mirror of
https://github.com/torvalds/linux.git
synced 2024-11-27 06:31:52 +00:00
4246a0b63b
Currently we have two different ways to signal an I/O error on a BIO: (1) by clearing the BIO_UPTODATE flag (2) by returning a Linux errno value to the bi_end_io callback The first one has the drawback of only communicating a single possible error (-EIO), and the second one has the drawback of not beeing persistent when bios are queued up, and are not passed along from child to parent bio in the ever more popular chaining scenario. Having both mechanisms available has the additional drawback of utterly confusing driver authors and introducing bugs where various I/O submitters only deal with one of them, and the others have to add boilerplate code to deal with both kinds of error returns. So add a new bi_error field to store an errno value directly in struct bio and remove the existing mechanisms to clean all this up. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: NeilBrown <neilb@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com>
384 lines
12 KiB
C
384 lines
12 KiB
C
#ifndef _LINUX_CLOSURE_H
|
|
#define _LINUX_CLOSURE_H
|
|
|
|
#include <linux/llist.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
/*
|
|
* Closure is perhaps the most overused and abused term in computer science, but
|
|
* since I've been unable to come up with anything better you're stuck with it
|
|
* again.
|
|
*
|
|
* What are closures?
|
|
*
|
|
* They embed a refcount. The basic idea is they count "things that are in
|
|
* progress" - in flight bios, some other thread that's doing something else -
|
|
* anything you might want to wait on.
|
|
*
|
|
* The refcount may be manipulated with closure_get() and closure_put().
|
|
* closure_put() is where many of the interesting things happen, when it causes
|
|
* the refcount to go to 0.
|
|
*
|
|
* Closures can be used to wait on things both synchronously and asynchronously,
|
|
* and synchronous and asynchronous use can be mixed without restriction. To
|
|
* wait synchronously, use closure_sync() - you will sleep until your closure's
|
|
* refcount hits 1.
|
|
*
|
|
* To wait asynchronously, use
|
|
* continue_at(cl, next_function, workqueue);
|
|
*
|
|
* passing it, as you might expect, the function to run when nothing is pending
|
|
* and the workqueue to run that function out of.
|
|
*
|
|
* continue_at() also, critically, is a macro that returns the calling function.
|
|
* There's good reason for this.
|
|
*
|
|
* To use safely closures asynchronously, they must always have a refcount while
|
|
* they are running owned by the thread that is running them. Otherwise, suppose
|
|
* you submit some bios and wish to have a function run when they all complete:
|
|
*
|
|
* foo_endio(struct bio *bio)
|
|
* {
|
|
* closure_put(cl);
|
|
* }
|
|
*
|
|
* closure_init(cl);
|
|
*
|
|
* do_stuff();
|
|
* closure_get(cl);
|
|
* bio1->bi_endio = foo_endio;
|
|
* bio_submit(bio1);
|
|
*
|
|
* do_more_stuff();
|
|
* closure_get(cl);
|
|
* bio2->bi_endio = foo_endio;
|
|
* bio_submit(bio2);
|
|
*
|
|
* continue_at(cl, complete_some_read, system_wq);
|
|
*
|
|
* If closure's refcount started at 0, complete_some_read() could run before the
|
|
* second bio was submitted - which is almost always not what you want! More
|
|
* importantly, it wouldn't be possible to say whether the original thread or
|
|
* complete_some_read()'s thread owned the closure - and whatever state it was
|
|
* associated with!
|
|
*
|
|
* So, closure_init() initializes a closure's refcount to 1 - and when a
|
|
* closure_fn is run, the refcount will be reset to 1 first.
|
|
*
|
|
* Then, the rule is - if you got the refcount with closure_get(), release it
|
|
* with closure_put() (i.e, in a bio->bi_endio function). If you have a refcount
|
|
* on a closure because you called closure_init() or you were run out of a
|
|
* closure - _always_ use continue_at(). Doing so consistently will help
|
|
* eliminate an entire class of particularly pernicious races.
|
|
*
|
|
* Lastly, you might have a wait list dedicated to a specific event, and have no
|
|
* need for specifying the condition - you just want to wait until someone runs
|
|
* closure_wake_up() on the appropriate wait list. In that case, just use
|
|
* closure_wait(). It will return either true or false, depending on whether the
|
|
* closure was already on a wait list or not - a closure can only be on one wait
|
|
* list at a time.
|
|
*
|
|
* Parents:
|
|
*
|
|
* closure_init() takes two arguments - it takes the closure to initialize, and
|
|
* a (possibly null) parent.
|
|
*
|
|
* If parent is non null, the new closure will have a refcount for its lifetime;
|
|
* a closure is considered to be "finished" when its refcount hits 0 and the
|
|
* function to run is null. Hence
|
|
*
|
|
* continue_at(cl, NULL, NULL);
|
|
*
|
|
* returns up the (spaghetti) stack of closures, precisely like normal return
|
|
* returns up the C stack. continue_at() with non null fn is better thought of
|
|
* as doing a tail call.
|
|
*
|
|
* All this implies that a closure should typically be embedded in a particular
|
|
* struct (which its refcount will normally control the lifetime of), and that
|
|
* struct can very much be thought of as a stack frame.
|
|
*/
|
|
|
|
struct closure;
|
|
typedef void (closure_fn) (struct closure *);
|
|
|
|
struct closure_waitlist {
|
|
struct llist_head list;
|
|
};
|
|
|
|
enum closure_state {
|
|
/*
|
|
* CLOSURE_WAITING: Set iff the closure is on a waitlist. Must be set by
|
|
* the thread that owns the closure, and cleared by the thread that's
|
|
* waking up the closure.
|
|
*
|
|
* CLOSURE_SLEEPING: Must be set before a thread uses a closure to sleep
|
|
* - indicates that cl->task is valid and closure_put() may wake it up.
|
|
* Only set or cleared by the thread that owns the closure.
|
|
*
|
|
* The rest are for debugging and don't affect behaviour:
|
|
*
|
|
* CLOSURE_RUNNING: Set when a closure is running (i.e. by
|
|
* closure_init() and when closure_put() runs then next function), and
|
|
* must be cleared before remaining hits 0. Primarily to help guard
|
|
* against incorrect usage and accidentally transferring references.
|
|
* continue_at() and closure_return() clear it for you, if you're doing
|
|
* something unusual you can use closure_set_dead() which also helps
|
|
* annotate where references are being transferred.
|
|
*
|
|
* CLOSURE_STACK: Sanity check - remaining should never hit 0 on a
|
|
* closure with this flag set
|
|
*/
|
|
|
|
CLOSURE_BITS_START = (1 << 23),
|
|
CLOSURE_DESTRUCTOR = (1 << 23),
|
|
CLOSURE_WAITING = (1 << 25),
|
|
CLOSURE_SLEEPING = (1 << 27),
|
|
CLOSURE_RUNNING = (1 << 29),
|
|
CLOSURE_STACK = (1 << 31),
|
|
};
|
|
|
|
#define CLOSURE_GUARD_MASK \
|
|
((CLOSURE_DESTRUCTOR|CLOSURE_WAITING|CLOSURE_SLEEPING| \
|
|
CLOSURE_RUNNING|CLOSURE_STACK) << 1)
|
|
|
|
#define CLOSURE_REMAINING_MASK (CLOSURE_BITS_START - 1)
|
|
#define CLOSURE_REMAINING_INITIALIZER (1|CLOSURE_RUNNING)
|
|
|
|
struct closure {
|
|
union {
|
|
struct {
|
|
struct workqueue_struct *wq;
|
|
struct task_struct *task;
|
|
struct llist_node list;
|
|
closure_fn *fn;
|
|
};
|
|
struct work_struct work;
|
|
};
|
|
|
|
struct closure *parent;
|
|
|
|
atomic_t remaining;
|
|
|
|
#ifdef CONFIG_BCACHE_CLOSURES_DEBUG
|
|
#define CLOSURE_MAGIC_DEAD 0xc054dead
|
|
#define CLOSURE_MAGIC_ALIVE 0xc054a11e
|
|
|
|
unsigned magic;
|
|
struct list_head all;
|
|
unsigned long ip;
|
|
unsigned long waiting_on;
|
|
#endif
|
|
};
|
|
|
|
void closure_sub(struct closure *cl, int v);
|
|
void closure_put(struct closure *cl);
|
|
void __closure_wake_up(struct closure_waitlist *list);
|
|
bool closure_wait(struct closure_waitlist *list, struct closure *cl);
|
|
void closure_sync(struct closure *cl);
|
|
|
|
#ifdef CONFIG_BCACHE_CLOSURES_DEBUG
|
|
|
|
void closure_debug_init(void);
|
|
void closure_debug_create(struct closure *cl);
|
|
void closure_debug_destroy(struct closure *cl);
|
|
|
|
#else
|
|
|
|
static inline void closure_debug_init(void) {}
|
|
static inline void closure_debug_create(struct closure *cl) {}
|
|
static inline void closure_debug_destroy(struct closure *cl) {}
|
|
|
|
#endif
|
|
|
|
static inline void closure_set_ip(struct closure *cl)
|
|
{
|
|
#ifdef CONFIG_BCACHE_CLOSURES_DEBUG
|
|
cl->ip = _THIS_IP_;
|
|
#endif
|
|
}
|
|
|
|
static inline void closure_set_ret_ip(struct closure *cl)
|
|
{
|
|
#ifdef CONFIG_BCACHE_CLOSURES_DEBUG
|
|
cl->ip = _RET_IP_;
|
|
#endif
|
|
}
|
|
|
|
static inline void closure_set_waiting(struct closure *cl, unsigned long f)
|
|
{
|
|
#ifdef CONFIG_BCACHE_CLOSURES_DEBUG
|
|
cl->waiting_on = f;
|
|
#endif
|
|
}
|
|
|
|
static inline void __closure_end_sleep(struct closure *cl)
|
|
{
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
if (atomic_read(&cl->remaining) & CLOSURE_SLEEPING)
|
|
atomic_sub(CLOSURE_SLEEPING, &cl->remaining);
|
|
}
|
|
|
|
static inline void __closure_start_sleep(struct closure *cl)
|
|
{
|
|
closure_set_ip(cl);
|
|
cl->task = current;
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
|
|
if (!(atomic_read(&cl->remaining) & CLOSURE_SLEEPING))
|
|
atomic_add(CLOSURE_SLEEPING, &cl->remaining);
|
|
}
|
|
|
|
static inline void closure_set_stopped(struct closure *cl)
|
|
{
|
|
atomic_sub(CLOSURE_RUNNING, &cl->remaining);
|
|
}
|
|
|
|
static inline void set_closure_fn(struct closure *cl, closure_fn *fn,
|
|
struct workqueue_struct *wq)
|
|
{
|
|
BUG_ON(object_is_on_stack(cl));
|
|
closure_set_ip(cl);
|
|
cl->fn = fn;
|
|
cl->wq = wq;
|
|
/* between atomic_dec() in closure_put() */
|
|
smp_mb__before_atomic();
|
|
}
|
|
|
|
static inline void closure_queue(struct closure *cl)
|
|
{
|
|
struct workqueue_struct *wq = cl->wq;
|
|
if (wq) {
|
|
INIT_WORK(&cl->work, cl->work.func);
|
|
BUG_ON(!queue_work(wq, &cl->work));
|
|
} else
|
|
cl->fn(cl);
|
|
}
|
|
|
|
/**
|
|
* closure_get - increment a closure's refcount
|
|
*/
|
|
static inline void closure_get(struct closure *cl)
|
|
{
|
|
#ifdef CONFIG_BCACHE_CLOSURES_DEBUG
|
|
BUG_ON((atomic_inc_return(&cl->remaining) &
|
|
CLOSURE_REMAINING_MASK) <= 1);
|
|
#else
|
|
atomic_inc(&cl->remaining);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* closure_init - Initialize a closure, setting the refcount to 1
|
|
* @cl: closure to initialize
|
|
* @parent: parent of the new closure. cl will take a refcount on it for its
|
|
* lifetime; may be NULL.
|
|
*/
|
|
static inline void closure_init(struct closure *cl, struct closure *parent)
|
|
{
|
|
memset(cl, 0, sizeof(struct closure));
|
|
cl->parent = parent;
|
|
if (parent)
|
|
closure_get(parent);
|
|
|
|
atomic_set(&cl->remaining, CLOSURE_REMAINING_INITIALIZER);
|
|
|
|
closure_debug_create(cl);
|
|
closure_set_ip(cl);
|
|
}
|
|
|
|
static inline void closure_init_stack(struct closure *cl)
|
|
{
|
|
memset(cl, 0, sizeof(struct closure));
|
|
atomic_set(&cl->remaining, CLOSURE_REMAINING_INITIALIZER|CLOSURE_STACK);
|
|
}
|
|
|
|
/**
|
|
* closure_wake_up - wake up all closures on a wait list.
|
|
*/
|
|
static inline void closure_wake_up(struct closure_waitlist *list)
|
|
{
|
|
smp_mb();
|
|
__closure_wake_up(list);
|
|
}
|
|
|
|
/**
|
|
* continue_at - jump to another function with barrier
|
|
*
|
|
* After @cl is no longer waiting on anything (i.e. all outstanding refs have
|
|
* been dropped with closure_put()), it will resume execution at @fn running out
|
|
* of @wq (or, if @wq is NULL, @fn will be called by closure_put() directly).
|
|
*
|
|
* NOTE: This macro expands to a return in the calling function!
|
|
*
|
|
* This is because after calling continue_at() you no longer have a ref on @cl,
|
|
* and whatever @cl owns may be freed out from under you - a running closure fn
|
|
* has a ref on its own closure which continue_at() drops.
|
|
*/
|
|
#define continue_at(_cl, _fn, _wq) \
|
|
do { \
|
|
set_closure_fn(_cl, _fn, _wq); \
|
|
closure_sub(_cl, CLOSURE_RUNNING + 1); \
|
|
} while (0)
|
|
|
|
/**
|
|
* closure_return - finish execution of a closure
|
|
*
|
|
* This is used to indicate that @cl is finished: when all outstanding refs on
|
|
* @cl have been dropped @cl's ref on its parent closure (as passed to
|
|
* closure_init()) will be dropped, if one was specified - thus this can be
|
|
* thought of as returning to the parent closure.
|
|
*/
|
|
#define closure_return(_cl) continue_at((_cl), NULL, NULL)
|
|
|
|
/**
|
|
* continue_at_nobarrier - jump to another function without barrier
|
|
*
|
|
* Causes @fn to be executed out of @cl, in @wq context (or called directly if
|
|
* @wq is NULL).
|
|
*
|
|
* NOTE: like continue_at(), this macro expands to a return in the caller!
|
|
*
|
|
* The ref the caller of continue_at_nobarrier() had on @cl is now owned by @fn,
|
|
* thus it's not safe to touch anything protected by @cl after a
|
|
* continue_at_nobarrier().
|
|
*/
|
|
#define continue_at_nobarrier(_cl, _fn, _wq) \
|
|
do { \
|
|
set_closure_fn(_cl, _fn, _wq); \
|
|
closure_queue(_cl); \
|
|
} while (0)
|
|
|
|
/**
|
|
* closure_return - finish execution of a closure, with destructor
|
|
*
|
|
* Works like closure_return(), except @destructor will be called when all
|
|
* outstanding refs on @cl have been dropped; @destructor may be used to safely
|
|
* free the memory occupied by @cl, and it is called with the ref on the parent
|
|
* closure still held - so @destructor could safely return an item to a
|
|
* freelist protected by @cl's parent.
|
|
*/
|
|
#define closure_return_with_destructor(_cl, _destructor) \
|
|
do { \
|
|
set_closure_fn(_cl, _destructor, NULL); \
|
|
closure_sub(_cl, CLOSURE_RUNNING - CLOSURE_DESTRUCTOR + 1); \
|
|
} while (0)
|
|
|
|
/**
|
|
* closure_call - execute @fn out of a new, uninitialized closure
|
|
*
|
|
* Typically used when running out of one closure, and we want to run @fn
|
|
* asynchronously out of a new closure - @parent will then wait for @cl to
|
|
* finish.
|
|
*/
|
|
static inline void closure_call(struct closure *cl, closure_fn fn,
|
|
struct workqueue_struct *wq,
|
|
struct closure *parent)
|
|
{
|
|
closure_init(cl, parent);
|
|
continue_at_nobarrier(cl, fn, wq);
|
|
}
|
|
|
|
#endif /* _LINUX_CLOSURE_H */
|