mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 12:11:40 +00:00
9b038d004c
This can be triggered by mounting a cifs filesystem with a cache=strict
mount option and then, using the fsx program from xfstests, doing:
ltp/fsx -A -d -N 1000 -S 11463 -P /tmp /cifs-mount/foo \
--replay-ops=gen112-fsxops
Where gen112-fsxops holds:
fallocate 0x6be7 0x8fc5 0x377d3
copy_range 0x9c71 0x77e8 0x2edaf 0x377d3
write 0x2776d 0x8f65 0x377d3
The problem is that netfs_io_request::len is being used for two purposes
and ends up getting set to the amount of data we transferred, not the
amount of data the caller asked to be transferred (for various reasons,
such as mmap'd writes, we might end up rounding out the data written to the
server to include the entire folio at each end).
Fix this by keeping the amount we were asked to write in ->len and using
->submitted to track what we issued ops for. Then, when we come to calling
->ki_complete(), ->len is the right size.
This also required netfs_cleanup_dio_write() to change since we're no
longer advancing wreq->len. Use wreq->transferred instead as we might have
done a short read.
With this, the generic/112 xfstest passes if cifs is forced to put all
non-DIO opens into write-through mode.
Fixes: 288ace2f57
("netfs: New writeback implementation")
Signed-off-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/295086.1716298663@warthog.procyon.org.uk
cc: Jeff Layton <jlayton@kernel.org>
cc: Steve French <stfrench@microsoft.com>
cc: Enzo Matsumiya <ematsumiya@suse.de>
cc: netfs@lists.linux.dev
cc: v9fs@lists.linux.dev
cc: linux-afs@lists.infradead.org
cc: linux-cifs@vger.kernel.org
cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
810 lines
24 KiB
C
810 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Network filesystem write subrequest result collection, assessment
|
|
* and retrying.
|
|
*
|
|
* Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include "internal.h"
|
|
|
|
/* Notes made in the collector */
|
|
#define HIT_PENDING 0x01 /* A front op was still pending */
|
|
#define SOME_EMPTY 0x02 /* One of more streams are empty */
|
|
#define ALL_EMPTY 0x04 /* All streams are empty */
|
|
#define MAYBE_DISCONTIG 0x08 /* A front op may be discontiguous (rounded to PAGE_SIZE) */
|
|
#define NEED_REASSESS 0x10 /* Need to loop round and reassess */
|
|
#define REASSESS_DISCONTIG 0x20 /* Reassess discontiguity if contiguity advances */
|
|
#define MADE_PROGRESS 0x40 /* Made progress cleaning up a stream or the folio set */
|
|
#define BUFFERED 0x80 /* The pagecache needs cleaning up */
|
|
#define NEED_RETRY 0x100 /* A front op requests retrying */
|
|
#define SAW_FAILURE 0x200 /* One stream or hit a permanent failure */
|
|
|
|
/*
|
|
* Successful completion of write of a folio to the server and/or cache. Note
|
|
* that we are not allowed to lock the folio here on pain of deadlocking with
|
|
* truncate.
|
|
*/
|
|
int netfs_folio_written_back(struct folio *folio)
|
|
{
|
|
enum netfs_folio_trace why = netfs_folio_trace_clear;
|
|
struct netfs_folio *finfo;
|
|
struct netfs_group *group = NULL;
|
|
int gcount = 0;
|
|
|
|
if ((finfo = netfs_folio_info(folio))) {
|
|
/* Streaming writes cannot be redirtied whilst under writeback,
|
|
* so discard the streaming record.
|
|
*/
|
|
folio_detach_private(folio);
|
|
group = finfo->netfs_group;
|
|
gcount++;
|
|
kfree(finfo);
|
|
why = netfs_folio_trace_clear_s;
|
|
goto end_wb;
|
|
}
|
|
|
|
if ((group = netfs_folio_group(folio))) {
|
|
if (group == NETFS_FOLIO_COPY_TO_CACHE) {
|
|
why = netfs_folio_trace_clear_cc;
|
|
folio_detach_private(folio);
|
|
goto end_wb;
|
|
}
|
|
|
|
/* Need to detach the group pointer if the page didn't get
|
|
* redirtied. If it has been redirtied, then it must be within
|
|
* the same group.
|
|
*/
|
|
why = netfs_folio_trace_redirtied;
|
|
if (!folio_test_dirty(folio)) {
|
|
folio_detach_private(folio);
|
|
gcount++;
|
|
why = netfs_folio_trace_clear_g;
|
|
}
|
|
}
|
|
|
|
end_wb:
|
|
trace_netfs_folio(folio, why);
|
|
folio_end_writeback(folio);
|
|
return gcount;
|
|
}
|
|
|
|
/*
|
|
* Get hold of a folio we have under writeback. We don't want to get the
|
|
* refcount on it.
|
|
*/
|
|
static struct folio *netfs_writeback_lookup_folio(struct netfs_io_request *wreq, loff_t pos)
|
|
{
|
|
XA_STATE(xas, &wreq->mapping->i_pages, pos / PAGE_SIZE);
|
|
struct folio *folio;
|
|
|
|
rcu_read_lock();
|
|
|
|
for (;;) {
|
|
xas_reset(&xas);
|
|
folio = xas_load(&xas);
|
|
if (xas_retry(&xas, folio))
|
|
continue;
|
|
|
|
if (!folio || xa_is_value(folio))
|
|
kdebug("R=%08x: folio %lx (%llx) not present",
|
|
wreq->debug_id, xas.xa_index, pos / PAGE_SIZE);
|
|
BUG_ON(!folio || xa_is_value(folio));
|
|
|
|
if (folio == xas_reload(&xas))
|
|
break;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
if (WARN_ONCE(!folio_test_writeback(folio),
|
|
"R=%08x: folio %lx is not under writeback\n",
|
|
wreq->debug_id, folio->index)) {
|
|
trace_netfs_folio(folio, netfs_folio_trace_not_under_wback);
|
|
}
|
|
return folio;
|
|
}
|
|
|
|
/*
|
|
* Unlock any folios we've finished with.
|
|
*/
|
|
static void netfs_writeback_unlock_folios(struct netfs_io_request *wreq,
|
|
unsigned long long collected_to,
|
|
unsigned int *notes)
|
|
{
|
|
for (;;) {
|
|
struct folio *folio;
|
|
struct netfs_folio *finfo;
|
|
unsigned long long fpos, fend;
|
|
size_t fsize, flen;
|
|
|
|
folio = netfs_writeback_lookup_folio(wreq, wreq->cleaned_to);
|
|
|
|
fpos = folio_pos(folio);
|
|
fsize = folio_size(folio);
|
|
finfo = netfs_folio_info(folio);
|
|
flen = finfo ? finfo->dirty_offset + finfo->dirty_len : fsize;
|
|
|
|
fend = min_t(unsigned long long, fpos + flen, wreq->i_size);
|
|
|
|
trace_netfs_collect_folio(wreq, folio, fend, collected_to);
|
|
|
|
if (fpos + fsize > wreq->contiguity) {
|
|
trace_netfs_collect_contig(wreq, fpos + fsize,
|
|
netfs_contig_trace_unlock);
|
|
wreq->contiguity = fpos + fsize;
|
|
}
|
|
|
|
/* Unlock any folio we've transferred all of. */
|
|
if (collected_to < fend)
|
|
break;
|
|
|
|
wreq->nr_group_rel += netfs_folio_written_back(folio);
|
|
wreq->cleaned_to = fpos + fsize;
|
|
*notes |= MADE_PROGRESS;
|
|
|
|
if (fpos + fsize >= collected_to)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform retries on the streams that need it.
|
|
*/
|
|
static void netfs_retry_write_stream(struct netfs_io_request *wreq,
|
|
struct netfs_io_stream *stream)
|
|
{
|
|
struct list_head *next;
|
|
|
|
_enter("R=%x[%x:]", wreq->debug_id, stream->stream_nr);
|
|
|
|
if (list_empty(&stream->subrequests))
|
|
return;
|
|
|
|
if (stream->source == NETFS_UPLOAD_TO_SERVER &&
|
|
wreq->netfs_ops->retry_request)
|
|
wreq->netfs_ops->retry_request(wreq, stream);
|
|
|
|
if (unlikely(stream->failed))
|
|
return;
|
|
|
|
/* If there's no renegotiation to do, just resend each failed subreq. */
|
|
if (!stream->prepare_write) {
|
|
struct netfs_io_subrequest *subreq;
|
|
|
|
list_for_each_entry(subreq, &stream->subrequests, rreq_link) {
|
|
if (test_bit(NETFS_SREQ_FAILED, &subreq->flags))
|
|
break;
|
|
if (__test_and_clear_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags)) {
|
|
__set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
|
|
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
|
|
netfs_reissue_write(stream, subreq);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
next = stream->subrequests.next;
|
|
|
|
do {
|
|
struct netfs_io_subrequest *subreq = NULL, *from, *to, *tmp;
|
|
unsigned long long start, len;
|
|
size_t part;
|
|
bool boundary = false;
|
|
|
|
/* Go through the stream and find the next span of contiguous
|
|
* data that we then rejig (cifs, for example, needs the wsize
|
|
* renegotiating) and reissue.
|
|
*/
|
|
from = list_entry(next, struct netfs_io_subrequest, rreq_link);
|
|
to = from;
|
|
start = from->start + from->transferred;
|
|
len = from->len - from->transferred;
|
|
|
|
if (test_bit(NETFS_SREQ_FAILED, &from->flags) ||
|
|
!test_bit(NETFS_SREQ_NEED_RETRY, &from->flags))
|
|
return;
|
|
|
|
list_for_each_continue(next, &stream->subrequests) {
|
|
subreq = list_entry(next, struct netfs_io_subrequest, rreq_link);
|
|
if (subreq->start + subreq->transferred != start + len ||
|
|
test_bit(NETFS_SREQ_BOUNDARY, &subreq->flags) ||
|
|
!test_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags))
|
|
break;
|
|
to = subreq;
|
|
len += to->len;
|
|
}
|
|
|
|
/* Work through the sublist. */
|
|
subreq = from;
|
|
list_for_each_entry_from(subreq, &stream->subrequests, rreq_link) {
|
|
if (!len)
|
|
break;
|
|
/* Renegotiate max_len (wsize) */
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_retry);
|
|
__clear_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
|
|
__set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
|
|
stream->prepare_write(subreq);
|
|
|
|
part = min(len, subreq->max_len);
|
|
subreq->len = part;
|
|
subreq->start = start;
|
|
subreq->transferred = 0;
|
|
len -= part;
|
|
start += part;
|
|
if (len && subreq == to &&
|
|
__test_and_clear_bit(NETFS_SREQ_BOUNDARY, &to->flags))
|
|
boundary = true;
|
|
|
|
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
|
|
netfs_reissue_write(stream, subreq);
|
|
if (subreq == to)
|
|
break;
|
|
}
|
|
|
|
/* If we managed to use fewer subreqs, we can discard the
|
|
* excess; if we used the same number, then we're done.
|
|
*/
|
|
if (!len) {
|
|
if (subreq == to)
|
|
continue;
|
|
list_for_each_entry_safe_from(subreq, tmp,
|
|
&stream->subrequests, rreq_link) {
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_discard);
|
|
list_del(&subreq->rreq_link);
|
|
netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_done);
|
|
if (subreq == to)
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* We ran out of subrequests, so we need to allocate some more
|
|
* and insert them after.
|
|
*/
|
|
do {
|
|
subreq = netfs_alloc_subrequest(wreq);
|
|
subreq->source = to->source;
|
|
subreq->start = start;
|
|
subreq->max_len = len;
|
|
subreq->max_nr_segs = INT_MAX;
|
|
subreq->debug_index = atomic_inc_return(&wreq->subreq_counter);
|
|
subreq->stream_nr = to->stream_nr;
|
|
__set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
|
|
|
|
trace_netfs_sreq_ref(wreq->debug_id, subreq->debug_index,
|
|
refcount_read(&subreq->ref),
|
|
netfs_sreq_trace_new);
|
|
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
|
|
|
|
list_add(&subreq->rreq_link, &to->rreq_link);
|
|
to = list_next_entry(to, rreq_link);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_retry);
|
|
|
|
switch (stream->source) {
|
|
case NETFS_UPLOAD_TO_SERVER:
|
|
netfs_stat(&netfs_n_wh_upload);
|
|
subreq->max_len = min(len, wreq->wsize);
|
|
break;
|
|
case NETFS_WRITE_TO_CACHE:
|
|
netfs_stat(&netfs_n_wh_write);
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
|
|
stream->prepare_write(subreq);
|
|
|
|
part = min(len, subreq->max_len);
|
|
subreq->len = subreq->transferred + part;
|
|
len -= part;
|
|
start += part;
|
|
if (!len && boundary) {
|
|
__set_bit(NETFS_SREQ_BOUNDARY, &to->flags);
|
|
boundary = false;
|
|
}
|
|
|
|
netfs_reissue_write(stream, subreq);
|
|
if (!len)
|
|
break;
|
|
|
|
} while (len);
|
|
|
|
} while (!list_is_head(next, &stream->subrequests));
|
|
}
|
|
|
|
/*
|
|
* Perform retries on the streams that need it. If we're doing content
|
|
* encryption and the server copy changed due to a third-party write, we may
|
|
* need to do an RMW cycle and also rewrite the data to the cache.
|
|
*/
|
|
static void netfs_retry_writes(struct netfs_io_request *wreq)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
struct netfs_io_stream *stream;
|
|
int s;
|
|
|
|
/* Wait for all outstanding I/O to quiesce before performing retries as
|
|
* we may need to renegotiate the I/O sizes.
|
|
*/
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
if (!stream->active)
|
|
continue;
|
|
|
|
list_for_each_entry(subreq, &stream->subrequests, rreq_link) {
|
|
wait_on_bit(&subreq->flags, NETFS_SREQ_IN_PROGRESS,
|
|
TASK_UNINTERRUPTIBLE);
|
|
}
|
|
}
|
|
|
|
// TODO: Enc: Fetch changed partial pages
|
|
// TODO: Enc: Reencrypt content if needed.
|
|
// TODO: Enc: Wind back transferred point.
|
|
// TODO: Enc: Mark cache pages for retry.
|
|
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
if (stream->need_retry) {
|
|
stream->need_retry = false;
|
|
netfs_retry_write_stream(wreq, stream);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Collect and assess the results of various write subrequests. We may need to
|
|
* retry some of the results - or even do an RMW cycle for content crypto.
|
|
*
|
|
* Note that we have a number of parallel, overlapping lists of subrequests,
|
|
* one to the server and one to the local cache for example, which may not be
|
|
* the same size or starting position and may not even correspond in boundary
|
|
* alignment.
|
|
*/
|
|
static void netfs_collect_write_results(struct netfs_io_request *wreq)
|
|
{
|
|
struct netfs_io_subrequest *front, *remove;
|
|
struct netfs_io_stream *stream;
|
|
unsigned long long collected_to;
|
|
unsigned int notes;
|
|
int s;
|
|
|
|
_enter("%llx-%llx", wreq->start, wreq->start + wreq->len);
|
|
trace_netfs_collect(wreq);
|
|
trace_netfs_rreq(wreq, netfs_rreq_trace_collect);
|
|
|
|
reassess_streams:
|
|
smp_rmb();
|
|
collected_to = ULLONG_MAX;
|
|
if (wreq->origin == NETFS_WRITEBACK)
|
|
notes = ALL_EMPTY | BUFFERED | MAYBE_DISCONTIG;
|
|
else if (wreq->origin == NETFS_WRITETHROUGH)
|
|
notes = ALL_EMPTY | BUFFERED;
|
|
else
|
|
notes = ALL_EMPTY;
|
|
|
|
/* Remove completed subrequests from the front of the streams and
|
|
* advance the completion point on each stream. We stop when we hit
|
|
* something that's in progress. The issuer thread may be adding stuff
|
|
* to the tail whilst we're doing this.
|
|
*
|
|
* We must not, however, merge in discontiguities that span whole
|
|
* folios that aren't under writeback. This is made more complicated
|
|
* by the folios in the gap being of unpredictable sizes - if they even
|
|
* exist - but we don't want to look them up.
|
|
*/
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
loff_t rstart, rend;
|
|
|
|
stream = &wreq->io_streams[s];
|
|
/* Read active flag before list pointers */
|
|
if (!smp_load_acquire(&stream->active))
|
|
continue;
|
|
|
|
front = stream->front;
|
|
while (front) {
|
|
trace_netfs_collect_sreq(wreq, front);
|
|
//_debug("sreq [%x] %llx %zx/%zx",
|
|
// front->debug_index, front->start, front->transferred, front->len);
|
|
|
|
/* Stall if there may be a discontinuity. */
|
|
rstart = round_down(front->start, PAGE_SIZE);
|
|
if (rstart > wreq->contiguity) {
|
|
if (wreq->contiguity > stream->collected_to) {
|
|
trace_netfs_collect_gap(wreq, stream,
|
|
wreq->contiguity, 'D');
|
|
stream->collected_to = wreq->contiguity;
|
|
}
|
|
notes |= REASSESS_DISCONTIG;
|
|
break;
|
|
}
|
|
rend = round_up(front->start + front->len, PAGE_SIZE);
|
|
if (rend > wreq->contiguity) {
|
|
trace_netfs_collect_contig(wreq, rend,
|
|
netfs_contig_trace_collect);
|
|
wreq->contiguity = rend;
|
|
if (notes & REASSESS_DISCONTIG)
|
|
notes |= NEED_REASSESS;
|
|
}
|
|
notes &= ~MAYBE_DISCONTIG;
|
|
|
|
/* Stall if the front is still undergoing I/O. */
|
|
if (test_bit(NETFS_SREQ_IN_PROGRESS, &front->flags)) {
|
|
notes |= HIT_PENDING;
|
|
break;
|
|
}
|
|
smp_rmb(); /* Read counters after I-P flag. */
|
|
|
|
if (stream->failed) {
|
|
stream->collected_to = front->start + front->len;
|
|
notes |= MADE_PROGRESS | SAW_FAILURE;
|
|
goto cancel;
|
|
}
|
|
if (front->start + front->transferred > stream->collected_to) {
|
|
stream->collected_to = front->start + front->transferred;
|
|
stream->transferred = stream->collected_to - wreq->start;
|
|
notes |= MADE_PROGRESS;
|
|
}
|
|
if (test_bit(NETFS_SREQ_FAILED, &front->flags)) {
|
|
stream->failed = true;
|
|
stream->error = front->error;
|
|
if (stream->source == NETFS_UPLOAD_TO_SERVER)
|
|
mapping_set_error(wreq->mapping, front->error);
|
|
notes |= NEED_REASSESS | SAW_FAILURE;
|
|
break;
|
|
}
|
|
if (front->transferred < front->len) {
|
|
stream->need_retry = true;
|
|
notes |= NEED_RETRY | MADE_PROGRESS;
|
|
break;
|
|
}
|
|
|
|
cancel:
|
|
/* Remove if completely consumed. */
|
|
spin_lock(&wreq->lock);
|
|
|
|
remove = front;
|
|
list_del_init(&front->rreq_link);
|
|
front = list_first_entry_or_null(&stream->subrequests,
|
|
struct netfs_io_subrequest, rreq_link);
|
|
stream->front = front;
|
|
if (!front) {
|
|
unsigned long long jump_to = atomic64_read(&wreq->issued_to);
|
|
|
|
if (stream->collected_to < jump_to) {
|
|
trace_netfs_collect_gap(wreq, stream, jump_to, 'A');
|
|
stream->collected_to = jump_to;
|
|
}
|
|
}
|
|
|
|
spin_unlock(&wreq->lock);
|
|
netfs_put_subrequest(remove, false,
|
|
notes & SAW_FAILURE ?
|
|
netfs_sreq_trace_put_cancel :
|
|
netfs_sreq_trace_put_done);
|
|
}
|
|
|
|
if (front)
|
|
notes &= ~ALL_EMPTY;
|
|
else
|
|
notes |= SOME_EMPTY;
|
|
|
|
if (stream->collected_to < collected_to)
|
|
collected_to = stream->collected_to;
|
|
}
|
|
|
|
if (collected_to != ULLONG_MAX && collected_to > wreq->collected_to)
|
|
wreq->collected_to = collected_to;
|
|
|
|
/* If we have an empty stream, we need to jump it forward over any gap
|
|
* otherwise the collection point will never advance.
|
|
*
|
|
* Note that the issuer always adds to the stream with the lowest
|
|
* so-far submitted start, so if we see two consecutive subreqs in one
|
|
* stream with nothing between then in another stream, then the second
|
|
* stream has a gap that can be jumped.
|
|
*/
|
|
if (notes & SOME_EMPTY) {
|
|
unsigned long long jump_to = wreq->start + READ_ONCE(wreq->submitted);
|
|
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
if (stream->active &&
|
|
stream->front &&
|
|
stream->front->start < jump_to)
|
|
jump_to = stream->front->start;
|
|
}
|
|
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
if (stream->active &&
|
|
!stream->front &&
|
|
stream->collected_to < jump_to) {
|
|
trace_netfs_collect_gap(wreq, stream, jump_to, 'B');
|
|
stream->collected_to = jump_to;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
if (stream->active)
|
|
trace_netfs_collect_stream(wreq, stream);
|
|
}
|
|
|
|
trace_netfs_collect_state(wreq, wreq->collected_to, notes);
|
|
|
|
/* Unlock any folios that we have now finished with. */
|
|
if (notes & BUFFERED) {
|
|
unsigned long long clean_to = min(wreq->collected_to, wreq->contiguity);
|
|
|
|
if (wreq->cleaned_to < clean_to)
|
|
netfs_writeback_unlock_folios(wreq, clean_to, ¬es);
|
|
} else {
|
|
wreq->cleaned_to = wreq->collected_to;
|
|
}
|
|
|
|
// TODO: Discard encryption buffers
|
|
|
|
/* If all streams are discontiguous with the last folio we cleared, we
|
|
* may need to skip a set of folios.
|
|
*/
|
|
if ((notes & (MAYBE_DISCONTIG | ALL_EMPTY)) == MAYBE_DISCONTIG) {
|
|
unsigned long long jump_to = ULLONG_MAX;
|
|
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
if (stream->active && stream->front &&
|
|
stream->front->start < jump_to)
|
|
jump_to = stream->front->start;
|
|
}
|
|
|
|
trace_netfs_collect_contig(wreq, jump_to, netfs_contig_trace_jump);
|
|
wreq->contiguity = jump_to;
|
|
wreq->cleaned_to = jump_to;
|
|
wreq->collected_to = jump_to;
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
stream = &wreq->io_streams[s];
|
|
if (stream->collected_to < jump_to)
|
|
stream->collected_to = jump_to;
|
|
}
|
|
//cond_resched();
|
|
notes |= MADE_PROGRESS;
|
|
goto reassess_streams;
|
|
}
|
|
|
|
if (notes & NEED_RETRY)
|
|
goto need_retry;
|
|
if ((notes & MADE_PROGRESS) && test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) {
|
|
trace_netfs_rreq(wreq, netfs_rreq_trace_unpause);
|
|
clear_bit_unlock(NETFS_RREQ_PAUSE, &wreq->flags);
|
|
wake_up_bit(&wreq->flags, NETFS_RREQ_PAUSE);
|
|
}
|
|
|
|
if (notes & NEED_REASSESS) {
|
|
//cond_resched();
|
|
goto reassess_streams;
|
|
}
|
|
if (notes & MADE_PROGRESS) {
|
|
//cond_resched();
|
|
goto reassess_streams;
|
|
}
|
|
|
|
out:
|
|
netfs_put_group_many(wreq->group, wreq->nr_group_rel);
|
|
wreq->nr_group_rel = 0;
|
|
_leave(" = %x", notes);
|
|
return;
|
|
|
|
need_retry:
|
|
/* Okay... We're going to have to retry one or both streams. Note
|
|
* that any partially completed op will have had any wholly transferred
|
|
* folios removed from it.
|
|
*/
|
|
_debug("retry");
|
|
netfs_retry_writes(wreq);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Perform the collection of subrequests, folios and encryption buffers.
|
|
*/
|
|
void netfs_write_collection_worker(struct work_struct *work)
|
|
{
|
|
struct netfs_io_request *wreq = container_of(work, struct netfs_io_request, work);
|
|
struct netfs_inode *ictx = netfs_inode(wreq->inode);
|
|
size_t transferred;
|
|
int s;
|
|
|
|
_enter("R=%x", wreq->debug_id);
|
|
|
|
netfs_see_request(wreq, netfs_rreq_trace_see_work);
|
|
if (!test_bit(NETFS_RREQ_IN_PROGRESS, &wreq->flags)) {
|
|
netfs_put_request(wreq, false, netfs_rreq_trace_put_work);
|
|
return;
|
|
}
|
|
|
|
netfs_collect_write_results(wreq);
|
|
|
|
/* We're done when the app thread has finished posting subreqs and all
|
|
* the queues in all the streams are empty.
|
|
*/
|
|
if (!test_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags)) {
|
|
netfs_put_request(wreq, false, netfs_rreq_trace_put_work);
|
|
return;
|
|
}
|
|
smp_rmb(); /* Read ALL_QUEUED before lists. */
|
|
|
|
transferred = LONG_MAX;
|
|
for (s = 0; s < NR_IO_STREAMS; s++) {
|
|
struct netfs_io_stream *stream = &wreq->io_streams[s];
|
|
if (!stream->active)
|
|
continue;
|
|
if (!list_empty(&stream->subrequests)) {
|
|
netfs_put_request(wreq, false, netfs_rreq_trace_put_work);
|
|
return;
|
|
}
|
|
if (stream->transferred < transferred)
|
|
transferred = stream->transferred;
|
|
}
|
|
|
|
/* Okay, declare that all I/O is complete. */
|
|
wreq->transferred = transferred;
|
|
trace_netfs_rreq(wreq, netfs_rreq_trace_write_done);
|
|
|
|
if (wreq->io_streams[1].active &&
|
|
wreq->io_streams[1].failed) {
|
|
/* Cache write failure doesn't prevent writeback completion
|
|
* unless we're in disconnected mode.
|
|
*/
|
|
ictx->ops->invalidate_cache(wreq);
|
|
}
|
|
|
|
if (wreq->cleanup)
|
|
wreq->cleanup(wreq);
|
|
|
|
if (wreq->origin == NETFS_DIO_WRITE &&
|
|
wreq->mapping->nrpages) {
|
|
/* mmap may have got underfoot and we may now have folios
|
|
* locally covering the region we just wrote. Attempt to
|
|
* discard the folios, but leave in place any modified locally.
|
|
* ->write_iter() is prevented from interfering by the DIO
|
|
* counter.
|
|
*/
|
|
pgoff_t first = wreq->start >> PAGE_SHIFT;
|
|
pgoff_t last = (wreq->start + wreq->transferred - 1) >> PAGE_SHIFT;
|
|
invalidate_inode_pages2_range(wreq->mapping, first, last);
|
|
}
|
|
|
|
if (wreq->origin == NETFS_DIO_WRITE)
|
|
inode_dio_end(wreq->inode);
|
|
|
|
_debug("finished");
|
|
trace_netfs_rreq(wreq, netfs_rreq_trace_wake_ip);
|
|
clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &wreq->flags);
|
|
wake_up_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS);
|
|
|
|
if (wreq->iocb) {
|
|
size_t written = min(wreq->transferred, wreq->len);
|
|
wreq->iocb->ki_pos += written;
|
|
if (wreq->iocb->ki_complete)
|
|
wreq->iocb->ki_complete(
|
|
wreq->iocb, wreq->error ? wreq->error : written);
|
|
wreq->iocb = VFS_PTR_POISON;
|
|
}
|
|
|
|
netfs_clear_subrequests(wreq, false);
|
|
netfs_put_request(wreq, false, netfs_rreq_trace_put_work_complete);
|
|
}
|
|
|
|
/*
|
|
* Wake the collection work item.
|
|
*/
|
|
void netfs_wake_write_collector(struct netfs_io_request *wreq, bool was_async)
|
|
{
|
|
if (!work_pending(&wreq->work)) {
|
|
netfs_get_request(wreq, netfs_rreq_trace_get_work);
|
|
if (!queue_work(system_unbound_wq, &wreq->work))
|
|
netfs_put_request(wreq, was_async, netfs_rreq_trace_put_work_nq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* netfs_write_subrequest_terminated - Note the termination of a write operation.
|
|
* @_op: The I/O request that has terminated.
|
|
* @transferred_or_error: The amount of data transferred or an error code.
|
|
* @was_async: The termination was asynchronous
|
|
*
|
|
* This tells the library that a contributory write I/O operation has
|
|
* terminated, one way or another, and that it should collect the results.
|
|
*
|
|
* The caller indicates in @transferred_or_error the outcome of the operation,
|
|
* supplying a positive value to indicate the number of bytes transferred or a
|
|
* negative error code. The library will look after reissuing I/O operations
|
|
* as appropriate and writing downloaded data to the cache.
|
|
*
|
|
* If @was_async is true, the caller might be running in softirq or interrupt
|
|
* context and we can't sleep.
|
|
*
|
|
* When this is called, ownership of the subrequest is transferred back to the
|
|
* library, along with a ref.
|
|
*
|
|
* Note that %_op is a void* so that the function can be passed to
|
|
* kiocb::term_func without the need for a casting wrapper.
|
|
*/
|
|
void netfs_write_subrequest_terminated(void *_op, ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_io_subrequest *subreq = _op;
|
|
struct netfs_io_request *wreq = subreq->rreq;
|
|
struct netfs_io_stream *stream = &wreq->io_streams[subreq->stream_nr];
|
|
|
|
_enter("%x[%x] %zd", wreq->debug_id, subreq->debug_index, transferred_or_error);
|
|
|
|
switch (subreq->source) {
|
|
case NETFS_UPLOAD_TO_SERVER:
|
|
netfs_stat(&netfs_n_wh_upload_done);
|
|
break;
|
|
case NETFS_WRITE_TO_CACHE:
|
|
netfs_stat(&netfs_n_wh_write_done);
|
|
break;
|
|
case NETFS_INVALID_WRITE:
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (IS_ERR_VALUE(transferred_or_error)) {
|
|
subreq->error = transferred_or_error;
|
|
if (subreq->error == -EAGAIN)
|
|
set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
|
|
else
|
|
set_bit(NETFS_SREQ_FAILED, &subreq->flags);
|
|
trace_netfs_failure(wreq, subreq, transferred_or_error, netfs_fail_write);
|
|
|
|
switch (subreq->source) {
|
|
case NETFS_WRITE_TO_CACHE:
|
|
netfs_stat(&netfs_n_wh_write_failed);
|
|
break;
|
|
case NETFS_UPLOAD_TO_SERVER:
|
|
netfs_stat(&netfs_n_wh_upload_failed);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
trace_netfs_rreq(wreq, netfs_rreq_trace_set_pause);
|
|
set_bit(NETFS_RREQ_PAUSE, &wreq->flags);
|
|
} else {
|
|
if (WARN(transferred_or_error > subreq->len - subreq->transferred,
|
|
"Subreq excess write: R=%x[%x] %zd > %zu - %zu",
|
|
wreq->debug_id, subreq->debug_index,
|
|
transferred_or_error, subreq->len, subreq->transferred))
|
|
transferred_or_error = subreq->len - subreq->transferred;
|
|
|
|
subreq->error = 0;
|
|
subreq->transferred += transferred_or_error;
|
|
|
|
if (subreq->transferred < subreq->len)
|
|
set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
|
|
}
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
|
|
|
|
clear_bit_unlock(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
|
|
wake_up_bit(&subreq->flags, NETFS_SREQ_IN_PROGRESS);
|
|
|
|
/* If we are at the head of the queue, wake up the collector,
|
|
* transferring a ref to it if we were the ones to do so.
|
|
*/
|
|
if (list_is_first(&subreq->rreq_link, &stream->subrequests))
|
|
netfs_wake_write_collector(wreq, was_async);
|
|
|
|
netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
|
|
}
|
|
EXPORT_SYMBOL(netfs_write_subrequest_terminated);
|