mirror of
https://github.com/torvalds/linux.git
synced 2024-12-15 15:41:58 +00:00
2c64e9cb0b
For better maintenance and expansion move the mathematic helpers to the separate folder. No functional change intended. Note, the int_sqrt() is not used as a part of lib, so, moved to regular obj. Link: http://lkml.kernel.org/r/20190323172531.80025-1-andriy.shevchenko@linux.intel.com Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thierry Reding <thierry.reding@gmail.com> Cc: Lee Jones <lee.jones@linaro.org> Cc: Daniel Thompson <daniel.thompson@linaro.org> Cc: Ray Jui <rjui@broadcom.com> [mchehab+samsung@kernel.org: fix broken doc references for div64.c and gcd.c] Link: http://lkml.kernel.org/r/734f49bae5d4052b3c25691dfefad59bea2e5843.1555580999.git.mchehab+samsung@kernel.org Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
66 lines
1.6 KiB
C
66 lines
1.6 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* rational fractions
|
|
*
|
|
* Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
|
|
*
|
|
* helper functions when coping with rational numbers
|
|
*/
|
|
|
|
#include <linux/rational.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/export.h>
|
|
|
|
/*
|
|
* calculate best rational approximation for a given fraction
|
|
* taking into account restricted register size, e.g. to find
|
|
* appropriate values for a pll with 5 bit denominator and
|
|
* 8 bit numerator register fields, trying to set up with a
|
|
* frequency ratio of 3.1415, one would say:
|
|
*
|
|
* rational_best_approximation(31415, 10000,
|
|
* (1 << 8) - 1, (1 << 5) - 1, &n, &d);
|
|
*
|
|
* you may look at given_numerator as a fixed point number,
|
|
* with the fractional part size described in given_denominator.
|
|
*
|
|
* for theoretical background, see:
|
|
* http://en.wikipedia.org/wiki/Continued_fraction
|
|
*/
|
|
|
|
void rational_best_approximation(
|
|
unsigned long given_numerator, unsigned long given_denominator,
|
|
unsigned long max_numerator, unsigned long max_denominator,
|
|
unsigned long *best_numerator, unsigned long *best_denominator)
|
|
{
|
|
unsigned long n, d, n0, d0, n1, d1;
|
|
n = given_numerator;
|
|
d = given_denominator;
|
|
n0 = d1 = 0;
|
|
n1 = d0 = 1;
|
|
for (;;) {
|
|
unsigned long t, a;
|
|
if ((n1 > max_numerator) || (d1 > max_denominator)) {
|
|
n1 = n0;
|
|
d1 = d0;
|
|
break;
|
|
}
|
|
if (d == 0)
|
|
break;
|
|
t = d;
|
|
a = n / d;
|
|
d = n % d;
|
|
n = t;
|
|
t = n0 + a * n1;
|
|
n0 = n1;
|
|
n1 = t;
|
|
t = d0 + a * d1;
|
|
d0 = d1;
|
|
d1 = t;
|
|
}
|
|
*best_numerator = n1;
|
|
*best_denominator = d1;
|
|
}
|
|
|
|
EXPORT_SYMBOL(rational_best_approximation);
|