_uA = rdev->constraints->max_uA;
|
|
if (*min_uA < rdev->constraints->min_uA)
|
|
*min_uA = rdev->constraints->min_uA;
|
|
|
|
if (*min_uA > *max_uA) {
|
|
rdev_err(rdev, "unsupportable current range: %d-%duA\n",
|
|
*min_uA, *max_uA);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* operating mode constraint check */
|
|
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
|
|
{
|
|
switch (*mode) {
|
|
case REGULATOR_MODE_FAST:
|
|
case REGULATOR_MODE_NORMAL:
|
|
case REGULATOR_MODE_IDLE:
|
|
case REGULATOR_MODE_STANDBY:
|
|
break;
|
|
default:
|
|
rdev_err(rdev, "invalid mode %x specified\n", *mode);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!rdev->constraints) {
|
|
rdev_err(rdev, "no constraints\n");
|
|
return -ENODEV;
|
|
}
|
|
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
|
|
rdev_err(rdev, "operation not allowed\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
/* The modes are bitmasks, the most power hungry modes having
|
|
* the lowest values. If the requested mode isn't supported
|
|
* try higher modes. */
|
|
while (*mode) {
|
|
if (rdev->constraints->valid_modes_mask & *mode)
|
|
return 0;
|
|
*mode /= 2;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* dynamic regulator mode switching constraint check */
|
|
static int regulator_check_drms(struct regulator_dev *rdev)
|
|
{
|
|
if (!rdev->constraints) {
|
|
rdev_err(rdev, "no constraints\n");
|
|
return -ENODEV;
|
|
}
|
|
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
|
|
rdev_err(rdev, "operation not allowed\n");
|
|
return -EPERM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t regulator_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
ssize_t ret;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
return ret;
|
|
}
|
|
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
|
|
|
|
static ssize_t regulator_uA_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
|
|
}
|
|
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
|
|
|
|
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%s\n", rdev_get_name(rdev));
|
|
}
|
|
static DEVICE_ATTR_RO(name);
|
|
|
|
static ssize_t regulator_print_opmode(char *buf, int mode)
|
|
{
|
|
switch (mode) {
|
|
case REGULATOR_MODE_FAST:
|
|
return sprintf(buf, "fast\n");
|
|
case REGULATOR_MODE_NORMAL:
|
|
return sprintf(buf, "normal\n");
|
|
case REGULATOR_MODE_IDLE:
|
|
return sprintf(buf, "idle\n");
|
|
case REGULATOR_MODE_STANDBY:
|
|
return sprintf(buf, "standby\n");
|
|
}
|
|
return sprintf(buf, "unknown\n");
|
|
}
|
|
|
|
static ssize_t regulator_opmode_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_opmode(buf, _regulator_get_mode(rdev));
|
|
}
|
|
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
|
|
|
|
static ssize_t regulator_print_state(char *buf, int state)
|
|
{
|
|
if (state > 0)
|
|
return sprintf(buf, "enabled\n");
|
|
else if (state == 0)
|
|
return sprintf(buf, "disabled\n");
|
|
else
|
|
return sprintf(buf, "unknown\n");
|
|
}
|
|
|
|
static ssize_t regulator_state_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
ssize_t ret;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
return ret;
|
|
}
|
|
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
|
|
|
|
static ssize_t regulator_status_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
int status;
|
|
char *label;
|
|
|
|
status = rdev->desc->ops->get_status(rdev);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
switch (status) {
|
|
case REGULATOR_STATUS_OFF:
|
|
label = "off";
|
|
break;
|
|
case REGULATOR_STATUS_ON:
|
|
label = "on";
|
|
break;
|
|
case REGULATOR_STATUS_ERROR:
|
|
label = "error";
|
|
break;
|
|
case REGULATOR_STATUS_FAST:
|
|
label = "fast";
|
|
break;
|
|
case REGULATOR_STATUS_NORMAL:
|
|
label = "normal";
|
|
break;
|
|
case REGULATOR_STATUS_IDLE:
|
|
label = "idle";
|
|
break;
|
|
case REGULATOR_STATUS_STANDBY:
|
|
label = "standby";
|
|
break;
|
|
case REGULATOR_STATUS_BYPASS:
|
|
label = "bypass";
|
|
break;
|
|
case REGULATOR_STATUS_UNDEFINED:
|
|
label = "undefined";
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
return sprintf(buf, "%s\n", label);
|
|
}
|
|
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
|
|
|
|
static ssize_t regulator_min_uA_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
if (!rdev->constraints)
|
|
return sprintf(buf, "constraint not defined\n");
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->min_uA);
|
|
}
|
|
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
|
|
|
|
static ssize_t regulator_max_uA_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
if (!rdev->constraints)
|
|
return sprintf(buf, "constraint not defined\n");
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->max_uA);
|
|
}
|
|
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
|
|
|
|
static ssize_t regulator_min_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
if (!rdev->constraints)
|
|
return sprintf(buf, "constraint not defined\n");
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->min_uV);
|
|
}
|
|
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
|
|
|
|
static ssize_t regulator_max_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
if (!rdev->constraints)
|
|
return sprintf(buf, "constraint not defined\n");
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->max_uV);
|
|
}
|
|
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
|
|
|
|
static ssize_t regulator_total_uA_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
struct regulator *regulator;
|
|
int uA = 0;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
list_for_each_entry(regulator, &rdev->consumer_list, list)
|
|
uA += regulator->uA_load;
|
|
mutex_unlock(&rdev->mutex);
|
|
return sprintf(buf, "%d\n", uA);
|
|
}
|
|
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
|
|
|
|
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
return sprintf(buf, "%d\n", rdev->use_count);
|
|
}
|
|
static DEVICE_ATTR_RO(num_users);
|
|
|
|
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
switch (rdev->desc->type) {
|
|
case REGULATOR_VOLTAGE:
|
|
return sprintf(buf, "voltage\n");
|
|
case REGULATOR_CURRENT:
|
|
return sprintf(buf, "current\n");
|
|
}
|
|
return sprintf(buf, "unknown\n");
|
|
}
|
|
static DEVICE_ATTR_RO(type);
|
|
|
|
static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
|
|
}
|
|
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
|
|
regulator_suspend_mem_uV_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
|
|
}
|
|
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
|
|
regulator_suspend_disk_uV_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
|
|
}
|
|
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
|
|
regulator_suspend_standby_uV_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_opmode(buf,
|
|
rdev->constraints->state_mem.mode);
|
|
}
|
|
static DEVICE_ATTR(suspend_mem_mode, 0444,
|
|
regulator_suspend_mem_mode_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_opmode(buf,
|
|
rdev->constraints->state_disk.mode);
|
|
}
|
|
static DEVICE_ATTR(suspend_disk_mode, 0444,
|
|
regulator_suspend_disk_mode_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_opmode(buf,
|
|
rdev->constraints->state_standby.mode);
|
|
}
|
|
static DEVICE_ATTR(suspend_standby_mode, 0444,
|
|
regulator_suspend_standby_mode_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_mem_state_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_state(buf,
|
|
rdev->constraints->state_mem.enabled);
|
|
}
|
|
static DEVICE_ATTR(suspend_mem_state, 0444,
|
|
regulator_suspend_mem_state_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_disk_state_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_state(buf,
|
|
rdev->constraints->state_disk.enabled);
|
|
}
|
|
static DEVICE_ATTR(suspend_disk_state, 0444,
|
|
regulator_suspend_disk_state_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_standby_state_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_state(buf,
|
|
rdev->constraints->state_standby.enabled);
|
|
}
|
|
static DEVICE_ATTR(suspend_standby_state, 0444,
|
|
regulator_suspend_standby_state_show, NULL);
|
|
|
|
static ssize_t regulator_bypass_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
const char *report;
|
|
bool bypass;
|
|
int ret;
|
|
|
|
ret = rdev->desc->ops->get_bypass(rdev, &bypass);
|
|
|
|
if (ret != 0)
|
|
report = "unknown";
|
|
else if (bypass)
|
|
report = "enabled";
|
|
else
|
|
report = "disabled";
|
|
|
|
return sprintf(buf, "%s\n", report);
|
|
}
|
|
static DEVICE_ATTR(bypass, 0444,
|
|
regulator_bypass_show, NULL);
|
|
|
|
/*
|
|
* These are the only attributes are present for all regulators.
|
|
* Other attributes are a function of regulator functionality.
|
|
*/
|
|
static struct attribute *regulator_dev_attrs[] = {
|
|
&dev_attr_name.attr,
|
|
&dev_attr_num_users.attr,
|
|
&dev_attr_type.attr,
|
|
NULL,
|
|
};
|
|
ATTRIBUTE_GROUPS(regulator_dev);
|
|
|
|
static void regulator_dev_release(struct device *dev)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
kfree(rdev);
|
|
}
|
|
|
|
static struct class regulator_class = {
|
|
.name = "regulator",
|
|
.dev_release = regulator_dev_release,
|
|
.dev_groups = regulator_dev_groups,
|
|
};
|
|
|
|
/* Calculate the new optimum regulator operating mode based on the new total
|
|
* consumer load. All locks held by caller */
|
|
static void drms_uA_update(struct regulator_dev *rdev)
|
|
{
|
|
struct regulator *sibling;
|
|
int current_uA = 0, output_uV, input_uV, err;
|
|
unsigned int mode;
|
|
|
|
err = regulator_check_drms(rdev);
|
|
if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
|
|
(!rdev->desc->ops->get_voltage &&
|
|
!rdev->desc->ops->get_voltage_sel) ||
|
|
!rdev->desc->ops->set_mode)
|
|
return;
|
|
|
|
/* get output voltage */
|
|
output_uV = _regulator_get_voltage(rdev);
|
|
if (output_uV <= 0)
|
|
return;
|
|
|
|
/* get input voltage */
|
|
input_uV = 0;
|
|
if (rdev->supply)
|
|
input_uV = regulator_get_voltage(rdev->supply);
|
|
if (input_uV <= 0)
|
|
input_uV = rdev->constraints->input_uV;
|
|
if (input_uV <= 0)
|
|
return;
|
|
|
|
/* calc total requested load */
|
|
list_for_each_entry(sibling, &rdev->consumer_list, list)
|
|
current_uA += sibling->uA_load;
|
|
|
|
/* now get the optimum mode for our new total regulator load */
|
|
mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
|
|
output_uV, current_uA);
|
|
|
|
/* check the new mode is allowed */
|
|
err = regulator_mode_constrain(rdev, &mode);
|
|
if (err == 0)
|
|
rdev->desc->ops->set_mode(rdev, mode);
|
|
}
|
|
|
|
static int suspend_set_state(struct regulator_dev *rdev,
|
|
struct regulator_state *rstate)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* If we have no suspend mode configration don't set anything;
|
|
* only warn if the driver implements set_suspend_voltage or
|
|
* set_suspend_mode callback.
|
|
*/
|
|
if (!rstate->enabled && !rstate->disabled) {
|
|
if (rdev->desc->ops->set_suspend_voltage ||
|
|
rdev->desc->ops->set_suspend_mode)
|
|
rdev_warn(rdev, "No configuration\n");
|
|
return 0;
|
|
}
|
|
|
|
if (rstate->enabled && rstate->disabled) {
|
|
rdev_err(rdev, "invalid configuration\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
|
|
ret = rdev->desc->ops->set_suspend_enable(rdev);
|
|
else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
|
|
ret = rdev->desc->ops->set_suspend_disable(rdev);
|
|
else /* OK if set_suspend_enable or set_suspend_disable is NULL */
|
|
ret = 0;
|
|
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to enabled/disable\n");
|
|
return ret;
|
|
}
|
|
|
|
if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
|
|
ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set voltage\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
|
|
ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set mode\n");
|
|
return ret;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* locks held by caller */
|
|
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
|
|
{
|
|
if (!rdev->constraints)
|
|
return -EINVAL;
|
|
|
|
switch (state) {
|
|
case PM_SUSPEND_STANDBY:
|
|
return suspend_set_state(rdev,
|
|
&rdev->constraints->state_standby);
|
|
case PM_SUSPEND_MEM:
|
|
return suspend_set_state(rdev,
|
|
&rdev->constraints->state_mem);
|
|
case PM_SUSPEND_MAX:
|
|
return suspend_set_state(rdev,
|
|
&rdev->constraints->state_disk);
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static void print_constraints(struct regulator_dev *rdev)
|
|
{
|
|
struct regulation_constraints *constraints = rdev->constraints;
|
|
char buf[80] = "";
|
|
int count = 0;
|
|
int ret;
|
|
|
|
if (constraints->min_uV && constraints->max_uV) {
|
|
if (constraints->min_uV == constraints->max_uV)
|
|
count += sprintf(buf + count, "%d mV ",
|
|
constraints->min_uV / 1000);
|
|
else
|
|
count += sprintf(buf + count, "%d <--> %d mV ",
|
|
constraints->min_uV / 1000,
|
|
constraints->max_uV / 1000);
|
|
}
|
|
|
|
if (!constraints->min_uV ||
|
|
constraints->min_uV != constraints->max_uV) {
|
|
ret = _regulator_get_voltage(rdev);
|
|
if (ret > 0)
|
|
count += sprintf(buf + count, "at %d mV ", ret / 1000);
|
|
}
|
|
|
|
if (constraints->uV_offset)
|
|
count += sprintf(buf, "%dmV offset ",
|
|
constraints->uV_offset / 1000);
|
|
|
|
if (constraints->min_uA && constraints->max_uA) {
|
|
if (constraints->min_uA == constraints->max_uA)
|
|
count += sprintf(buf + count, "%d mA ",
|
|
constraints->min_uA / 1000);
|
|
else
|
|
count += sprintf(buf + count, "%d <--> %d mA ",
|
|
constraints->min_uA / 1000,
|
|
constraints->max_uA / 1000);
|
|
}
|
|
|
|
if (!constraints->min_uA ||
|
|
constraints->min_uA != constraints->max_uA) {
|
|
ret = _regulator_get_current_limit(rdev);
|
|
if (ret > 0)
|
|
count += sprintf(buf + count, "at %d mA ", ret / 1000);
|
|
}
|
|
|
|
if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
|
|
count += sprintf(buf + count, "fast ");
|
|
if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
|
|
count += sprintf(buf + count, "normal ");
|
|
if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
|
|
count += sprintf(buf + count, "idle ");
|
|
if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
|
|
count += sprintf(buf + count, "standby");
|
|
|
|
if (!count)
|
|
sprintf(buf, "no parameters");
|
|
|
|
rdev_info(rdev, "%s\n", buf);
|
|
|
|
if ((constraints->min_uV != constraints->max_uV) &&
|
|
!(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
|
|
rdev_warn(rdev,
|
|
"Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
|
|
}
|
|
|
|
static int machine_constraints_voltage(struct regulator_dev *rdev,
|
|
struct regulation_constraints *constraints)
|
|
{
|
|
struct regulator_ops *ops = rdev->desc->ops;
|
|
int ret;
|
|
|
|
/* do we need to apply the constraint voltage */
|
|
if (rdev->constraints->apply_uV &&
|
|
rdev->constraints->min_uV == rdev->constraints->max_uV) {
|
|
ret = _regulator_do_set_voltage(rdev,
|
|
rdev->constraints->min_uV,
|
|
rdev->constraints->max_uV);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to apply %duV constraint\n",
|
|
rdev->constraints->min_uV);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* constrain machine-level voltage specs to fit
|
|
* the actual range supported by this regulator.
|
|
*/
|
|
if (ops->list_voltage && rdev->desc->n_voltages) {
|
|
int count = rdev->desc->n_voltages;
|
|
int i;
|
|
int min_uV = INT_MAX;
|
|
int max_uV = INT_MIN;
|
|
int cmin = constraints->min_uV;
|
|
int cmax = constraints->max_uV;
|
|
|
|
/* it's safe to autoconfigure fixed-voltage supplies
|
|
and the constraints are used by list_voltage. */
|
|
if (count == 1 && !cmin) {
|
|
cmin = 1;
|
|
cmax = INT_MAX;
|
|
constraints->min_uV = cmin;
|
|
constraints->max_uV = cmax;
|
|
}
|
|
|
|
/* voltage constraints are optional */
|
|
if ((cmin == 0) && (cmax == 0))
|
|
return 0;
|
|
|
|
/* else require explicit machine-level constraints */
|
|
if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
|
|
rdev_err(rdev, "invalid voltage constraints\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
|
|
for (i = 0; i < count; i++) {
|
|
int value;
|
|
|
|
value = ops->list_voltage(rdev, i);
|
|
if (value <= 0)
|
|
continue;
|
|
|
|
/* maybe adjust [min_uV..max_uV] */
|
|
if (value >= cmin && value < min_uV)
|
|
min_uV = value;
|
|
if (value <= cmax && value > max_uV)
|
|
max_uV = value;
|
|
}
|
|
|
|
/* final: [min_uV..max_uV] valid iff constraints valid */
|
|
if (max_uV < min_uV) {
|
|
rdev_err(rdev,
|
|
"unsupportable voltage constraints %u-%uuV\n",
|
|
min_uV, max_uV);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* use regulator's subset of machine constraints */
|
|
if (constraints->min_uV < min_uV) {
|
|
rdev_dbg(rdev, "override min_uV, %d -> %d\n",
|
|
constraints->min_uV, min_uV);
|
|
constraints->min_uV = min_uV;
|
|
}
|
|
if (constraints->max_uV > max_uV) {
|
|
rdev_dbg(rdev, "override max_uV, %d -> %d\n",
|
|
constraints->max_uV, max_uV);
|
|
constraints->max_uV = max_uV;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int machine_constraints_current(struct regulator_dev *rdev,
|
|
struct regulation_constraints *constraints)
|
|
{
|
|
struct regulator_ops *ops = rdev->desc->ops;
|
|
int ret;
|
|
|
|
if (!constraints->min_uA && !constraints->max_uA)
|
|
return 0;
|
|
|
|
if (constraints->min_uA > constraints->max_uA) {
|
|
rdev_err(rdev, "Invalid current constraints\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!ops->set_current_limit || !ops->get_current_limit) {
|
|
rdev_warn(rdev, "Operation of current configuration missing\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Set regulator current in constraints range */
|
|
ret = ops->set_current_limit(rdev, constraints->min_uA,
|
|
constraints->max_uA);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _regulator_do_enable(struct regulator_dev *rdev);
|
|
|
|
/**
|
|
* set_machine_constraints - sets regulator constraints
|
|
* @rdev: regulator source
|
|
* @constraints: constraints to apply
|
|
*
|
|
* Allows platform initialisation code to define and constrain
|
|
* regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
|
|
* Constraints *must* be set by platform code in order for some
|
|
* regulator operations to proceed i.e. set_voltage, set_current_limit,
|
|
* set_mode.
|
|
*/
|
|
static int set_machine_constraints(struct regulator_dev *rdev,
|
|
const struct regulation_constraints *constraints)
|
|
{
|
|
int ret = 0;
|
|
struct regulator_ops *ops = rdev->desc->ops;
|
|
|
|
if (constraints)
|
|
rdev->constraints = kmemdup(constraints, sizeof(*constraints),
|
|
GFP_KERNEL);
|
|
else
|
|
rdev->constraints = kzalloc(sizeof(*constraints),
|
|
GFP_KERNEL);
|
|
if (!rdev->constraints)
|
|
return -ENOMEM;
|
|
|
|
ret = machine_constraints_voltage(rdev, rdev->constraints);
|
|
if (ret != 0)
|
|
goto out;
|
|
|
|
ret = machine_constraints_current(rdev, rdev->constraints);
|
|
if (ret != 0)
|
|
goto out;
|
|
|
|
/* do we need to setup our suspend state */
|
|
if (rdev->constraints->initial_state) {
|
|
ret = suspend_prepare(rdev, rdev->constraints->initial_state);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set suspend state\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (rdev->constraints->initial_mode) {
|
|
if (!ops->set_mode) {
|
|
rdev_err(rdev, "no set_mode operation\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set initial mode: %d\n", ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* If the constraints say the regulator should be on at this point
|
|
* and we have control then make sure it is enabled.
|
|
*/
|
|
if (rdev->constraints->always_on || rdev->constraints->boot_on) {
|
|
ret = _regulator_do_enable(rdev);
|
|
if (ret < 0 && ret != -EINVAL) {
|
|
rdev_err(rdev, "failed to enable\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
|
|
&& ops->set_ramp_delay) {
|
|
ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set ramp_delay\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
print_constraints(rdev);
|
|
return 0;
|
|
out:
|
|
kfree(rdev->constraints);
|
|
rdev->constraints = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* set_supply - set regulator supply regulator
|
|
* @rdev: regulator name
|
|
* @supply_rdev: supply regulator name
|
|
*
|
|
* Called by platform initialisation code to set the supply regulator for this
|
|
* regulator. This ensures that a regulators supply will also be enabled by the
|
|
* core if it's child is enabled.
|
|
*/
|
|
static int set_supply(struct regulator_dev *rdev,
|
|
struct regulator_dev *supply_rdev)
|
|
{
|
|
int err;
|
|
|
|
rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
|
|
|
|
rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
|
|
if (rdev->supply == NULL) {
|
|
err = -ENOMEM;
|
|
return err;
|
|
}
|
|
supply_rdev->open_count++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* set_consumer_device_supply - Bind a regulator to a symbolic supply
|
|
* @rdev: regulator source
|
|
* @consumer_dev_name: dev_name() string for device supply applies to
|
|
* @supply: symbolic name for supply
|
|
*
|
|
* Allows platform initialisation code to map physical regulator
|
|
* sources to symbolic names for supplies for use by devices. Devices
|
|
* should use these symbolic names to request regulators, avoiding the
|
|
* need to provide board-specific regulator names as platform data.
|
|
*/
|
|
static int set_consumer_device_supply(struct regulator_dev *rdev,
|
|
const char *consumer_dev_name,
|
|
const char *supply)
|
|
{
|
|
struct regulator_map *node;
|
|
int has_dev;
|
|
|
|
if (supply == NULL)
|
|
return -EINVAL;
|
|
|
|
if (consumer_dev_name != NULL)
|
|
has_dev = 1;
|
|
else
|
|
has_dev = 0;
|
|
|
|
list_for_each_entry(node, ®ulator_map_list, list) {
|
|
if (node->dev_name && consumer_dev_name) {
|
|
if (strcmp(node->dev_name, consumer_dev_name) != 0)
|
|
continue;
|
|
} else if (node->dev_name || consumer_dev_name) {
|
|
continue;
|
|
}
|
|
|
|
if (strcmp(node->supply, supply) != 0)
|
|
continue;
|
|
|
|
pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
|
|
consumer_dev_name,
|
|
dev_name(&node->regulator->dev),
|
|
node->regulator->desc->name,
|
|
supply,
|
|
dev_name(&rdev->dev), rdev_get_name(rdev));
|
|
return -EBUSY;
|
|
}
|
|
|
|
node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
|
|
if (node == NULL)
|
|
return -ENOMEM;
|
|
|
|
node->regulator = rdev;
|
|
node->supply = supply;
|
|
|
|
if (has_dev) {
|
|
node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
|
|
if (node->dev_name == NULL) {
|
|
kfree(node);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
list_add(&node->list, ®ulator_map_list);
|
|
return 0;
|
|
}
|
|
|
|
static void unset_regulator_supplies(struct regulator_dev *rdev)
|
|
{
|
|
struct regulator_map *node, *n;
|
|
|
|
list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
|
|
if (rdev == node->regulator) {
|
|
list_del(&node->list);
|
|
kfree(node->dev_name);
|
|
kfree(node);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define REG_STR_SIZE 64
|
|
|
|
static struct regulator *create_regulator(struct regulator_dev *rdev,
|
|
struct device *dev,
|
|
const char *supply_name)
|
|
{
|
|
struct regulator *regulator;
|
|
char buf[REG_STR_SIZE];
|
|
int err, size;
|
|
|
|
regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
|
|
if (regulator == NULL)
|
|
return NULL;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
regulator->rdev = rdev;
|
|
list_add(®ulator->list, &rdev->consumer_list);
|
|
|
|
if (dev) {
|
|
regulator->dev = dev;
|
|
|
|
/* Add a link to the device sysfs entry */
|
|
size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
|
|
dev->kobj.name, supply_name);
|
|
if (size >= REG_STR_SIZE)
|
|
goto overflow_err;
|
|
|
|
regulator->supply_name = kstrdup(buf, GFP_KERNEL);
|
|
if (regulator->supply_name == NULL)
|
|
goto overflow_err;
|
|
|
|
err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
|
|
buf);
|
|
if (err) {
|
|
rdev_warn(rdev, "could not add device link %s err %d\n",
|
|
dev->kobj.name, err);
|
|
/* non-fatal */
|
|
}
|
|
} else {
|
|
regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
|
|
if (regulator->supply_name == NULL)
|
|
goto overflow_err;
|
|
}
|
|
|
|
regulator->debugfs = debugfs_create_dir(regulator->supply_name,
|
|
rdev->debugfs);
|
|
if (!regulator->debugfs) {
|
|
rdev_warn(rdev, "Failed to create debugfs directory\n");
|
|
} else {
|
|
debugfs_create_u32("uA_load", 0444, regulator->debugfs,
|
|
®ulator->uA_load);
|
|
debugfs_create_u32("min_uV", 0444, regulator->debugfs,
|
|
®ulator->min_uV);
|
|
debugfs_create_u32("max_uV", 0444, regulator->debugfs,
|
|
®ulator->max_uV);
|
|
}
|
|
|
|
/*
|
|
* Check now if the regulator is an always on regulator - if
|
|
* it is then we don't need to do nearly so much work for
|
|
* enable/disable calls.
|
|
*/
|
|
if (!_regulator_can_change_status(rdev) &&
|
|
_regulator_is_enabled(rdev))
|
|
regulator->always_on = true;
|
|
|
|
mutex_unlock(&rdev->mutex);
|
|
return regulator;
|
|
overflow_err:
|
|
list_del(®ulator->list);
|
|
kfree(regulator);
|
|
mutex_unlock(&rdev->mutex);
|
|
return NULL;
|
|
}
|
|
|
|
static int _regulator_get_enable_time(struct regulator_dev *rdev)
|
|
{
|
|
if (rdev->constraints && rdev->constraints->enable_time)
|
|
return rdev->constraints->enable_time;
|
|
if (!rdev->desc->ops->enable_time)
|
|
return rdev->desc->enable_time;
|
|
return rdev->desc->ops->enable_time(rdev);
|
|
}
|
|
|
|
static struct regulator_supply_alias *regulator_find_supply_alias(
|
|
struct device *dev, const char *supply)
|
|
{
|
|
struct regulator_supply_alias *map;
|
|
|
|
list_for_each_entry(map, ®ulator_supply_alias_list, list)
|
|
if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
|
|
return map;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void regulator_supply_alias(struct device **dev, const char **supply)
|
|
{
|
|
struct regulator_supply_alias *map;
|
|
|
|
map = regulator_find_supply_alias(*dev, *supply);
|
|
if (map) {
|
|
dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
|
|
*supply, map->alias_supply,
|
|
dev_name(map->alias_dev));
|
|
*dev = map->alias_dev;
|
|
*supply = map->alias_supply;
|
|
}
|
|
}
|
|
|
|
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
|
|
const char *supply,
|
|
int *ret)
|
|
{
|
|
struct regulator_dev *r;
|
|
struct device_node *node;
|
|
struct regulator_map *map;
|
|
const char *devname = NULL;
|
|
|
|
regulator_supply_alias(&dev, &supply);
|
|
|
|
/* first do a dt based lookup */
|
|
if (dev && dev->of_node) {
|
|
node = of_get_regulator(dev, supply);
|
|
if (node) {
|
|
list_for_each_entry(r, ®ulator_list, list)
|
|
if (r->dev.parent &&
|
|
node == r->dev.of_node)
|
|
return r;
|
|
*ret = -EPROBE_DEFER;
|
|
return NULL;
|
|
} else {
|
|
/*
|
|
* If we couldn't even get the node then it's
|
|
* not just that the device didn't register
|
|
* yet, there's no node and we'll never
|
|
* succeed.
|
|
*/
|
|
*ret = -ENODEV;
|
|
}
|
|
}
|
|
|
|
/* if not found, try doing it non-dt way */
|
|
if (dev)
|
|
devname = dev_name(dev);
|
|
|
|
list_for_each_entry(r, ®ulator_list, list)
|
|
if (strcmp(rdev_get_name(r), supply) == 0)
|
|
return r;
|
|
|
|
list_for_each_entry(map, ®ulator_map_list, list) {
|
|
/* If the mapping has a device set up it must match */
|
|
if (map->dev_name &&
|
|
(!devname || strcmp(map->dev_name, devname)))
|
|
continue;
|
|
|
|
if (strcmp(map->supply, supply) == 0)
|
|
return map->regulator;
|
|
}
|
|
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Internal regulator request function */
|
|
static struct regulator *_regulator_get(struct device *dev, const char *id,
|
|
bool exclusive, bool allow_dummy)
|
|
{
|
|
struct regulator_dev *rdev;
|
|
struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
|
|
const char *devname = NULL;
|
|
int ret;
|
|
|
|
if (id == NULL) {
|
|
pr_err("get() with no identifier\n");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
if (dev)
|
|
devname = dev_name(dev);
|
|
|
|
if (have_full_constraints())
|
|
ret = -ENODEV;
|
|
else
|
|
ret = -EPROBE_DEFER;
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
|
|
rdev = regulator_dev_lookup(dev, id, &ret);
|
|
if (rdev)
|
|
goto found;
|
|
|
|
regulator = ERR_PTR(ret);
|
|
|
|
/*
|
|
* If we have return value from dev_lookup fail, we do not expect to
|
|
* succeed, so, quit with appropriate error value
|
|
*/
|
|
if (ret && ret != -ENODEV)
|
|
goto out;
|
|
|
|
if (!devname)
|
|
devname = "deviceless";
|
|
|
|
/*
|
|
* Assume that a regulator is physically present and enabled
|
|
* even if it isn't hooked up and just provide a dummy.
|
|
*/
|
|
if (have_full_constraints() && allow_dummy) {
|
|
pr_warn("%s supply %s not found, using dummy regulator\n",
|
|
devname, id);
|
|
|
|
rdev = dummy_regulator_rdev;
|
|
goto found;
|
|
/* Don't log an error when called from regulator_get_optional() */
|
|
} else if (!have_full_constraints() || exclusive) {
|
|
dev_warn(dev, "dummy supplies not allowed\n");
|
|
}
|
|
|
|
mutex_unlock(®ulator_list_mutex);
|
|
return regulator;
|
|
|
|
found:
|
|
if (rdev->exclusive) {
|
|
regulator = ERR_PTR(-EPERM);
|
|
goto out;
|
|
}
|
|
|
|
if (exclusive && rdev->open_count) {
|
|
regulator = ERR_PTR(-EBUSY);
|
|
goto out;
|
|
}
|
|
|
|
if (!try_module_get(rdev->owner))
|
|
goto out;
|
|
|
|
regulator = create_regulator(rdev, dev, id);
|
|
if (regulator == NULL) {
|
|
regulator = ERR_PTR(-ENOMEM);
|
|
module_put(rdev->owner);
|
|
goto out;
|
|
}
|
|
|
|
rdev->open_count++;
|
|
if (exclusive) {
|
|
rdev->exclusive = 1;
|
|
|
|
ret = _regulator_is_enabled(rdev);
|
|
if (ret > 0)
|
|
rdev->use_count = 1;
|
|
else
|
|
rdev->use_count = 0;
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(®ulator_list_mutex);
|
|
|
|
return regulator;
|
|
}
|
|
|
|
/**
|
|
* regulator_get - lookup and obtain a reference to a regulator.
|
|
* @dev: device for regulator "consumer"
|
|
* @id: Supply name or regulator ID.
|
|
*
|
|
* Returns a struct regulator corresponding to the regulator producer,
|
|
* or IS_ERR() condition containing errno.
|
|
*
|
|
* Use of supply names configured via regulator_set_device_supply() is
|
|
* strongly encouraged. It is recommended that the supply name used
|
|
* should match the name used for the supply and/or the relevant
|
|
* device pins in the datasheet.
|
|
*/
|
|
struct regulator *regulator_get(struct device *dev, const char *id)
|
|
{
|
|
return _regulator_get(dev, id, false, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get);
|
|
|
|
/**
|
|
* regulator_get_exclusive - obtain exclusive access to a regulator.
|
|
* @dev: device for regulator "consumer"
|
|
* @id: Supply name or regulator ID.
|
|
*
|
|
* Returns a struct regulator corresponding to the regulator producer,
|
|
* or IS_ERR() condition containing errno. Other consumers will be
|
|
* unable to obtain this reference is held and the use count for the
|
|
* regulator will be initialised to reflect the current state of the
|
|
* regulator.
|
|
*
|
|
* This is intended for use by consumers which cannot tolerate shared
|
|
* use of the regulator such as those which need to force the
|
|
* regulator off for correct operation of the hardware they are
|
|
* controlling.
|
|
*
|
|
* Use of supply names configured via regulator_set_device_supply() is
|
|
* strongly encouraged. It is recommended that the supply name used
|
|
* should match the name used for the supply and/or the relevant
|
|
* device pins in the datasheet.
|
|
*/
|
|
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
|
|
{
|
|
return _regulator_get(dev, id, true, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_exclusive);
|
|
|
|
/**
|
|
* regulator_get_optional - obtain optional access to a regulator.
|
|
* @dev: device for regulator "consumer"
|
|
* @id: Supply name or regulator ID.
|
|
*
|
|
* Returns a struct regulator corresponding to the regulator producer,
|
|
* or IS_ERR() condition containing errno. Other consumers will be
|
|
* unable to obtain this reference is held and the use count for the
|
|
* regulator will be initialised to reflect the current state of the
|
|
* regulator.
|
|
*
|
|
* This is intended for use by consumers for devices which can have
|
|
* some supplies unconnected in normal use, such as some MMC devices.
|
|
* It can allow the regulator core to provide stub supplies for other
|
|
* supplies requested using normal regulator_get() calls without
|
|
* disrupting the operation of drivers that can handle absent
|
|
* supplies.
|
|
*
|
|
* Use of supply names configured via regulator_set_device_supply() is
|
|
* strongly encouraged. It is recommended that the supply name used
|
|
* should match the name used for the supply and/or the relevant
|
|
* device pins in the datasheet.
|
|
*/
|
|
struct regulator *regulator_get_optional(struct device *dev, const char *id)
|
|
{
|
|
return _regulator_get(dev, id, false, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_optional);
|
|
|
|
/* Locks held by regulator_put() */
|
|
static void _regulator_put(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev;
|
|
|
|
if (regulator == NULL || IS_ERR(regulator))
|
|
return;
|
|
|
|
rdev = regulator->rdev;
|
|
|
|
debugfs_remove_recursive(regulator->debugfs);
|
|
|
|
/* remove any sysfs entries */
|
|
if (regulator->dev)
|
|
sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
|
|
kfree(regulator->supply_name);
|
|
list_del(®ulator->list);
|
|
kfree(regulator);
|
|
|
|
rdev->open_count--;
|
|
rdev->exclusive = 0;
|
|
|
|
module_put(rdev->owner);
|
|
}
|
|
|
|
/**
|
|
* regulator_put - "free" the regulator source
|
|
* @regulator: regulator source
|
|
*
|
|
* Note: drivers must ensure that all regulator_enable calls made on this
|
|
* regulator source are balanced by regulator_disable calls prior to calling
|
|
* this function.
|
|
*/
|
|
void regulator_put(struct regulator *regulator)
|
|
{
|
|
mutex_lock(®ulator_list_mutex);
|
|
_regulator_put(regulator);
|
|
mutex_unlock(®ulator_list_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_put);
|
|
|
|
/**
|
|
* regulator_register_supply_alias - Provide device alias for supply lookup
|
|
*
|
|
* @dev: device that will be given as the regulator "consumer"
|
|
* @id: Supply name or regulator ID
|
|
* @alias_dev: device that should be used to lookup the supply
|
|
* @alias_id: Supply name or regulator ID that should be used to lookup the
|
|
* supply
|
|
*
|
|
* All lookups for id on dev will instead be conducted for alias_id on
|
|
* alias_dev.
|
|
*/
|
|
int regulator_register_supply_alias(struct device *dev, const char *id,
|
|
struct device *alias_dev,
|
|
const char *alias_id)
|
|
{
|
|
struct regulator_supply_alias *map;
|
|
|
|
map = regulator_find_supply_alias(dev, id);
|
|
if (map)
|
|
return -EEXIST;
|
|
|
|
map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
|
|
if (!map)
|
|
return -ENOMEM;
|
|
|
|
map->src_dev = dev;
|
|
map->src_supply = id;
|
|
map->alias_dev = alias_dev;
|
|
map->alias_supply = alias_id;
|
|
|
|
list_add(&map->list, ®ulator_supply_alias_list);
|
|
|
|
pr_info("Adding alias for supply %s,%s -> %s,%s\n",
|
|
id, dev_name(dev), alias_id, dev_name(alias_dev));
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
|
|
|
|
/**
|
|
* regulator_unregister_supply_alias - Remove device alias
|
|
*
|
|
* @dev: device that will be given as the regulator "consumer"
|
|
* @id: Supply name or regulator ID
|
|
*
|
|
* Remove a lookup alias if one exists for id on dev.
|
|
*/
|
|
void regulator_unregister_supply_alias(struct device *dev, const char *id)
|
|
{
|
|
struct regulator_supply_alias *map;
|
|
|
|
map = regulator_find_supply_alias(dev, id);
|
|
if (map) {
|
|
list_del(&map->list);
|
|
kfree(map);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
|
|
|
|
/**
|
|
* regulator_bulk_register_supply_alias - register multiple aliases
|
|
*
|
|
* @dev: device that will be given as the regulator "consumer"
|
|
* @id: List of supply names or regulator IDs
|
|
* @alias_dev: device that should be used to lookup the supply
|
|
* @alias_id: List of supply names or regulator IDs that should be used to
|
|
* lookup the supply
|
|
* @num_id: Number of aliases to register
|
|
*
|
|
* @return 0 on success, an errno on failure.
|
|
*
|
|
* This helper function allows drivers to register several supply
|
|
* aliases in one operation. If any of the aliases cannot be
|
|
* registered any aliases that were registered will be removed
|
|
* before returning to the caller.
|
|
*/
|
|
int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
|
|
struct device *alias_dev,
|
|
const char **alias_id,
|
|
int num_id)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < num_id; ++i) {
|
|
ret = regulator_register_supply_alias(dev, id[i], alias_dev,
|
|
alias_id[i]);
|
|
if (ret < 0)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
dev_err(dev,
|
|
"Failed to create supply alias %s,%s -> %s,%s\n",
|
|
id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
|
|
|
|
while (--i >= 0)
|
|
regulator_unregister_supply_alias(dev, id[i]);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
|
|
|
|
/**
|
|
* regulator_bulk_unregister_supply_alias - unregister multiple aliases
|
|
*
|
|
* @dev: device that will be given as the regulator "consumer"
|
|
* @id: List of supply names or regulator IDs
|
|
* @num_id: Number of aliases to unregister
|
|
*
|
|
* This helper function allows drivers to unregister several supply
|
|
* aliases in one operation.
|
|
*/
|
|
void regulator_bulk_unregister_supply_alias(struct device *dev,
|
|
const char **id,
|
|
int num_id)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_id; ++i)
|
|
regulator_unregister_supply_alias(dev, id[i]);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
|
|
|
|
|
|
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
|
|
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
|
|
const struct regulator_config *config)
|
|
{
|
|
struct regulator_enable_gpio *pin;
|
|
int ret;
|
|
|
|
list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
|
|
if (pin->gpio == config->ena_gpio) {
|
|
rdev_dbg(rdev, "GPIO %d is already used\n",
|
|
config->ena_gpio);
|
|
goto update_ena_gpio_to_rdev;
|
|
}
|
|
}
|
|
|
|
ret = gpio_request_one(config->ena_gpio,
|
|
GPIOF_DIR_OUT | config->ena_gpio_flags,
|
|
rdev_get_name(rdev));
|
|
if (ret)
|
|
return ret;
|
|
|
|
pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
|
|
if (pin == NULL) {
|
|
gpio_free(config->ena_gpio);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pin->gpio = config->ena_gpio;
|
|
pin->ena_gpio_invert = config->ena_gpio_invert;
|
|
list_add(&pin->list, ®ulator_ena_gpio_list);
|
|
|
|
update_ena_gpio_to_rdev:
|
|
pin->request_count++;
|
|
rdev->ena_pin = pin;
|
|
return 0;
|
|
}
|
|
|
|
static void regulator_ena_gpio_free(struct regulator_dev *rdev)
|
|
{
|
|
struct regulator_enable_gpio *pin, *n;
|
|
|
|
if (!rdev->ena_pin)
|
|
return;
|
|
|
|
/* Free the GPIO only in case of no use */
|
|
list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
|
|
if (pin->gpio == rdev->ena_pin->gpio) {
|
|
if (pin->request_count <= 1) {
|
|
pin->request_count = 0;
|
|
gpio_free(pin->gpio);
|
|
list_del(&pin->list);
|
|
kfree(pin);
|
|
} else {
|
|
pin->request_count--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
|
|
* @rdev: regulator_dev structure
|
|
* @enable: enable GPIO at initial use?
|
|
*
|
|
* GPIO is enabled in case of initial use. (enable_count is 0)
|
|
* GPIO is disabled when it is not shared any more. (enable_count <= 1)
|
|
*/
|
|
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
|
|
{
|
|
struct regulator_enable_gpio *pin = rdev->ena_pin;
|
|
|
|
if (!pin)
|
|
return -EINVAL;
|
|
|
|
if (enable) {
|
|
/* Enable GPIO at initial use */
|
|
if (pin->enable_count == 0)
|
|
gpio_set_value_cansleep(pin->gpio,
|
|
!pin->ena_gpio_invert);
|
|
|
|
pin->enable_count++;
|
|
} else {
|
|
if (pin->enable_count > 1) {
|
|
pin->enable_count--;
|
|
return 0;
|
|
}
|
|
|
|
/* Disable GPIO if not used */
|
|
if (pin->enable_count <= 1) {
|
|
gpio_set_value_cansleep(pin->gpio,
|
|
pin->ena_gpio_invert);
|
|
pin->enable_count = 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _regulator_do_enable(struct regulator_dev *rdev)
|
|
{
|
|
int ret, delay;
|
|
|
|
/* Query before enabling in case configuration dependent. */
|
|
ret = _regulator_get_enable_time(rdev);
|
|
if (ret >= 0) {
|
|
delay = ret;
|
|
} else {
|
|
rdev_warn(rdev, "enable_time() failed: %d\n", ret);
|
|
delay = 0;
|
|
}
|
|
|
|
trace_regulator_enable(rdev_get_name(rdev));
|
|
|
|
if (rdev->ena_pin) {
|
|
ret = regulator_ena_gpio_ctrl(rdev, true);
|
|
if (ret < 0)
|
|
return ret;
|
|
rdev->ena_gpio_state = 1;
|
|
} else if (rdev->desc->ops->enable) {
|
|
ret = rdev->desc->ops->enable(rdev);
|
|
if (ret < 0)
|
|
return ret;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Allow the regulator to ramp; it would be useful to extend
|
|
* this for bulk operations so that the regulators can ramp
|
|
* together. */
|
|
trace_regulator_enable_delay(rdev_get_name(rdev));
|
|
|
|
/*
|
|
* Delay for the requested amount of time as per the guidelines in:
|
|
*
|
|
* Documentation/timers/timers-howto.txt
|
|
*
|
|
* The assumption here is that regulators will never be enabled in
|
|
* atomic context and therefore sleeping functions can be used.
|
|
*/
|
|
if (delay) {
|
|
unsigned int ms = delay / 1000;
|
|
unsigned int us = delay % 1000;
|
|
|
|
if (ms > 0) {
|
|
/*
|
|
* For small enough values, handle super-millisecond
|
|
* delays in the usleep_range() call below.
|
|
*/
|
|
if (ms < 20)
|
|
us += ms * 1000;
|
|
else
|
|
msleep(ms);
|
|
}
|
|
|
|
/*
|
|
* Give the scheduler some room to coalesce with any other
|
|
* wakeup sources. For delays shorter than 10 us, don't even
|
|
* bother setting up high-resolution timers and just busy-
|
|
* loop.
|
|
*/
|
|
if (us >= 10)
|
|
usleep_range(us, us + 100);
|
|
else
|
|
udelay(us);
|
|
}
|
|
|
|
trace_regulator_enable_complete(rdev_get_name(rdev));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* locks held by regulator_enable() */
|
|
static int _regulator_enable(struct regulator_dev *rdev)
|
|
{
|
|
int ret;
|
|
|
|
/* check voltage and requested load before enabling */
|
|
if (rdev->constraints &&
|
|
(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
|
|
drms_uA_update(rdev);
|
|
|
|
if (rdev->use_count == 0) {
|
|
/* The regulator may on if it's not switchable or left on */
|
|
ret = _regulator_is_enabled(rdev);
|
|
if (ret == -EINVAL || ret == 0) {
|
|
if (!_regulator_can_change_status(rdev))
|
|
return -EPERM;
|
|
|
|
ret = _regulator_do_enable(rdev);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
} else if (ret < 0) {
|
|
rdev_err(rdev, "is_enabled() failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
/* Fallthrough on positive return values - already enabled */
|
|
}
|
|
|
|
rdev->use_count++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* regulator_enable - enable regulator output
|
|
* @regulator: regulator source
|
|
*
|
|
* Request that the regulator be enabled with the regulator output at
|
|
* the predefined voltage or current value. Calls to regulator_enable()
|
|
* must be balanced with calls to regulator_disable().
|
|
*
|
|
* NOTE: the output value can be set by other drivers, boot loader or may be
|
|
* hardwired in the regulator.
|
|
*/
|
|
int regulator_enable(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret = 0;
|
|
|
|
if (regulator->always_on)
|
|
return 0;
|
|
|
|
if (rdev->supply) {
|
|
ret = regulator_enable(rdev->supply);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
ret = _regulator_enable(rdev);
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
if (ret != 0 && rdev->supply)
|
|
regulator_disable(rdev->supply);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_enable);
|
|
|
|
static int _regulator_do_disable(struct regulator_dev *rdev)
|
|
{
|
|
int ret;
|
|
|
|
trace_regulator_disable(rdev_get_name(rdev));
|
|
|
|
if (rdev->ena_pin) {
|
|
ret = regulator_ena_gpio_ctrl(rdev, false);
|
|
if (ret < 0)
|
|
return ret;
|
|
rdev->ena_gpio_state = 0;
|
|
|
|
} else if (rdev->desc->ops->disable) {
|
|
ret = rdev->desc->ops->disable(rdev);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
|
|
trace_regulator_disable_complete(rdev_get_name(rdev));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* locks held by regulator_disable() */
|
|
static int _regulator_disable(struct regulator_dev *rdev)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (WARN(rdev->use_count <= 0,
|
|
"unbalanced disables for %s\n", rdev_get_name(rdev)))
|
|
return -EIO;
|
|
|
|
/* are we the last user and permitted to disable ? */
|
|
if (rdev->use_count == 1 &&
|
|
(rdev->constraints && !rdev->constraints->always_on)) {
|
|
|
|
/* we are last user */
|
|
if (_regulator_can_change_status(rdev)) {
|
|
ret = _regulator_do_disable(rdev);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to disable\n");
|
|
return ret;
|
|
}
|
|
_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
|
|
NULL);
|
|
}
|
|
|
|
rdev->use_count = 0;
|
|
} else if (rdev->use_count > 1) {
|
|
|
|
if (rdev->constraints &&
|
|
(rdev->constraints->valid_ops_mask &
|
|
REGULATOR_CHANGE_DRMS))
|
|
drms_uA_update(rdev);
|
|
|
|
rdev->use_count--;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_disable - disable regulator output
|
|
* @regulator: regulator source
|
|
*
|
|
* Disable the regulator output voltage or current. Calls to
|
|
* regulator_enable() must be balanced with calls to
|
|
* regulator_disable().
|
|
*
|
|
* NOTE: this will only disable the regulator output if no other consumer
|
|
* devices have it enabled, the regulator device supports disabling and
|
|
* machine constraints permit this operation.
|
|
*/
|
|
int regulator_disable(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret = 0;
|
|
|
|
if (regulator->always_on)
|
|
return 0;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
ret = _regulator_disable(rdev);
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
if (ret == 0 && rdev->supply)
|
|
regulator_disable(rdev->supply);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_disable);
|
|
|
|
/* locks held by regulator_force_disable() */
|
|
static int _regulator_force_disable(struct regulator_dev *rdev)
|
|
{
|
|
int ret = 0;
|
|
|
|
ret = _regulator_do_disable(rdev);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to force disable\n");
|
|
return ret;
|
|
}
|
|
|
|
_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
|
|
REGULATOR_EVENT_DISABLE, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* regulator_force_disable - force disable regulator output
|
|
* @regulator: regulator source
|
|
*
|
|
* Forcibly disable the regulator output voltage or current.
|
|
* NOTE: this *will* disable the regulator output even if other consumer
|
|
* devices have it enabled. This should be used for situations when device
|
|
* damage will likely occur if the regulator is not disabled (e.g. over temp).
|
|
*/
|
|
int regulator_force_disable(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
regulator->uA_load = 0;
|
|
ret = _regulator_force_disable(regulator->rdev);
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
if (rdev->supply)
|
|
while (rdev->open_count--)
|
|
regulator_disable(rdev->supply);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_force_disable);
|
|
|
|
static void regulator_disable_work(struct work_struct *work)
|
|
{
|
|
struct regulator_dev *rdev = container_of(work, struct regulator_dev,
|
|
disable_work.work);
|
|
int count, i, ret;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
BUG_ON(!rdev->deferred_disables);
|
|
|
|
count = rdev->deferred_disables;
|
|
rdev->deferred_disables = 0;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
ret = _regulator_disable(rdev);
|
|
if (ret != 0)
|
|
rdev_err(rdev, "Deferred disable failed: %d\n", ret);
|
|
}
|
|
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
if (rdev->supply) {
|
|
for (i = 0; i < count; i++) {
|
|
ret = regulator_disable(rdev->supply);
|
|
if (ret != 0) {
|
|
rdev_err(rdev,
|
|
"Supply disable failed: %d\n", ret);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* regulator_disable_deferred - disable regulator output with delay
|
|
* @regulator: regulator source
|
|
* @ms: miliseconds until the regulator is disabled
|
|
*
|
|
* Execute regulator_disable() on the regulator after a delay. This
|
|
* is intended for use with devices that require some time to quiesce.
|
|
*
|
|
* NOTE: this will only disable the regulator output if no other consumer
|
|
* devices have it enabled, the regulator device supports disabling and
|
|
* machine constraints permit this operation.
|
|
*/
|
|
int regulator_disable_deferred(struct regulator *regulator, int ms)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret;
|
|
|
|
if (regulator->always_on)
|
|
return 0;
|
|
|
|
if (!ms)
|
|
return regulator_disable(regulator);
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
rdev->deferred_disables++;
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
ret = queue_delayed_work(system_power_efficient_wq,
|
|
&rdev->disable_work,
|
|
msecs_to_jiffies(ms));
|
|
if (ret < 0)
|
|
return ret;
|
|
else
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_disable_deferred);
|
|
|
|
static int _regulator_is_enabled(struct regulator_dev *rdev)
|
|
{
|
|
/* A GPIO control always takes precedence */
|
|
if (rdev->ena_pin)
|
|
return rdev->ena_gpio_state;
|
|
|
|
/* If we don't know then assume that the regulator is always on */
|
|
if (!rdev->desc->ops->is_enabled)
|
|
return 1;
|
|
|
|
return rdev->desc->ops->is_enabled(rdev);
|
|
}
|
|
|
|
/**
|
|
* regulator_is_enabled - is the regulator output enabled
|
|
* @regulator: regulator source
|
|
*
|
|
* Returns positive if the regulator driver backing the source/client
|
|
* has requested that the device be enabled, zero if it hasn't, else a
|
|
* negative errno code.
|
|
*
|
|
* Note that the device backing this regulator handle can have multiple
|
|
* users, so it might be enabled even if regulator_enable() was never
|
|
* called for this particular source.
|
|
*/
|
|
int regulator_is_enabled(struct regulator *regulator)
|
|
{
|
|
int ret;
|
|
|
|
if (regulator->always_on)
|
|
return 1;
|
|
|
|
mutex_lock(®ulator->rdev->mutex);
|
|
ret = _regulator_is_enabled(regulator->rdev);
|
|
mutex_unlock(®ulator->rdev->mutex);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_is_enabled);
|
|
|
|
/**
|
|
* regulator_can_change_voltage - check if regulator can change voltage
|
|
* @regulator: regulator source
|
|
*
|
|
* Returns positive if the regulator driver backing the source/client
|
|
* can change its voltage, false otherwise. Useful for detecting fixed
|
|
* or dummy regulators and disabling voltage change logic in the client
|
|
* driver.
|
|
*/
|
|
int regulator_can_change_voltage(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
|
|
if (rdev->constraints &&
|
|
(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
|
|
if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
|
|
return 1;
|
|
|
|
if (rdev->desc->continuous_voltage_range &&
|
|
rdev->constraints->min_uV && rdev->constraints->max_uV &&
|
|
rdev->constraints->min_uV != rdev->constraints->max_uV)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
|
|
|
|
/**
|
|
* regulator_count_voltages - count regulator_list_voltage() selectors
|
|
* @regulator: regulator source
|
|
*
|
|
* Returns number of selectors, or negative errno. Selectors are
|
|
* numbered starting at zero, and typically correspond to bitfields
|
|
* in hardware registers.
|
|
*/
|
|
int regulator_count_voltages(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
|
|
return rdev->desc->n_voltages ? : -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_count_voltages);
|
|
|
|
/**
|
|
* regulator_list_voltage - enumerate supported voltages
|
|
* @regulator: regulator source
|
|
* @selector: identify voltage to list
|
|
* Context: can sleep
|
|
*
|
|
* Returns a voltage that can be passed to @regulator_set_voltage(),
|
|
* zero if this selector code can't be used on this system, or a
|
|
* negative errno.
|
|
*/
|
|
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
struct regulator_ops *ops = rdev->desc->ops;
|
|
int ret;
|
|
|
|
if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
|
|
return rdev->desc->fixed_uV;
|
|
|
|
if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
ret = ops->list_voltage(rdev, selector);
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
if (ret > 0) {
|
|
if (ret < rdev->constraints->min_uV)
|
|
ret = 0;
|
|
else if (ret > rdev->constraints->max_uV)
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_list_voltage);
|
|
|
|
/**
|
|
* regulator_get_linear_step - return the voltage step size between VSEL values
|
|
* @regulator: regulator source
|
|
*
|
|
* Returns the voltage step size between VSEL values for linear
|
|
* regulators, or return 0 if the regulator isn't a linear regulator.
|
|
*/
|
|
unsigned int regulator_get_linear_step(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
|
|
return rdev->desc->uV_step;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_linear_step);
|
|
|
|
/**
|
|
* regulator_is_supported_voltage - check if a voltage range can be supported
|
|
*
|
|
* @regulator: Regulator to check.
|
|
* @min_uV: Minimum required voltage in uV.
|
|
* @max_uV: Maximum required voltage in uV.
|
|
*
|
|
* Returns a boolean or a negative error code.
|
|
*/
|
|
int regulator_is_supported_voltage(struct regulator *regulator,
|
|
int min_uV, int max_uV)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int i, voltages, ret;
|
|
|
|
/* If we can't change voltage check the current voltage */
|
|
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
|
|
ret = regulator_get_voltage(regulator);
|
|
if (ret >= 0)
|
|
return min_uV <= ret && ret <= max_uV;
|
|
else
|
|
return ret;
|
|
}
|
|
|
|
/* Any voltage within constrains range is fine? */
|
|
if (rdev->desc->continuous_voltage_range)
|
|
return min_uV >= rdev->constraints->min_uV &&
|
|
max_uV <= rdev->constraints->max_uV;
|
|
|
|
ret = regulator_count_voltages(regulator);
|
|
if (ret < 0)
|
|
return ret;
|
|
voltages = ret;
|
|
|
|
for (i = 0; i < voltages; i++) {
|
|
ret = regulator_list_voltage(regulator, i);
|
|
|
|
if (ret >= min_uV && ret <= max_uV)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
|
|
|
|
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV)
|
|
{
|
|
int ret;
|
|
int delay = 0;
|
|
int best_val = 0;
|
|
unsigned int selector;
|
|
int old_selector = -1;
|
|
|
|
trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
|
|
|
|
min_uV += rdev->constraints->uV_offset;
|
|
max_uV += rdev->constraints->uV_offset;
|
|
|
|
/*
|
|
* If we can't obtain the old selector there is not enough
|
|
* info to call set_voltage_time_sel().
|
|
*/
|
|
if (_regulator_is_enabled(rdev) &&
|
|
rdev->desc->ops->set_voltage_time_sel &&
|
|
rdev->desc->ops->get_voltage_sel) {
|
|
old_selector = rdev->desc->ops->get_voltage_sel(rdev);
|
|
if (old_selector < 0)
|
|
return old_selector;
|
|
}
|
|
|
|
if (rdev->desc->ops->set_voltage) {
|
|
ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
|
|
&selector);
|
|
|
|
if (ret >= 0) {
|
|
if (rdev->desc->ops->list_voltage)
|
|
best_val = rdev->desc->ops->list_voltage(rdev,
|
|
selector);
|
|
else
|
|
best_val = _regulator_get_voltage(rdev);
|
|
}
|
|
|
|
} else if (rdev->desc->ops->set_voltage_sel) {
|
|
if (rdev->desc->ops->map_voltage) {
|
|
ret = rdev->desc->ops->map_voltage(rdev, min_uV,
|
|
max_uV);
|
|
} else {
|
|
if (rdev->desc->ops->list_voltage ==
|
|
regulator_list_voltage_linear)
|
|
ret = regulator_map_voltage_linear(rdev,
|
|
min_uV, max_uV);
|
|
else
|
|
ret = regulator_map_voltage_iterate(rdev,
|
|
min_uV, max_uV);
|
|
}
|
|
|
|
if (ret >= 0) {
|
|
best_val = rdev->desc->ops->list_voltage(rdev, ret);
|
|
if (min_uV <= best_val && max_uV >= best_val) {
|
|
selector = ret;
|
|
if (old_selector == selector)
|
|
ret = 0;
|
|
else
|
|
ret = rdev->desc->ops->set_voltage_sel(
|
|
rdev, ret);
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
}
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/* Call set_voltage_time_sel if successfully obtained old_selector */
|
|
if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
|
|
&& old_selector != selector) {
|
|
|
|
delay = rdev->desc->ops->set_voltage_time_sel(rdev,
|
|
old_selector, selector);
|
|
if (delay < 0) {
|
|
rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
|
|
delay);
|
|
delay = 0;
|
|
}
|
|
|
|
/* Insert any necessary delays */
|
|
if (delay >= 1000) {
|
|
mdelay(delay / 1000);
|
|
udelay(delay % 1000);
|
|
} else if (delay) {
|
|
udelay(delay);
|
|
}
|
|
}
|
|
|
|
if (ret == 0 && best_val >= 0) {
|
|
unsigned long data = best_val;
|
|
|
|
_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
|
|
(void *)data);
|
|
}
|
|
|
|
trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_set_voltage - set regulator output voltage
|
|
* @regulator: regulator source
|
|
* @min_uV: Minimum required voltage in uV
|
|
* @max_uV: Maximum acceptable voltage in uV
|
|
*
|
|
* Sets a voltage regulator to the desired output voltage. This can be set
|
|
* during any regulator state. IOW, regulator can be disabled or enabled.
|
|
*
|
|
* If the regulator is enabled then the voltage will change to the new value
|
|
* immediately otherwise if the regulator is disabled the regulator will
|
|
* output at the new voltage when enabled.
|
|
*
|
|
* NOTE: If the regulator is shared between several devices then the lowest
|
|
* request voltage that meets the system constraints will be used.
|
|
* Regulator system constraints must be set for this regulator before
|
|
* calling this function otherwise this call will fail.
|
|
*/
|
|
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret = 0;
|
|
int old_min_uV, old_max_uV;
|
|
int current_uV;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
/* If we're setting the same range as last time the change
|
|
* should be a noop (some cpufreq implementations use the same
|
|
* voltage for multiple frequencies, for example).
|
|
*/
|
|
if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
|
|
goto out;
|
|
|
|
/* If we're trying to set a range that overlaps the current voltage,
|
|
* return succesfully even though the regulator does not support
|
|
* changing the voltage.
|
|
*/
|
|
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
|
|
current_uV = _regulator_get_voltage(rdev);
|
|
if (min_uV <= current_uV && current_uV <= max_uV) {
|
|
regulator->min_uV = min_uV;
|
|
regulator->max_uV = max_uV;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->set_voltage &&
|
|
!rdev->desc->ops->set_voltage_sel) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* constraints check */
|
|
ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/* restore original values in case of error */
|
|
old_min_uV = regulator->min_uV;
|
|
old_max_uV = regulator->max_uV;
|
|
regulator->min_uV = min_uV;
|
|
regulator->max_uV = max_uV;
|
|
|
|
ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
|
|
if (ret < 0)
|
|
goto out2;
|
|
|
|
ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
|
|
if (ret < 0)
|
|
goto out2;
|
|
|
|
out:
|
|
mutex_unlock(&rdev->mutex);
|
|
return ret;
|
|
out2:
|
|
regulator->min_uV = old_min_uV;
|
|
regulator->max_uV = old_max_uV;
|
|
mutex_unlock(&rdev->mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_voltage);
|
|
|
|
/**
|
|
* regulator_set_voltage_time - get raise/fall time
|
|
* @regulator: regulator source
|
|
* @old_uV: starting voltage in microvolts
|
|
* @new_uV: target voltage in microvolts
|
|
*
|
|
* Provided with the starting and ending voltage, this function attempts to
|
|
* calculate the time in microseconds required to rise or fall to this new
|
|
* voltage.
|
|
*/
|
|
int regulator_set_voltage_time(struct regulator *regulator,
|
|
int old_uV, int new_uV)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
struct regulator_ops *ops = rdev->desc->ops;
|
|
int old_sel = -1;
|
|
int new_sel = -1;
|
|
int voltage;
|
|
int i;
|
|
|
|
/* Currently requires operations to do this */
|
|
if (!ops->list_voltage || !ops->set_voltage_time_sel
|
|
|| !rdev->desc->n_voltages)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < rdev->desc->n_voltages; i++) {
|
|
/* We only look for exact voltage matches here */
|
|
voltage = regulator_list_voltage(regulator, i);
|
|
if (voltage < 0)
|
|
return -EINVAL;
|
|
if (voltage == 0)
|
|
continue;
|
|
if (voltage == old_uV)
|
|
old_sel = i;
|
|
if (voltage == new_uV)
|
|
new_sel = i;
|
|
}
|
|
|
|
if (old_sel < 0 || new_sel < 0)
|
|
return -EINVAL;
|
|
|
|
return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
|
|
|
|
/**
|
|
* regulator_set_voltage_time_sel - get raise/fall time
|
|
* @rdev: regulator source device
|
|
* @old_selector: selector for starting voltage
|
|
* @new_selector: selector for target voltage
|
|
*
|
|
* Provided with the starting and target voltage selectors, this function
|
|
* returns time in microseconds required to rise or fall to this new voltage
|
|
*
|
|
* Drivers providing ramp_delay in regulation_constraints can use this as their
|
|
* set_voltage_time_sel() operation.
|
|
*/
|
|
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
|
|
unsigned int old_selector,
|
|
unsigned int new_selector)
|
|
{
|
|
unsigned int ramp_delay = 0;
|
|
int old_volt, new_volt;
|
|
|
|
if (rdev->constraints->ramp_delay)
|
|
ramp_delay = rdev->constraints->ramp_delay;
|
|
else if (rdev->desc->ramp_delay)
|
|
ramp_delay = rdev->desc->ramp_delay;
|
|
|
|
if (ramp_delay == 0) {
|
|
rdev_warn(rdev, "ramp_delay not set\n");
|
|
return 0;
|
|
}
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->list_voltage)
|
|
return -EINVAL;
|
|
|
|
old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
|
|
new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
|
|
|
|
return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
|
|
|
|
/**
|
|
* regulator_sync_voltage - re-apply last regulator output voltage
|
|
* @regulator: regulator source
|
|
*
|
|
* Re-apply the last configured voltage. This is intended to be used
|
|
* where some external control source the consumer is cooperating with
|
|
* has caused the configured voltage to change.
|
|
*/
|
|
int regulator_sync_voltage(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret, min_uV, max_uV;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
if (!rdev->desc->ops->set_voltage &&
|
|
!rdev->desc->ops->set_voltage_sel) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* This is only going to work if we've had a voltage configured. */
|
|
if (!regulator->min_uV && !regulator->max_uV) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
min_uV = regulator->min_uV;
|
|
max_uV = regulator->max_uV;
|
|
|
|
/* This should be a paranoia check... */
|
|
ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
|
|
|
|
out:
|
|
mutex_unlock(&rdev->mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_sync_voltage);
|
|
|
|
static int _regulator_get_voltage(struct regulator_dev *rdev)
|
|
{
|
|
int sel, ret;
|
|
|
|
if (rdev->desc->ops->get_voltage_sel) {
|
|
sel = rdev->desc->ops->get_voltage_sel(rdev);
|
|
if (sel < 0)
|
|
return sel;
|
|
ret = rdev->desc->ops->list_voltage(rdev, sel);
|
|
} else if (rdev->desc->ops->get_voltage) {
|
|
ret = rdev->desc->ops->get_voltage(rdev);
|
|
} else if (rdev->desc->ops->list_voltage) {
|
|
ret = rdev->desc->ops->list_voltage(rdev, 0);
|
|
} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
|
|
ret = rdev->desc->fixed_uV;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
return ret - rdev->constraints->uV_offset;
|
|
}
|
|
|
|
/**
|
|
* regulator_get_voltage - get regulator output voltage
|
|
* @regulator: regulator source
|
|
*
|
|
* This returns the current regulator voltage in uV.
|
|
*
|
|
* NOTE: If the regulator is disabled it will return the voltage value. This
|
|
* function should not be used to determine regulator state.
|
|
*/
|
|
int regulator_get_voltage(struct regulator *regulator)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(®ulator->rdev->mutex);
|
|
|
|
ret = _regulator_get_voltage(regulator->rdev);
|
|
|
|
mutex_unlock(®ulator->rdev->mutex);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_voltage);
|
|
|
|
/**
|
|
* regulator_set_current_limit - set regulator output current limit
|
|
* @regulator: regulator source
|
|
* @min_uA: Minimum supported current in uA
|
|
* @max_uA: Maximum supported current in uA
|
|
*
|
|
* Sets current sink to the desired output current. This can be set during
|
|
* any regulator state. IOW, regulator can be disabled or enabled.
|
|
*
|
|
* If the regulator is enabled then the current will change to the new value
|
|
* immediately otherwise if the regulator is disabled the regulator will
|
|
* output at the new current when enabled.
|
|
*
|
|
* NOTE: Regulator system constraints must be set for this regulator before
|
|
* calling this function otherwise this call will fail.
|
|
*/
|
|
int regulator_set_current_limit(struct regulator *regulator,
|
|
int min_uA, int max_uA)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->set_current_limit) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* constraints check */
|
|
ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
|
|
out:
|
|
mutex_unlock(&rdev->mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_current_limit);
|
|
|
|
static int _regulator_get_current_limit(struct regulator_dev *rdev)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->get_current_limit) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = rdev->desc->ops->get_current_limit(rdev);
|
|
out:
|
|
mutex_unlock(&rdev->mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_get_current_limit - get regulator output current
|
|
* @regulator: regulator source
|
|
*
|
|
* This returns the current supplied by the specified current sink in uA.
|
|
*
|
|
* NOTE: If the regulator is disabled it will return the current value. This
|
|
* function should not be used to determine regulator state.
|
|
*/
|
|
int regulator_get_current_limit(struct regulator *regulator)
|
|
{
|
|
return _regulator_get_current_limit(regulator->rdev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_current_limit);
|
|
|
|
/**
|
|
* regulator_set_mode - set regulator operating mode
|
|
* @regulator: regulator source
|
|
* @mode: operating mode - one of the REGULATOR_MODE constants
|
|
*
|
|
* Set regulator operating mode to increase regulator efficiency or improve
|
|
* regulation performance.
|
|
*
|
|
* NOTE: Regulator system constraints must be set for this regulator before
|
|
* calling this function otherwise this call will fail.
|
|
*/
|
|
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret;
|
|
int regulator_curr_mode;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->set_mode) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* return if the same mode is requested */
|
|
if (rdev->desc->ops->get_mode) {
|
|
regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
|
|
if (regulator_curr_mode == mode) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* constraints check */
|
|
ret = regulator_mode_constrain(rdev, &mode);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = rdev->desc->ops->set_mode(rdev, mode);
|
|
out:
|
|
mutex_unlock(&rdev->mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_mode);
|
|
|
|
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->get_mode) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = rdev->desc->ops->get_mode(rdev);
|
|
out:
|
|
mutex_unlock(&rdev->mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_get_mode - get regulator operating mode
|
|
* @regulator: regulator source
|
|
*
|
|
* Get the current regulator operating mode.
|
|
*/
|
|
unsigned int regulator_get_mode(struct regulator *regulator)
|
|
{
|
|
return _regulator_get_mode(regulator->rdev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_mode);
|
|
|
|
/**
|
|
* regulator_set_optimum_mode - set regulator optimum operating mode
|
|
* @regulator: regulator source
|
|
* @uA_load: load current
|
|
*
|
|
* Notifies the regulator core of a new device load. This is then used by
|
|
* DRMS (if enabled by constraints) to set the most efficient regulator
|
|
* operating mode for the new regulator loading.
|
|
*
|
|
* Consumer devices notify their supply regulator of the maximum power
|
|
* they will require (can be taken from device datasheet in the power
|
|
* consumption tables) when they change operational status and hence power
|
|
* state. Examples of operational state changes that can affect power
|
|
* consumption are :-
|
|
*
|
|
* o Device is opened / closed.
|
|
* o Device I/O is about to begin or has just finished.
|
|
* o Device is idling in between work.
|
|
*
|
|
* This information is also exported via sysfs to userspace.
|
|
*
|
|
* DRMS will sum the total requested load on the regulator and change
|
|
* to the most efficient operating mode if platform constraints allow.
|
|
*
|
|
* Returns the new regulator mode or error.
|
|
*/
|
|
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
struct regulator *consumer;
|
|
int ret, output_uV, input_uV = 0, total_uA_load = 0;
|
|
unsigned int mode;
|
|
|
|
if (rdev->supply)
|
|
input_uV = regulator_get_voltage(rdev->supply);
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
/*
|
|
* first check to see if we can set modes at all, otherwise just
|
|
* tell the consumer everything is OK.
|
|
*/
|
|
regulator->uA_load = uA_load;
|
|
ret = regulator_check_drms(rdev);
|
|
if (ret < 0) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (!rdev->desc->ops->get_optimum_mode)
|
|
goto out;
|
|
|
|
/*
|
|
* we can actually do this so any errors are indicators of
|
|
* potential real failure.
|
|
*/
|
|
ret = -EINVAL;
|
|
|
|
if (!rdev->desc->ops->set_mode)
|
|
goto out;
|
|
|
|
/* get output voltage */
|
|
output_uV = _regulator_get_voltage(rdev);
|
|
if (output_uV <= 0) {
|
|
rdev_err(rdev, "invalid output voltage found\n");
|
|
goto out;
|
|
}
|
|
|
|
/* No supply? Use constraint voltage */
|
|
if (input_uV <= 0)
|
|
input_uV = rdev->constraints->input_uV;
|
|
if (input_uV <= 0) {
|
|
rdev_err(rdev, "invalid input voltage found\n");
|
|
goto out;
|
|
}
|
|
|
|
/* calc total requested load for this regulator */
|
|
list_for_each_entry(consumer, &rdev->consumer_list, list)
|
|
total_uA_load += consumer->uA_load;
|
|
|
|
mode = rdev->desc->ops->get_optimum_mode(rdev,
|
|
input_uV, output_uV,
|
|
total_uA_load);
|
|
ret = regulator_mode_constrain(rdev, &mode);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
|
|
total_uA_load, input_uV, output_uV);
|
|
goto out;
|
|
}
|
|
|
|
ret = rdev->desc->ops->set_mode(rdev, mode);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set optimum mode %x\n", mode);
|
|
goto out;
|
|
}
|
|
ret = mode;
|
|
out:
|
|
mutex_unlock(&rdev->mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
|
|
|
|
/**
|
|
* regulator_allow_bypass - allow the regulator to go into bypass mode
|
|
*
|
|
* @regulator: Regulator to configure
|
|
* @enable: enable or disable bypass mode
|
|
*
|
|
* Allow the regulator to go into bypass mode if all other consumers
|
|
* for the regulator also enable bypass mode and the machine
|
|
* constraints allow this. Bypass mode means that the regulator is
|
|
* simply passing the input directly to the output with no regulation.
|
|
*/
|
|
int regulator_allow_bypass(struct regulator *regulator, bool enable)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret = 0;
|
|
|
|
if (!rdev->desc->ops->set_bypass)
|
|
return 0;
|
|
|
|
if (rdev->constraints &&
|
|
!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
|
|
return 0;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
if (enable && !regulator->bypass) {
|
|
rdev->bypass_count++;
|
|
|
|
if (rdev->bypass_count == rdev->open_count) {
|
|
ret = rdev->desc->ops->set_bypass(rdev, enable);
|
|
if (ret != 0)
|
|
rdev->bypass_count--;
|
|
}
|
|
|
|
} else if (!enable && regulator->bypass) {
|
|
rdev->bypass_count--;
|
|
|
|
if (rdev->bypass_count != rdev->open_count) {
|
|
ret = rdev->desc->ops->set_bypass(rdev, enable);
|
|
if (ret != 0)
|
|
rdev->bypass_count++;
|
|
}
|
|
}
|
|
|
|
if (ret == 0)
|
|
regulator->bypass = enable;
|
|
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_allow_bypass);
|
|
|
|
/**
|
|
* regulator_register_notifier - register regulator event notifier
|
|
* @regulator: regulator source
|
|
* @nb: notifier block
|
|
*
|
|
* Register notifier block to receive regulator events.
|
|
*/
|
|
int regulator_register_notifier(struct regulator *regulator,
|
|
struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_register(®ulator->rdev->notifier,
|
|
nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_register_notifier);
|
|
|
|
/**
|
|
* regulator_unregister_notifier - unregister regulator event notifier
|
|
* @regulator: regulator source
|
|
* @nb: notifier block
|
|
*
|
|
* Unregister regulator event notifier block.
|
|
*/
|
|
int regulator_unregister_notifier(struct regulator *regulator,
|
|
struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
|
|
nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
|
|
|
|
/* notify regulator consumers and downstream regulator consumers.
|
|
* Note mutex must be held by caller.
|
|
*/
|
|
static void _notifier_call_chain(struct regulator_dev *rdev,
|
|
unsigned long event, void *data)
|
|
{
|
|
/* call rdev chain first */
|
|
blocking_notifier_call_chain(&rdev->notifier, event, data);
|
|
}
|
|
|
|
/**
|
|
* regulator_bulk_get - get multiple regulator consumers
|
|
*
|
|
* @dev: Device to supply
|
|
* @num_consumers: Number of consumers to register
|
|
* @consumers: Configuration of consumers; clients are stored here.
|
|
*
|
|
* @return 0 on success, an errno on failure.
|
|
*
|
|
* This helper function allows drivers to get several regulator
|
|
* consumers in one operation. If any of the regulators cannot be
|
|
* acquired then any regulators that were allocated will be freed
|
|
* before returning to the caller.
|
|
*/
|
|
int regulator_bulk_get(struct device *dev, int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < num_consumers; i++)
|
|
consumers[i].consumer = NULL;
|
|
|
|
for (i = 0; i < num_consumers; i++) {
|
|
consumers[i].consumer = regulator_get(dev,
|
|
consumers[i].supply);
|
|
if (IS_ERR(consumers[i].consumer)) {
|
|
ret = PTR_ERR(consumers[i].consumer);
|
|
dev_err(dev, "Failed to get supply '%s': %d\n",
|
|
consumers[i].supply, ret);
|
|
consumers[i].consumer = NULL;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
while (--i >= 0)
|
|
regulator_put(consumers[i].consumer);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_get);
|
|
|
|
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
|
|
{
|
|
struct regulator_bulk_data *bulk = data;
|
|
|
|
bulk->ret = regulator_enable(bulk->consumer);
|
|
}
|
|
|
|
/**
|
|
* regulator_bulk_enable - enable multiple regulator consumers
|
|
*
|
|
* @num_consumers: Number of consumers
|
|
* @consumers: Consumer data; clients are stored here.
|
|
* @return 0 on success, an errno on failure
|
|
*
|
|
* This convenience API allows consumers to enable multiple regulator
|
|
* clients in a single API call. If any consumers cannot be enabled
|
|
* then any others that were enabled will be disabled again prior to
|
|
* return.
|
|
*/
|
|
int regulator_bulk_enable(int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
ASYNC_DOMAIN_EXCLUSIVE(async_domain);
|
|
int i;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < num_consumers; i++) {
|
|
if (consumers[i].consumer->always_on)
|
|
consumers[i].ret = 0;
|
|
else
|
|
async_schedule_domain(regulator_bulk_enable_async,
|
|
&consumers[i], &async_domain);
|
|
}
|
|
|
|
async_synchronize_full_domain(&async_domain);
|
|
|
|
/* If any consumer failed we need to unwind any that succeeded */
|
|
for (i = 0; i < num_consumers; i++) {
|
|
if (consumers[i].ret != 0) {
|
|
ret = consumers[i].ret;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
for (i = 0; i < num_consumers; i++) {
|
|
if (consumers[i].ret < 0)
|
|
pr_err("Failed to enable %s: %d\n", consumers[i].supply,
|
|
consumers[i].ret);
|
|
else
|
|
regulator_disable(consumers[i].consumer);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_enable);
|
|
|
|
/**
|
|
* regulator_bulk_disable - disable multiple regulator consumers
|
|
*
|
|
* @num_consumers: Number of consumers
|
|
* @consumers: Consumer data; clients are stored here.
|
|
* @return 0 on success, an errno on failure
|
|
*
|
|
* This convenience API allows consumers to disable multiple regulator
|
|
* clients in a single API call. If any consumers cannot be disabled
|
|
* then any others that were disabled will be enabled again prior to
|
|
* return.
|
|
*/
|
|
int regulator_bulk_disable(int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
int i;
|
|
int ret, r;
|
|
|
|
for (i = num_consumers - 1; i >= 0; --i) {
|
|
ret = regulator_disable(consumers[i].consumer);
|
|
if (ret != 0)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
|
|
for (++i; i < num_consumers; ++i) {
|
|
r = regulator_enable(consumers[i].consumer);
|
|
if (r != 0)
|
|
pr_err("Failed to reename %s: %d\n",
|
|
consumers[i].supply, r);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_disable);
|
|
|
|
/**
|
|
* regulator_bulk_force_disable - force disable multiple regulator consumers
|
|
*
|
|
* @num_consumers: Number of consumers
|
|
* @consumers: Consumer data; clients are stored here.
|
|
* @return 0 on success, an errno on failure
|
|
*
|
|
* This convenience API allows consumers to forcibly disable multiple regulator
|
|
* clients in a single API call.
|
|
* NOTE: This should be used for situations when device damage will
|
|
* likely occur if the regulators are not disabled (e.g. over temp).
|
|
* Although regulator_force_disable function call for some consumers can
|
|
* return error numbers, the function is called for all consumers.
|
|
*/
|
|
int regulator_bulk_force_disable(int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < num_consumers; i++)
|
|
consumers[i].ret =
|
|
regulator_force_disable(consumers[i].consumer);
|
|
|
|
for (i = 0; i < num_consumers; i++) {
|
|
if (consumers[i].ret != 0) {
|
|
ret = consumers[i].ret;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
|
|
|
|
/**
|
|
* regulator_bulk_free - free multiple regulator consumers
|
|
*
|
|
* @num_consumers: Number of consumers
|
|
* @consumers: Consumer data; clients are stored here.
|
|
*
|
|
* This convenience API allows consumers to free multiple regulator
|
|
* clients in a single API call.
|
|
*/
|
|
void regulator_bulk_free(int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_consumers; i++) {
|
|
regulator_put(consumers[i].consumer);
|
|
consumers[i].consumer = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_free);
|
|
|
|
/**
|
|
* regulator_notifier_call_chain - call regulator event notifier
|
|
* @rdev: regulator source
|
|
* @event: notifier block
|
|
* @data: callback-specific data.
|
|
*
|
|
* Called by regulator drivers to notify clients a regulator event has
|
|
* occurred. We also notify regulator clients downstream.
|
|
* Note lock must be held by caller.
|
|
*/
|
|
int regulator_notifier_call_chain(struct regulator_dev *rdev,
|
|
unsigned long event, void *data)
|
|
{
|
|
_notifier_call_chain(rdev, event, data);
|
|
return NOTIFY_DONE;
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
|
|
|
|
/**
|
|
* regulator_mode_to_status - convert a regulator mode into a status
|
|
*
|
|
* @mode: Mode to convert
|
|
*
|
|
* Convert a regulator mode into a status.
|
|
*/
|
|
int regulator_mode_to_status(unsigned int mode)
|
|
{
|
|
switch (mode) {
|
|
case REGULATOR_MODE_FAST:
|
|
return REGULATOR_STATUS_FAST;
|
|
case REGULATOR_MODE_NORMAL:
|
|
return REGULATOR_STATUS_NORMAL;
|
|
case REGULATOR_MODE_IDLE:
|
|
return REGULATOR_STATUS_IDLE;
|
|
case REGULATOR_MODE_STANDBY:
|
|
return REGULATOR_STATUS_STANDBY;
|
|
default:
|
|
return REGULATOR_STATUS_UNDEFINED;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_mode_to_status);
|
|
|
|
/*
|
|
* To avoid cluttering sysfs (and memory) with useless state, only
|
|
* create attributes that can be meaningfully displayed.
|
|
*/
|
|
static int add_regulator_attributes(struct regulator_dev *rdev)
|
|
{
|
|
struct device *dev = &rdev->dev;
|
|
struct regulator_ops *ops = rdev->desc->ops;
|
|
int status = 0;
|
|
|
|
/* some attributes need specific methods to be displayed */
|
|
if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
|
|
(ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
|
|
(ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
|
|
(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
|
|
status = device_create_file(dev, &dev_attr_microvolts);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
if (ops->get_current_limit) {
|
|
status = device_create_file(dev, &dev_attr_microamps);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
if (ops->get_mode) {
|
|
status = device_create_file(dev, &dev_attr_opmode);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
if (rdev->ena_pin || ops->is_enabled) {
|
|
status = device_create_file(dev, &dev_attr_state);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
if (ops->get_status) {
|
|
status = device_create_file(dev, &dev_attr_status);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
if (ops->get_bypass) {
|
|
status = device_create_file(dev, &dev_attr_bypass);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
/* some attributes are type-specific */
|
|
if (rdev->desc->type == REGULATOR_CURRENT) {
|
|
status = device_create_file(dev, &dev_attr_requested_microamps);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
/* all the other attributes exist to support constraints;
|
|
* don't show them if there are no constraints, or if the
|
|
* relevant supporting methods are missing.
|
|
*/
|
|
if (!rdev->constraints)
|
|
return status;
|
|
|
|
/* constraints need specific supporting methods */
|
|
if (ops->set_voltage || ops->set_voltage_sel) {
|
|
status = device_create_file(dev, &dev_attr_min_microvolts);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev, &dev_attr_max_microvolts);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
if (ops->set_current_limit) {
|
|
status = device_create_file(dev, &dev_attr_min_microamps);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev, &dev_attr_max_microamps);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
status = device_create_file(dev, &dev_attr_suspend_standby_state);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev, &dev_attr_suspend_mem_state);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev, &dev_attr_suspend_disk_state);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
if (ops->set_suspend_voltage) {
|
|
status = device_create_file(dev,
|
|
&dev_attr_suspend_standby_microvolts);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev,
|
|
&dev_attr_suspend_mem_microvolts);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev,
|
|
&dev_attr_suspend_disk_microvolts);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
if (ops->set_suspend_mode) {
|
|
status = device_create_file(dev,
|
|
&dev_attr_suspend_standby_mode);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev,
|
|
&dev_attr_suspend_mem_mode);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev,
|
|
&dev_attr_suspend_disk_mode);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static void rdev_init_debugfs(struct regulator_dev *rdev)
|
|
{
|
|
rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
|
|
if (!rdev->debugfs) {
|
|
rdev_warn(rdev, "Failed to create debugfs directory\n");
|
|
return;
|
|
}
|
|
|
|
debugfs_create_u32("use_count", 0444, rdev->debugfs,
|
|
&rdev->use_count);
|
|
debugfs_create_u32("open_count", 0444, rdev->debugfs,
|
|
&rdev->open_count);
|
|
debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
|
|
&rdev->bypass_count);
|
|
}
|
|
|
|
/**
|
|
* regulator_register - register regulator
|
|
* @regulator_desc: regulator to register
|
|
* @config: runtime configuration for regulator
|
|
*
|
|
* Called by regulator drivers to register a regulator.
|
|
* Returns a valid pointer to struct regulator_dev on success
|
|
* or an ERR_PTR() on error.
|
|
*/
|
|
struct regulator_dev *
|
|
regulator_register(const struct regulator_desc *regulator_desc,
|
|
const struct regulator_config *config)
|
|
{
|
|
const struct regulation_constraints *constraints = NULL;
|
|
const struct regulator_init_data *init_data;
|
|
static atomic_t regulator_no = ATOMIC_INIT(0);
|
|
struct regulator_dev *rdev;
|
|
struct device *dev;
|
|
int ret, i;
|
|
const char *supply = NULL;
|
|
|
|
if (regulator_desc == NULL || config == NULL)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
dev = config->dev;
|
|
WARN_ON(!dev);
|
|
|
|
if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (regulator_desc->type != REGULATOR_VOLTAGE &&
|
|
regulator_desc->type != REGULATOR_CURRENT)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* Only one of each should be implemented */
|
|
WARN_ON(regulator_desc->ops->get_voltage &&
|
|
regulator_desc->ops->get_voltage_sel);
|
|
WARN_ON(regulator_desc->ops->set_voltage &&
|
|
regulator_desc->ops->set_voltage_sel);
|
|
|
|
/* If we're using selectors we must implement list_voltage. */
|
|
if (regulator_desc->ops->get_voltage_sel &&
|
|
!regulator_desc->ops->list_voltage) {
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
if (regulator_desc->ops->set_voltage_sel &&
|
|
!regulator_desc->ops->list_voltage) {
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
init_data = config->init_data;
|
|
|
|
rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
|
|
if (rdev == NULL)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
|
|
mutex_init(&rdev->mutex);
|
|
rdev->reg_data = config->driver_data;
|
|
rdev->owner = regulator_desc->owner;
|
|
rdev->desc = regulator_desc;
|
|
if (config->regmap)
|
|
rdev->regmap = config->regmap;
|
|
else if (dev_get_regmap(dev, NULL))
|
|
rdev->regmap = dev_get_regmap(dev, NULL);
|
|
else if (dev->parent)
|
|
rdev->regmap = dev_get_regmap(dev->parent, NULL);
|
|
INIT_LIST_HEAD(&rdev->consumer_list);
|
|
INIT_LIST_HEAD(&rdev->list);
|
|
BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
|
|
INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
|
|
|
|
/* preform any regulator specific init */
|
|
if (init_data && init_data->regulator_init) {
|
|
ret = init_data->regulator_init(rdev->reg_data);
|
|
if (ret < 0)
|
|
goto clean;
|
|
}
|
|
|
|
/* register with sysfs */
|
|
rdev->dev.class = ®ulator_class;
|
|
rdev->dev.of_node = config->of_node;
|
|
rdev->dev.parent = dev;
|
|
dev_set_name(&rdev->dev, "regulator.%d",
|
|
atomic_inc_return(®ulator_no) - 1);
|
|
ret = device_register(&rdev->dev);
|
|
if (ret != 0) {
|
|
put_device(&rdev->dev);
|
|
goto clean;
|
|
}
|
|
|
|
dev_set_drvdata(&rdev->dev, rdev);
|
|
|
|
if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
|
|
ret = regulator_ena_gpio_request(rdev, config);
|
|
if (ret != 0) {
|
|
rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
|
|
config->ena_gpio, ret);
|
|
goto wash;
|
|
}
|
|
|
|
if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
|
|
rdev->ena_gpio_state = 1;
|
|
|
|
if (config->ena_gpio_invert)
|
|
rdev->ena_gpio_state = !rdev->ena_gpio_state;
|
|
}
|
|
|
|
/* set regulator constraints */
|
|
if (init_data)
|
|
constraints = &init_data->constraints;
|
|
|
|
ret = set_machine_constraints(rdev, constraints);
|
|
if (ret < 0)
|
|
goto scrub;
|
|
|
|
/* add attributes supported by this regulator */
|
|
ret = add_regulator_attributes(rdev);
|
|
if (ret < 0)
|
|
goto scrub;
|
|
|
|
if (init_data && init_data->supply_regulator)
|
|
supply = init_data->supply_regulator;
|
|
else if (regulator_desc->supply_name)
|
|
supply = regulator_desc->supply_name;
|
|
|
|
if (supply) {
|
|
struct regulator_dev *r;
|
|
|
|
r = regulator_dev_lookup(dev, supply, &ret);
|
|
|
|
if (ret == -ENODEV) {
|
|
/*
|
|
* No supply was specified for this regulator and
|
|
* there will never be one.
|
|
*/
|
|
ret = 0;
|
|
goto add_dev;
|
|
} else if (!r) {
|
|
dev_err(dev, "Failed to find supply %s\n", supply);
|
|
ret = -EPROBE_DEFER;
|
|
goto scrub;
|
|
}
|
|
|
|
ret = set_supply(rdev, r);
|
|
if (ret < 0)
|
|
goto scrub;
|
|
|
|
/* Enable supply if rail is enabled */
|
|
if (_regulator_is_enabled(rdev)) {
|
|
ret = regulator_enable(rdev->supply);
|
|
if (ret < 0)
|
|
goto scrub;
|
|
}
|
|
}
|
|
|
|
add_dev:
|
|
/* add consumers devices */
|
|
if (init_data) {
|
|
for (i = 0; i < init_data->num_consumer_supplies; i++) {
|
|
ret = set_consumer_device_supply(rdev,
|
|
init_data->consumer_supplies[i].dev_name,
|
|
init_data->consumer_supplies[i].supply);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Failed to set supply %s\n",
|
|
init_data->consumer_supplies[i].supply);
|
|
goto unset_supplies;
|
|
}
|
|
}
|
|
}
|
|
|
|
list_add(&rdev->list, ®ulator_list);
|
|
|
|
rdev_init_debugfs(rdev);
|
|
out:
|
|
mutex_unlock(®ulator_list_mutex);
|
|
return rdev;
|
|
|
|
unset_supplies:
|
|
unset_regulator_supplies(rdev);
|
|
|
|
scrub:
|
|
if (rdev->supply)
|
|
_regulator_put(rdev->supply);
|
|
regulator_ena_gpio_free(rdev);
|
|
kfree(rdev->constraints);
|
|
wash:
|
|
device_unregister(&rdev->dev);
|
|
/* device core frees rdev */
|
|
rdev = ERR_PTR(ret);
|
|
goto out;
|
|
|
|
clean:
|
|
kfree(rdev);
|
|
rdev = ERR_PTR(ret);
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_register);
|
|
|
|
/**
|
|
* regulator_unregister - unregister regulator
|
|
* @rdev: regulator to unregister
|
|
*
|
|
* Called by regulator drivers to unregister a regulator.
|
|
*/
|
|
void regulator_unregister(struct regulator_dev *rdev)
|
|
{
|
|
if (rdev == NULL)
|
|
return;
|
|
|
|
if (rdev->supply) {
|
|
while (rdev->use_count--)
|
|
regulator_disable(rdev->supply);
|
|
regulator_put(rdev->supply);
|
|
}
|
|
mutex_lock(®ulator_list_mutex);
|
|
debugfs_remove_recursive(rdev->debugfs);
|
|
flush_work(&rdev->disable_work.work);
|
|
WARN_ON(rdev->open_count);
|
|
unset_regulator_supplies(rdev);
|
|
list_del(&rdev->list);
|
|
kfree(rdev->constraints);
|
|
regulator_ena_gpio_free(rdev);
|
|
device_unregister(&rdev->dev);
|
|
mutex_unlock(®ulator_list_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_unregister);
|
|
|
|
/**
|
|
* regulator_suspend_prepare - prepare regulators for system wide suspend
|
|
* @state: system suspend state
|
|
*
|
|
* Configure each regulator with it's suspend operating parameters for state.
|
|
* This will usually be called by machine suspend code prior to supending.
|
|
*/
|
|
int regulator_suspend_prepare(suspend_state_t state)
|
|
{
|
|
struct regulator_dev *rdev;
|
|
int ret = 0;
|
|
|
|
/* ON is handled by regulator active state */
|
|
if (state == PM_SUSPEND_ON)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
list_for_each_entry(rdev, ®ulator_list, list) {
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
ret = suspend_prepare(rdev, state);
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to prepare\n");
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
mutex_unlock(®ulator_list_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
|
|
|
|
/**
|
|
* regulator_suspend_finish - resume regulators from system wide suspend
|
|
*
|
|
* Turn on regulators that might be turned off by regulator_suspend_prepare
|
|
* and that should be turned on according to the regulators properties.
|
|
*/
|
|
int regulator_suspend_finish(void)
|
|
{
|
|
struct regulator_dev *rdev;
|
|
int ret = 0, error;
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
list_for_each_entry(rdev, ®ulator_list, list) {
|
|
mutex_lock(&rdev->mutex);
|
|
if (rdev->use_count > 0 || rdev->constraints->always_on) {
|
|
error = _regulator_do_enable(rdev);
|
|
if (error)
|
|
ret = error;
|
|
} else {
|
|
if (!have_full_constraints())
|
|
goto unlock;
|
|
if (!_regulator_is_enabled(rdev))
|
|
goto unlock;
|
|
|
|
error = _regulator_do_disable(rdev);
|
|
if (error)
|
|
ret = error;
|
|
}
|
|
unlock:
|
|
mutex_unlock(&rdev->mutex);
|
|
}
|
|
mutex_unlock(®ulator_list_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_suspend_finish);
|
|
|
|
/**
|
|
* regulator_has_full_constraints - the system has fully specified constraints
|
|
*
|
|
* Calling this function will cause the regulator API to disable all
|
|
* regulators which have a zero use count and don't have an always_on
|
|
* constraint in a late_initcall.
|
|
*
|
|
* The intention is that this will become the default behaviour in a
|
|
* future kernel release so users are encouraged to use this facility
|
|
* now.
|
|
*/
|
|
void regulator_has_full_constraints(void)
|
|
{
|
|
has_full_constraints = 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
|
|
|
|
/**
|
|
* rdev_get_drvdata - get rdev regulator driver data
|
|
* @rdev: regulator
|
|
*
|
|
* Get rdev regulator driver private data. This call can be used in the
|
|
* regulator driver context.
|
|
*/
|
|
void *rdev_get_drvdata(struct regulator_dev *rdev)
|
|
{
|
|
return rdev->reg_data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rdev_get_drvdata);
|
|
|
|
/**
|
|
* regulator_get_drvdata - get regulator driver data
|
|
* @regulator: regulator
|
|
*
|
|
* Get regulator driver private data. This call can be used in the consumer
|
|
* driver context when non API regulator specific functions need to be called.
|
|
*/
|
|
void *regulator_get_drvdata(struct regulator *regulator)
|
|
{
|
|
return regulator->rdev->reg_data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_drvdata);
|
|
|
|
/**
|
|
* regulator_set_drvdata - set regulator driver data
|
|
* @regulator: regulator
|
|
* @data: data
|
|
*/
|
|
void regulator_set_drvdata(struct regulator *regulator, void *data)
|
|
{
|
|
regulator->rdev->reg_data = data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_drvdata);
|
|
|
|
/**
|
|
* regulator_get_id - get regulator ID
|
|
* @rdev: regulator
|
|
*/
|
|
int rdev_get_id(struct regulator_dev *rdev)
|
|
{
|
|
return rdev->desc->id;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rdev_get_id);
|
|
|
|
struct device *rdev_get_dev(struct regulator_dev *rdev)
|
|
{
|
|
return &rdev->dev;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rdev_get_dev);
|
|
|
|
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
|
|
{
|
|
return reg_init_data->driver_data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
|
|
ssize_t len, ret = 0;
|
|
struct regulator_map *map;
|
|
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
list_for_each_entry(map, ®ulator_map_list, list) {
|
|
len = snprintf(buf + ret, PAGE_SIZE - ret,
|
|
"%s -> %s.%s\n",
|
|
rdev_get_name(map->regulator), map->dev_name,
|
|
map->supply);
|
|
if (len >= 0)
|
|
ret += len;
|
|
if (ret > PAGE_SIZE) {
|
|
ret = PAGE_SIZE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
|
|
|
|
kfree(buf);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static const struct file_operations supply_map_fops = {
|
|
#ifdef CONFIG_DEBUG_FS
|
|
.read = supply_map_read_file,
|
|
.llseek = default_llseek,
|
|
#endif
|
|
};
|
|
|
|
static int __init regulator_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = class_register(®ulator_class);
|
|
|
|
debugfs_root = debugfs_create_dir("regulator", NULL);
|
|
if (!debugfs_root)
|
|
pr_warn("regulator: Failed to create debugfs directory\n");
|
|
|
|
debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
|
|
&supply_map_fops);
|
|
|
|
regulator_dummy_init();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* init early to allow our consumers to complete system booting */
|
|
core_initcall(regulator_init);
|
|
|
|
static int __init regulator_init_complete(void)
|
|
{
|
|
struct regulator_dev *rdev;
|
|
struct regulator_ops *ops;
|
|
struct regulation_constraints *c;
|
|
int enabled, ret;
|
|
|
|
/*
|
|
* Since DT doesn't provide an idiomatic mechanism for
|
|
* enabling full constraints and since it's much more natural
|
|
* with DT to provide them just assume that a DT enabled
|
|
* system has full constraints.
|
|
*/
|
|
if (of_have_populated_dt())
|
|
has_full_constraints = true;
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
|
|
/* If we have a full configuration then disable any regulators
|
|
* which are not in use or always_on. This will become the
|
|
* default behaviour in the future.
|
|
*/
|
|
list_for_each_entry(rdev, ®ulator_list, list) {
|
|
ops = rdev->desc->ops;
|
|
c = rdev->constraints;
|
|
|
|
if (c && c->always_on)
|
|
continue;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
if (rdev->use_count)
|
|
goto unlock;
|
|
|
|
/* If we can't read the status assume it's on. */
|
|
if (ops->is_enabled)
|
|
enabled = ops->is_enabled(rdev);
|
|
else
|
|
enabled = 1;
|
|
|
|
if (!enabled)
|
|
goto unlock;
|
|
|
|
if (have_full_constraints()) {
|
|
/* We log since this may kill the system if it
|
|
* goes wrong. */
|
|
rdev_info(rdev, "disabling\n");
|
|
ret = _regulator_do_disable(rdev);
|
|
if (ret != 0)
|
|
rdev_err(rdev, "couldn't disable: %d\n", ret);
|
|
} else {
|
|
/* The intention is that in future we will
|
|
* assume that full constraints are provided
|
|
* so warn even if we aren't going to do
|
|
* anything here.
|
|
*/
|
|
rdev_warn(rdev, "incomplete constraints, leaving on\n");
|
|
}
|
|
|
|
unlock:
|
|
mutex_unlock(&rdev->mutex);
|
|
}
|
|
|
|
mutex_unlock(®ulator_list_mutex);
|
|
|
|
return 0;
|
|
}
|
|
late_initcall(regulator_init_complete);
|