linux/drivers/crypto/cavium/nitrox/nitrox_csr.h
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

1086 lines
29 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __NITROX_CSR_H
#define __NITROX_CSR_H
#include <asm/byteorder.h>
#include <linux/types.h>
/* EMU clusters */
#define NR_CLUSTERS 4
#define AE_CORES_PER_CLUSTER 20
#define SE_CORES_PER_CLUSTER 16
/* BIST registers */
#define EMU_BIST_STATUSX(_i) (0x1402700 + ((_i) * 0x40000))
#define UCD_BIST_STATUS 0x12C0070
#define NPS_CORE_BIST_REG 0x10000E8
#define NPS_CORE_NPC_BIST_REG 0x1000128
#define NPS_PKT_SLC_BIST_REG 0x1040088
#define NPS_PKT_IN_BIST_REG 0x1040100
#define POM_BIST_REG 0x11C0100
#define BMI_BIST_REG 0x1140080
#define EFL_CORE_BIST_REGX(_i) (0x1240100 + ((_i) * 0x400))
#define EFL_TOP_BIST_STAT 0x1241090
#define BMO_BIST_REG 0x1180080
#define LBC_BIST_STATUS 0x1200020
#define PEM_BIST_STATUSX(_i) (0x1080468 | ((_i) << 18))
/* EMU registers */
#define EMU_SE_ENABLEX(_i) (0x1400000 + ((_i) * 0x40000))
#define EMU_AE_ENABLEX(_i) (0x1400008 + ((_i) * 0x40000))
#define EMU_WD_INT_ENA_W1SX(_i) (0x1402318 + ((_i) * 0x40000))
#define EMU_GE_INT_ENA_W1SX(_i) (0x1402518 + ((_i) * 0x40000))
#define EMU_FUSE_MAPX(_i) (0x1402708 + ((_i) * 0x40000))
/* UCD registers */
#define UCD_UCODE_LOAD_BLOCK_NUM 0x12C0010
#define UCD_UCODE_LOAD_IDX_DATAX(_i) (0x12C0018 + ((_i) * 0x20))
#define UCD_SE_EID_UCODE_BLOCK_NUMX(_i) (0x12C0000 + ((_i) * 0x1000))
/* NPS core registers */
#define NPS_CORE_GBL_VFCFG 0x1000000
#define NPS_CORE_CONTROL 0x1000008
#define NPS_CORE_INT_ACTIVE 0x1000080
#define NPS_CORE_INT 0x10000A0
#define NPS_CORE_INT_ENA_W1S 0x10000B8
#define NPS_STATS_PKT_DMA_RD_CNT 0x1000180
#define NPS_STATS_PKT_DMA_WR_CNT 0x1000190
/* NPS packet registers */
#define NPS_PKT_INT 0x1040018
#define NPS_PKT_IN_RERR_HI 0x1040108
#define NPS_PKT_IN_RERR_HI_ENA_W1S 0x1040120
#define NPS_PKT_IN_RERR_LO 0x1040128
#define NPS_PKT_IN_RERR_LO_ENA_W1S 0x1040140
#define NPS_PKT_IN_ERR_TYPE 0x1040148
#define NPS_PKT_IN_ERR_TYPE_ENA_W1S 0x1040160
#define NPS_PKT_IN_INSTR_CTLX(_i) (0x10060 + ((_i) * 0x40000))
#define NPS_PKT_IN_INSTR_BADDRX(_i) (0x10068 + ((_i) * 0x40000))
#define NPS_PKT_IN_INSTR_RSIZEX(_i) (0x10070 + ((_i) * 0x40000))
#define NPS_PKT_IN_DONE_CNTSX(_i) (0x10080 + ((_i) * 0x40000))
#define NPS_PKT_IN_INSTR_BAOFF_DBELLX(_i) (0x10078 + ((_i) * 0x40000))
#define NPS_PKT_IN_INT_LEVELSX(_i) (0x10088 + ((_i) * 0x40000))
#define NPS_PKT_SLC_RERR_HI 0x1040208
#define NPS_PKT_SLC_RERR_HI_ENA_W1S 0x1040220
#define NPS_PKT_SLC_RERR_LO 0x1040228
#define NPS_PKT_SLC_RERR_LO_ENA_W1S 0x1040240
#define NPS_PKT_SLC_ERR_TYPE 0x1040248
#define NPS_PKT_SLC_ERR_TYPE_ENA_W1S 0x1040260
#define NPS_PKT_SLC_CTLX(_i) (0x10000 + ((_i) * 0x40000))
#define NPS_PKT_SLC_CNTSX(_i) (0x10008 + ((_i) * 0x40000))
#define NPS_PKT_SLC_INT_LEVELSX(_i) (0x10010 + ((_i) * 0x40000))
/* POM registers */
#define POM_INT_ENA_W1S 0x11C0018
#define POM_GRP_EXECMASKX(_i) (0x11C1100 | ((_i) * 8))
#define POM_INT 0x11C0000
#define POM_PERF_CTL 0x11CC400
/* BMI registers */
#define BMI_INT 0x1140000
#define BMI_CTL 0x1140020
#define BMI_INT_ENA_W1S 0x1140018
#define BMI_NPS_PKT_CNT 0x1140070
/* EFL registers */
#define EFL_CORE_INT_ENA_W1SX(_i) (0x1240018 + ((_i) * 0x400))
#define EFL_CORE_VF_ERR_INT0X(_i) (0x1240050 + ((_i) * 0x400))
#define EFL_CORE_VF_ERR_INT0_ENA_W1SX(_i) (0x1240068 + ((_i) * 0x400))
#define EFL_CORE_VF_ERR_INT1X(_i) (0x1240070 + ((_i) * 0x400))
#define EFL_CORE_VF_ERR_INT1_ENA_W1SX(_i) (0x1240088 + ((_i) * 0x400))
#define EFL_CORE_SE_ERR_INTX(_i) (0x12400A0 + ((_i) * 0x400))
#define EFL_RNM_CTL_STATUS 0x1241800
#define EFL_CORE_INTX(_i) (0x1240000 + ((_i) * 0x400))
/* BMO registers */
#define BMO_CTL2 0x1180028
#define BMO_NPS_SLC_PKT_CNT 0x1180078
/* LBC registers */
#define LBC_INT 0x1200000
#define LBC_INVAL_CTL 0x1201010
#define LBC_PLM_VF1_64_INT 0x1202008
#define LBC_INVAL_STATUS 0x1202010
#define LBC_INT_ENA_W1S 0x1203000
#define LBC_PLM_VF1_64_INT_ENA_W1S 0x1205008
#define LBC_PLM_VF65_128_INT 0x1206008
#define LBC_ELM_VF1_64_INT 0x1208000
#define LBC_PLM_VF65_128_INT_ENA_W1S 0x1209008
#define LBC_ELM_VF1_64_INT_ENA_W1S 0x120B000
#define LBC_ELM_VF65_128_INT 0x120C000
#define LBC_ELM_VF65_128_INT_ENA_W1S 0x120F000
/* PEM registers */
#define PEM0_INT 0x1080428
/**
* struct emu_fuse_map - EMU Fuse Map Registers
* @ae_fuse: Fuse settings for AE 19..0
* @se_fuse: Fuse settings for SE 15..0
*
* A set bit indicates the unit is fuse disabled.
*/
union emu_fuse_map {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 valid : 1;
u64 raz_52_62 : 11;
u64 ae_fuse : 20;
u64 raz_16_31 : 16;
u64 se_fuse : 16;
#else
u64 se_fuse : 16;
u64 raz_16_31 : 16;
u64 ae_fuse : 20;
u64 raz_52_62 : 11;
u64 valid : 1;
#endif
} s;
};
/**
* struct emu_se_enable - Symmetric Engine Enable Registers
* @enable: Individual enables for each of the clusters
* 16 symmetric engines.
*/
union emu_se_enable {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz : 48;
u64 enable : 16;
#else
u64 enable : 16;
u64 raz : 48;
#endif
} s;
};
/**
* struct emu_ae_enable - EMU Asymmetric engines.
* @enable: Individual enables for each of the cluster's
* 20 Asymmetric Engines.
*/
union emu_ae_enable {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz : 44;
u64 enable : 20;
#else
u64 enable : 20;
u64 raz : 44;
#endif
} s;
};
/**
* struct emu_wd_int_ena_w1s - EMU Interrupt Enable Registers
* @ae_wd: Reads or sets enable for EMU(0..3)_WD_INT[AE_WD]
* @se_wd: Reads or sets enable for EMU(0..3)_WD_INT[SE_WD]
*/
union emu_wd_int_ena_w1s {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz2 : 12;
u64 ae_wd : 20;
u64 raz1 : 16;
u64 se_wd : 16;
#else
u64 se_wd : 16;
u64 raz1 : 16;
u64 ae_wd : 20;
u64 raz2 : 12;
#endif
} s;
};
/**
* struct emu_ge_int_ena_w1s - EMU Interrupt Enable set registers
* @ae_ge: Reads or sets enable for EMU(0..3)_GE_INT[AE_GE]
* @se_ge: Reads or sets enable for EMU(0..3)_GE_INT[SE_GE]
*/
union emu_ge_int_ena_w1s {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz_52_63 : 12;
u64 ae_ge : 20;
u64 raz_16_31: 16;
u64 se_ge : 16;
#else
u64 se_ge : 16;
u64 raz_16_31: 16;
u64 ae_ge : 20;
u64 raz_52_63 : 12;
#endif
} s;
};
/**
* struct nps_pkt_slc_ctl - Solicited Packet Out Control Registers
* @rh: Indicates whether to remove or include the response header
* 1 = Include, 0 = Remove
* @z: If set, 8 trailing 0x00 bytes will be added to the end of the
* outgoing packet.
* @enb: Enable for this port.
*/
union nps_pkt_slc_ctl {
u64 value;
struct {
#if defined(__BIG_ENDIAN_BITFIELD)
u64 raz : 61;
u64 rh : 1;
u64 z : 1;
u64 enb : 1;
#else
u64 enb : 1;
u64 z : 1;
u64 rh : 1;
u64 raz : 61;
#endif
} s;
};
/**
* struct nps_pkt_slc_cnts - Solicited Packet Out Count Registers
* @slc_int: Returns a 1 when:
* NPS_PKT_SLC(i)_CNTS[CNT] > NPS_PKT_SLC(i)_INT_LEVELS[CNT], or
* NPS_PKT_SLC(i)_CNTS[TIMER] > NPS_PKT_SLC(i)_INT_LEVELS[TIMET].
* To clear the bit, the CNTS register must be written to clear.
* @in_int: Returns a 1 when:
* NPS_PKT_IN(i)_DONE_CNTS[CNT] > NPS_PKT_IN(i)_INT_LEVELS[CNT].
* To clear the bit, the DONE_CNTS register must be written to clear.
* @mbox_int: Returns a 1 when:
* NPS_PKT_MBOX_PF_VF(i)_INT[INTR] is set. To clear the bit,
* write NPS_PKT_MBOX_PF_VF(i)_INT[INTR] with 1.
* @timer: Timer, incremented every 2048 coprocessor clock cycles
* when [CNT] is not zero. The hardware clears both [TIMER] and
* [INT] when [CNT] goes to 0.
* @cnt: Packet counter. Hardware adds to [CNT] as it sends packets out.
* On a write to this CSR, hardware subtracts the amount written to the
* [CNT] field from [CNT].
*/
union nps_pkt_slc_cnts {
u64 value;
struct {
#if defined(__BIG_ENDIAN_BITFIELD)
u64 slc_int : 1;
u64 uns_int : 1;
u64 in_int : 1;
u64 mbox_int : 1;
u64 resend : 1;
u64 raz : 5;
u64 timer : 22;
u64 cnt : 32;
#else
u64 cnt : 32;
u64 timer : 22;
u64 raz : 5;
u64 resend : 1;
u64 mbox_int : 1;
u64 in_int : 1;
u64 uns_int : 1;
u64 slc_int : 1;
#endif
} s;
};
/**
* struct nps_pkt_slc_int_levels - Solicited Packet Out Interrupt Levels
* Registers.
* @bmode: Determines whether NPS_PKT_SLC_CNTS[CNT] is a byte or
* packet counter.
* @timet: Output port counter time interrupt threshold.
* @cnt: Output port counter interrupt threshold.
*/
union nps_pkt_slc_int_levels {
u64 value;
struct {
#if defined(__BIG_ENDIAN_BITFIELD)
u64 bmode : 1;
u64 raz : 9;
u64 timet : 22;
u64 cnt : 32;
#else
u64 cnt : 32;
u64 timet : 22;
u64 raz : 9;
u64 bmode : 1;
#endif
} s;
};
/**
* struct nps_pkt_inst - NPS Packet Interrupt Register
* @in_err: Set when any NPS_PKT_IN_RERR_HI/LO bit and
* corresponding NPS_PKT_IN_RERR_*_ENA_* bit are bot set.
* @uns_err: Set when any NSP_PKT_UNS_RERR_HI/LO bit and
* corresponding NPS_PKT_UNS_RERR_*_ENA_* bit are both set.
* @slc_er: Set when any NSP_PKT_SLC_RERR_HI/LO bit and
* corresponding NPS_PKT_SLC_RERR_*_ENA_* bit are both set.
*/
union nps_pkt_int {
u64 value;
struct {
#if defined(__BIG_ENDIAN_BITFIELD)
u64 raz : 54;
u64 uns_wto : 1;
u64 in_err : 1;
u64 uns_err : 1;
u64 slc_err : 1;
u64 in_dbe : 1;
u64 in_sbe : 1;
u64 uns_dbe : 1;
u64 uns_sbe : 1;
u64 slc_dbe : 1;
u64 slc_sbe : 1;
#else
u64 slc_sbe : 1;
u64 slc_dbe : 1;
u64 uns_sbe : 1;
u64 uns_dbe : 1;
u64 in_sbe : 1;
u64 in_dbe : 1;
u64 slc_err : 1;
u64 uns_err : 1;
u64 in_err : 1;
u64 uns_wto : 1;
u64 raz : 54;
#endif
} s;
};
/**
* struct nps_pkt_in_done_cnts - Input instruction ring counts registers
* @slc_cnt: Returns a 1 when:
* NPS_PKT_SLC(i)_CNTS[CNT] > NPS_PKT_SLC(i)_INT_LEVELS[CNT], or
* NPS_PKT_SLC(i)_CNTS[TIMER] > NPS_PKT_SCL(i)_INT_LEVELS[TIMET]
* To clear the bit, the CNTS register must be
* written to clear the underlying condition
* @uns_int: Return a 1 when:
* NPS_PKT_UNS(i)_CNTS[CNT] > NPS_PKT_UNS(i)_INT_LEVELS[CNT], or
* NPS_PKT_UNS(i)_CNTS[TIMER] > NPS_PKT_UNS(i)_INT_LEVELS[TIMET]
* To clear the bit, the CNTS register must be
* written to clear the underlying condition
* @in_int: Returns a 1 when:
* NPS_PKT_IN(i)_DONE_CNTS[CNT] > NPS_PKT_IN(i)_INT_LEVELS[CNT]
* To clear the bit, the DONE_CNTS register
* must be written to clear the underlying condition
* @mbox_int: Returns a 1 when:
* NPS_PKT_MBOX_PF_VF(i)_INT[INTR] is set.
* To clear the bit, write NPS_PKT_MBOX_PF_VF(i)_INT[INTR]
* with 1.
* @resend: A write of 1 will resend an MSI-X interrupt message if any
* of the following conditions are true for this ring "i".
* NPS_PKT_SLC(i)_CNTS[CNT] > NPS_PKT_SLC(i)_INT_LEVELS[CNT]
* NPS_PKT_SLC(i)_CNTS[TIMER] > NPS_PKT_SLC(i)_INT_LEVELS[TIMET]
* NPS_PKT_UNS(i)_CNTS[CNT] > NPS_PKT_UNS(i)_INT_LEVELS[CNT]
* NPS_PKT_UNS(i)_CNTS[TIMER] > NPS_PKT_UNS(i)_INT_LEVELS[TIMET]
* NPS_PKT_IN(i)_DONE_CNTS[CNT] > NPS_PKT_IN(i)_INT_LEVELS[CNT]
* NPS_PKT_MBOX_PF_VF(i)_INT[INTR] is set
* @cnt: Packet counter. Hardware adds to [CNT] as it reads
* packets. On a write to this CSR, hardware substracts the
* amount written to the [CNT] field from [CNT], which will
* clear PKT_IN(i)_INT_STATUS[INTR] if [CNT] becomes <=
* NPS_PKT_IN(i)_INT_LEVELS[CNT]. This register should be
* cleared before enabling a ring by reading the current
* value and writing it back.
*/
union nps_pkt_in_done_cnts {
u64 value;
struct {
#if defined(__BIG_ENDIAN_BITFIELD)
u64 slc_int : 1;
u64 uns_int : 1;
u64 in_int : 1;
u64 mbox_int : 1;
u64 resend : 1;
u64 raz : 27;
u64 cnt : 32;
#else
u64 cnt : 32;
u64 raz : 27;
u64 resend : 1;
u64 mbox_int : 1;
u64 in_int : 1;
u64 uns_int : 1;
u64 slc_int : 1;
#endif
} s;
};
/**
* struct nps_pkt_in_instr_ctl - Input Instruction Ring Control Registers.
* @is64b: If 1, the ring uses 64-byte instructions. If 0, the
* ring uses 32-byte instructions.
* @enb: Enable for the input ring.
*/
union nps_pkt_in_instr_ctl {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz : 62;
u64 is64b : 1;
u64 enb : 1;
#else
u64 enb : 1;
u64 is64b : 1;
u64 raz : 62;
#endif
} s;
};
/**
* struct nps_pkt_in_instr_rsize - Input instruction ring size registers
* @rsize: Ring size (number of instructions)
*/
union nps_pkt_in_instr_rsize {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz : 32;
u64 rsize : 32;
#else
u64 rsize : 32;
u64 raz : 32;
#endif
} s;
};
/**
* struct nps_pkt_in_instr_baoff_dbell - Input instruction ring
* base address offset and doorbell registers
* @aoff: Address offset. The offset from the NPS_PKT_IN_INSTR_BADDR
* where the next pointer is read.
* @dbell: Pointer list doorbell count. Write operations to this field
* increments the present value here. Read operations return the
* present value.
*/
union nps_pkt_in_instr_baoff_dbell {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 aoff : 32;
u64 dbell : 32;
#else
u64 dbell : 32;
u64 aoff : 32;
#endif
} s;
};
/**
* struct nps_core_int_ena_w1s - NPS core interrupt enable set register
* @host_nps_wr_err: Reads or sets enable for
* NPS_CORE_INT[HOST_NPS_WR_ERR].
* @npco_dma_malform: Reads or sets enable for
* NPS_CORE_INT[NPCO_DMA_MALFORM].
* @exec_wr_timeout: Reads or sets enable for
* NPS_CORE_INT[EXEC_WR_TIMEOUT].
* @host_wr_timeout: Reads or sets enable for
* NPS_CORE_INT[HOST_WR_TIMEOUT].
* @host_wr_err: Reads or sets enable for
* NPS_CORE_INT[HOST_WR_ERR]
*/
union nps_core_int_ena_w1s {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz4 : 55;
u64 host_nps_wr_err : 1;
u64 npco_dma_malform : 1;
u64 exec_wr_timeout : 1;
u64 host_wr_timeout : 1;
u64 host_wr_err : 1;
u64 raz3 : 1;
u64 raz2 : 1;
u64 raz1 : 1;
u64 raz0 : 1;
#else
u64 raz0 : 1;
u64 raz1 : 1;
u64 raz2 : 1;
u64 raz3 : 1;
u64 host_wr_err : 1;
u64 host_wr_timeout : 1;
u64 exec_wr_timeout : 1;
u64 npco_dma_malform : 1;
u64 host_nps_wr_err : 1;
u64 raz4 : 55;
#endif
} s;
};
/**
* struct nps_core_gbl_vfcfg - Global VF Configuration Register.
* @ilk_disable: When set, this bit indicates that the ILK interface has
* been disabled.
* @obaf: BMO allocation control
* 0 = allocate per queue
* 1 = allocate per VF
* @ibaf: BMI allocation control
* 0 = allocate per queue
* 1 = allocate per VF
* @zaf: ZIP allocation control
* 0 = allocate per queue
* 1 = allocate per VF
* @aeaf: AE allocation control
* 0 = allocate per queue
* 1 = allocate per VF
* @seaf: SE allocation control
* 0 = allocation per queue
* 1 = allocate per VF
* @cfg: VF/PF mode.
*/
union nps_core_gbl_vfcfg {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz :55;
u64 ilk_disable :1;
u64 obaf :1;
u64 ibaf :1;
u64 zaf :1;
u64 aeaf :1;
u64 seaf :1;
u64 cfg :3;
#else
u64 cfg :3;
u64 seaf :1;
u64 aeaf :1;
u64 zaf :1;
u64 ibaf :1;
u64 obaf :1;
u64 ilk_disable :1;
u64 raz :55;
#endif
} s;
};
/**
* struct nps_core_int_active - NPS Core Interrupt Active Register
* @resend: Resend MSI-X interrupt if needs to handle interrupts
* Sofware can set this bit and then exit the ISR.
* @ocla: Set when any OCLA(0)_INT and corresponding OCLA(0_INT_ENA_W1C
* bit are set
* @mbox: Set when any NPS_PKT_MBOX_INT_LO/HI and corresponding
* NPS_PKT_MBOX_INT_LO_ENA_W1C/HI_ENA_W1C bits are set
* @emu: bit i is set in [EMU] when any EMU(i)_INT bit is set
* @bmo: Set when any BMO_INT bit is set
* @bmi: Set when any BMI_INT bit is set or when any non-RO
* BMI_INT and corresponding BMI_INT_ENA_W1C bits are both set
* @aqm: Set when any AQM_INT bit is set
* @zqm: Set when any ZQM_INT bit is set
* @efl: Set when any EFL_INT RO bit is set or when any non-RO EFL_INT
* and corresponding EFL_INT_ENA_W1C bits are both set
* @ilk: Set when any ILK_INT bit is set
* @lbc: Set when any LBC_INT RO bit is set or when any non-RO LBC_INT
* and corresponding LBC_INT_ENA_W1C bits are bot set
* @pem: Set when any PEM(0)_INT RO bit is set or when any non-RO
* PEM(0)_INT and corresponding PEM(0)_INT_ENA_W1C bit are both set
* @ucd: Set when any UCD_INT bit is set
* @zctl: Set when any ZIP_INT RO bit is set or when any non-RO ZIP_INT
* and corresponding ZIP_INT_ENA_W1C bits are both set
* @lbm: Set when any LBM_INT bit is set
* @nps_pkt: Set when any NPS_PKT_INT bit is set
* @nps_core: Set when any NPS_CORE_INT RO bit is set or when non-RO
* NPS_CORE_INT and corresponding NSP_CORE_INT_ENA_W1C bits are both set
*/
union nps_core_int_active {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 resend : 1;
u64 raz : 43;
u64 ocla : 1;
u64 mbox : 1;
u64 emu : 4;
u64 bmo : 1;
u64 bmi : 1;
u64 aqm : 1;
u64 zqm : 1;
u64 efl : 1;
u64 ilk : 1;
u64 lbc : 1;
u64 pem : 1;
u64 pom : 1;
u64 ucd : 1;
u64 zctl : 1;
u64 lbm : 1;
u64 nps_pkt : 1;
u64 nps_core : 1;
#else
u64 nps_core : 1;
u64 nps_pkt : 1;
u64 lbm : 1;
u64 zctl: 1;
u64 ucd : 1;
u64 pom : 1;
u64 pem : 1;
u64 lbc : 1;
u64 ilk : 1;
u64 efl : 1;
u64 zqm : 1;
u64 aqm : 1;
u64 bmi : 1;
u64 bmo : 1;
u64 emu : 4;
u64 mbox : 1;
u64 ocla : 1;
u64 raz : 43;
u64 resend : 1;
#endif
} s;
};
/**
* struct efl_core_int - EFL Interrupt Registers
* @epci_decode_err: EPCI decoded a transacation that was unknown
* This error should only occurred when there is a micrcode/SE error
* and should be considered fatal
* @ae_err: An AE uncorrectable error occurred.
* See EFL_CORE(0..3)_AE_ERR_INT
* @se_err: An SE uncorrectable error occurred.
* See EFL_CORE(0..3)_SE_ERR_INT
* @dbe: Double-bit error occurred in EFL
* @sbe: Single-bit error occurred in EFL
* @d_left: Asserted when new POM-Header-BMI-data is
* being sent to an Exec, and that Exec has Not read all BMI
* data associated with the previous POM header
* @len_ovr: Asserted when an Exec-Read is issued that is more than
* 14 greater in length that the BMI data left to be read
*/
union efl_core_int {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz : 57;
u64 epci_decode_err : 1;
u64 ae_err : 1;
u64 se_err : 1;
u64 dbe : 1;
u64 sbe : 1;
u64 d_left : 1;
u64 len_ovr : 1;
#else
u64 len_ovr : 1;
u64 d_left : 1;
u64 sbe : 1;
u64 dbe : 1;
u64 se_err : 1;
u64 ae_err : 1;
u64 epci_decode_err : 1;
u64 raz : 57;
#endif
} s;
};
/**
* struct efl_core_int_ena_w1s - EFL core interrupt enable set register
* @epci_decode_err: Reads or sets enable for
* EFL_CORE(0..3)_INT[EPCI_DECODE_ERR].
* @d_left: Reads or sets enable for
* EFL_CORE(0..3)_INT[D_LEFT].
* @len_ovr: Reads or sets enable for
* EFL_CORE(0..3)_INT[LEN_OVR].
*/
union efl_core_int_ena_w1s {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz_7_63 : 57;
u64 epci_decode_err : 1;
u64 raz_2_5 : 4;
u64 d_left : 1;
u64 len_ovr : 1;
#else
u64 len_ovr : 1;
u64 d_left : 1;
u64 raz_2_5 : 4;
u64 epci_decode_err : 1;
u64 raz_7_63 : 57;
#endif
} s;
};
/**
* struct efl_rnm_ctl_status - RNM Control and Status Register
* @ent_sel: Select input to RNM FIFO
* @exp_ent: Exported entropy enable for random number generator
* @rng_rst: Reset to RNG. Setting this bit to 1 cancels the generation
* of the current random number.
* @rnm_rst: Reset the RNM. Setting this bit to 1 clears all sorted numbers
* in the random number memory.
* @rng_en: Enabled the output of the RNG.
* @ent_en: Entropy enable for random number generator.
*/
union efl_rnm_ctl_status {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz_9_63 : 55;
u64 ent_sel : 4;
u64 exp_ent : 1;
u64 rng_rst : 1;
u64 rnm_rst : 1;
u64 rng_en : 1;
u64 ent_en : 1;
#else
u64 ent_en : 1;
u64 rng_en : 1;
u64 rnm_rst : 1;
u64 rng_rst : 1;
u64 exp_ent : 1;
u64 ent_sel : 4;
u64 raz_9_63 : 55;
#endif
} s;
};
/**
* struct bmi_ctl - BMI control register
* @ilk_hdrq_thrsh: Maximum number of header queue locations
* that ILK packets may consume. When the threshold is
* exceeded ILK_XOFF is sent to the BMI_X2P_ARB.
* @nps_hdrq_thrsh: Maximum number of header queue locations
* that NPS packets may consume. When the threshold is
* exceeded NPS_XOFF is sent to the BMI_X2P_ARB.
* @totl_hdrq_thrsh: Maximum number of header queue locations
* that the sum of ILK and NPS packets may consume.
* @ilk_free_thrsh: Maximum number of buffers that ILK packet
* flows may consume before ILK_XOFF is sent to the BMI_X2P_ARB.
* @nps_free_thrsh: Maximum number of buffers that NPS packet
* flows may consume before NPS XOFF is sent to the BMI_X2p_ARB.
* @totl_free_thrsh: Maximum number of buffers that bot ILK and NPS
* packet flows may consume before both NPS_XOFF and ILK_XOFF
* are asserted to the BMI_X2P_ARB.
* @max_pkt_len: Maximum packet length, integral number of 256B
* buffers.
*/
union bmi_ctl {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz_56_63 : 8;
u64 ilk_hdrq_thrsh : 8;
u64 nps_hdrq_thrsh : 8;
u64 totl_hdrq_thrsh : 8;
u64 ilk_free_thrsh : 8;
u64 nps_free_thrsh : 8;
u64 totl_free_thrsh : 8;
u64 max_pkt_len : 8;
#else
u64 max_pkt_len : 8;
u64 totl_free_thrsh : 8;
u64 nps_free_thrsh : 8;
u64 ilk_free_thrsh : 8;
u64 totl_hdrq_thrsh : 8;
u64 nps_hdrq_thrsh : 8;
u64 ilk_hdrq_thrsh : 8;
u64 raz_56_63 : 8;
#endif
} s;
};
/**
* struct bmi_int_ena_w1s - BMI interrupt enable set register
* @ilk_req_oflw: Reads or sets enable for
* BMI_INT[ILK_REQ_OFLW].
* @nps_req_oflw: Reads or sets enable for
* BMI_INT[NPS_REQ_OFLW].
* @fpf_undrrn: Reads or sets enable for
* BMI_INT[FPF_UNDRRN].
* @eop_err_ilk: Reads or sets enable for
* BMI_INT[EOP_ERR_ILK].
* @eop_err_nps: Reads or sets enable for
* BMI_INT[EOP_ERR_NPS].
* @sop_err_ilk: Reads or sets enable for
* BMI_INT[SOP_ERR_ILK].
* @sop_err_nps: Reads or sets enable for
* BMI_INT[SOP_ERR_NPS].
* @pkt_rcv_err_ilk: Reads or sets enable for
* BMI_INT[PKT_RCV_ERR_ILK].
* @pkt_rcv_err_nps: Reads or sets enable for
* BMI_INT[PKT_RCV_ERR_NPS].
* @max_len_err_ilk: Reads or sets enable for
* BMI_INT[MAX_LEN_ERR_ILK].
* @max_len_err_nps: Reads or sets enable for
* BMI_INT[MAX_LEN_ERR_NPS].
*/
union bmi_int_ena_w1s {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz_13_63 : 51;
u64 ilk_req_oflw : 1;
u64 nps_req_oflw : 1;
u64 raz_10 : 1;
u64 raz_9 : 1;
u64 fpf_undrrn : 1;
u64 eop_err_ilk : 1;
u64 eop_err_nps : 1;
u64 sop_err_ilk : 1;
u64 sop_err_nps : 1;
u64 pkt_rcv_err_ilk : 1;
u64 pkt_rcv_err_nps : 1;
u64 max_len_err_ilk : 1;
u64 max_len_err_nps : 1;
#else
u64 max_len_err_nps : 1;
u64 max_len_err_ilk : 1;
u64 pkt_rcv_err_nps : 1;
u64 pkt_rcv_err_ilk : 1;
u64 sop_err_nps : 1;
u64 sop_err_ilk : 1;
u64 eop_err_nps : 1;
u64 eop_err_ilk : 1;
u64 fpf_undrrn : 1;
u64 raz_9 : 1;
u64 raz_10 : 1;
u64 nps_req_oflw : 1;
u64 ilk_req_oflw : 1;
u64 raz_13_63 : 51;
#endif
} s;
};
/**
* struct bmo_ctl2 - BMO Control2 Register
* @arb_sel: Determines P2X Arbitration
* @ilk_buf_thrsh: Maximum number of buffers that the
* ILK packet flows may consume before ILK XOFF is
* asserted to the POM.
* @nps_slc_buf_thrsh: Maximum number of buffers that the
* NPS_SLC packet flow may consume before NPS_SLC XOFF is
* asserted to the POM.
* @nps_uns_buf_thrsh: Maximum number of buffers that the
* NPS_UNS packet flow may consume before NPS_UNS XOFF is
* asserted to the POM.
* @totl_buf_thrsh: Maximum number of buffers that ILK, NPS_UNS and
* NPS_SLC packet flows may consume before NPS_UNS XOFF, NSP_SLC and
* ILK_XOFF are all asserted POM.
*/
union bmo_ctl2 {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 arb_sel : 1;
u64 raz_32_62 : 31;
u64 ilk_buf_thrsh : 8;
u64 nps_slc_buf_thrsh : 8;
u64 nps_uns_buf_thrsh : 8;
u64 totl_buf_thrsh : 8;
#else
u64 totl_buf_thrsh : 8;
u64 nps_uns_buf_thrsh : 8;
u64 nps_slc_buf_thrsh : 8;
u64 ilk_buf_thrsh : 8;
u64 raz_32_62 : 31;
u64 arb_sel : 1;
#endif
} s;
};
/**
* struct pom_int_ena_w1s - POM interrupt enable set register
* @illegal_intf: Reads or sets enable for POM_INT[ILLEGAL_INTF].
* @illegal_dport: Reads or sets enable for POM_INT[ILLEGAL_DPORT].
*/
union pom_int_ena_w1s {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz2 : 60;
u64 illegal_intf : 1;
u64 illegal_dport : 1;
u64 raz1 : 1;
u64 raz0 : 1;
#else
u64 raz0 : 1;
u64 raz1 : 1;
u64 illegal_dport : 1;
u64 illegal_intf : 1;
u64 raz2 : 60;
#endif
} s;
};
/**
* struct lbc_inval_ctl - LBC invalidation control register
* @wait_timer: Wait timer for wait state. [WAIT_TIMER] must
* always be written with its reset value.
* @cam_inval_start: Software should write [CAM_INVAL_START]=1
* to initiate an LBC cache invalidation. After this, software
* should read LBC_INVAL_STATUS until LBC_INVAL_STATUS[DONE] is set.
* LBC hardware clears [CAVM_INVAL_START] before software can
* observed LBC_INVAL_STATUS[DONE] to be set
*/
union lbc_inval_ctl {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz2 : 48;
u64 wait_timer : 8;
u64 raz1 : 6;
u64 cam_inval_start : 1;
u64 raz0 : 1;
#else
u64 raz0 : 1;
u64 cam_inval_start : 1;
u64 raz1 : 6;
u64 wait_timer : 8;
u64 raz2 : 48;
#endif
} s;
};
/**
* struct lbc_int_ena_w1s - LBC interrupt enable set register
* @cam_hard_err: Reads or sets enable for LBC_INT[CAM_HARD_ERR].
* @cam_inval_abort: Reads or sets enable for LBC_INT[CAM_INVAL_ABORT].
* @over_fetch_err: Reads or sets enable for LBC_INT[OVER_FETCH_ERR].
* @cache_line_to_err: Reads or sets enable for
* LBC_INT[CACHE_LINE_TO_ERR].
* @cam_soft_err: Reads or sets enable for
* LBC_INT[CAM_SOFT_ERR].
* @dma_rd_err: Reads or sets enable for
* LBC_INT[DMA_RD_ERR].
*/
union lbc_int_ena_w1s {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz_10_63 : 54;
u64 cam_hard_err : 1;
u64 cam_inval_abort : 1;
u64 over_fetch_err : 1;
u64 cache_line_to_err : 1;
u64 raz_2_5 : 4;
u64 cam_soft_err : 1;
u64 dma_rd_err : 1;
#else
u64 dma_rd_err : 1;
u64 cam_soft_err : 1;
u64 raz_2_5 : 4;
u64 cache_line_to_err : 1;
u64 over_fetch_err : 1;
u64 cam_inval_abort : 1;
u64 cam_hard_err : 1;
u64 raz_10_63 : 54;
#endif
} s;
};
/**
* struct lbc_int - LBC interrupt summary register
* @cam_hard_err: indicates a fatal hardware error.
* It requires system reset.
* When [CAM_HARD_ERR] is set, LBC stops logging any new information in
* LBC_POM_MISS_INFO_LOG,
* LBC_POM_MISS_ADDR_LOG,
* LBC_EFL_MISS_INFO_LOG, and
* LBC_EFL_MISS_ADDR_LOG.
* Software should sample them.
* @cam_inval_abort: indicates a fatal hardware error.
* System reset is required.
* @over_fetch_err: indicates a fatal hardware error
* System reset is required
* @cache_line_to_err: is a debug feature.
* This timeout interrupt bit tells the software that
* a cacheline in LBC has non-zero usage and the context
* has not been used for greater than the
* LBC_TO_CNT[TO_CNT] time interval.
* @sbe: Memory SBE error. This is recoverable via ECC.
* See LBC_ECC_INT for more details.
* @dbe: Memory DBE error. This is a fatal and requires a
* system reset.
* @pref_dat_len_mismatch_err: Summary bit for context length
* mismatch errors.
* @rd_dat_len_mismatch_err: Summary bit for SE read data length
* greater than data prefect length errors.
* @cam_soft_err: is recoverable. Software must complete a
* LBC_INVAL_CTL[CAM_INVAL_START] invalidation sequence and
* then clear [CAM_SOFT_ERR].
* @dma_rd_err: A context prefect read of host memory returned with
* a read error.
*/
union lbc_int {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz_10_63 : 54;
u64 cam_hard_err : 1;
u64 cam_inval_abort : 1;
u64 over_fetch_err : 1;
u64 cache_line_to_err : 1;
u64 sbe : 1;
u64 dbe : 1;
u64 pref_dat_len_mismatch_err : 1;
u64 rd_dat_len_mismatch_err : 1;
u64 cam_soft_err : 1;
u64 dma_rd_err : 1;
#else
u64 dma_rd_err : 1;
u64 cam_soft_err : 1;
u64 rd_dat_len_mismatch_err : 1;
u64 pref_dat_len_mismatch_err : 1;
u64 dbe : 1;
u64 sbe : 1;
u64 cache_line_to_err : 1;
u64 over_fetch_err : 1;
u64 cam_inval_abort : 1;
u64 cam_hard_err : 1;
u64 raz_10_63 : 54;
#endif
} s;
};
/**
* struct lbc_inval_status: LBC Invalidation status register
* @cam_clean_entry_complete_cnt: The number of entries that are
* cleaned up successfully.
* @cam_clean_entry_cnt: The number of entries that have the CAM
* inval command issued.
* @cam_inval_state: cam invalidation FSM state
* @cam_inval_abort: cam invalidation abort
* @cam_rst_rdy: lbc_cam reset ready
* @done: LBC clears [DONE] when
* LBC_INVAL_CTL[CAM_INVAL_START] is written with a one,
* and sets [DONE] when it completes the invalidation
* sequence.
*/
union lbc_inval_status {
u64 value;
struct {
#if (defined(__BIG_ENDIAN_BITFIELD))
u64 raz3 : 23;
u64 cam_clean_entry_complete_cnt : 9;
u64 raz2 : 7;
u64 cam_clean_entry_cnt : 9;
u64 raz1 : 5;
u64 cam_inval_state : 3;
u64 raz0 : 5;
u64 cam_inval_abort : 1;
u64 cam_rst_rdy : 1;
u64 done : 1;
#else
u64 done : 1;
u64 cam_rst_rdy : 1;
u64 cam_inval_abort : 1;
u64 raz0 : 5;
u64 cam_inval_state : 3;
u64 raz1 : 5;
u64 cam_clean_entry_cnt : 9;
u64 raz2 : 7;
u64 cam_clean_entry_complete_cnt : 9;
u64 raz3 : 23;
#endif
} s;
};
#endif /* __NITROX_CSR_H */